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Abstract

We study an entanglement distribution switch that serves k users in a star topol-

ogy. The function of the switch is to facilitate end-to-end bipartite entangled

state generation for pairs of users. We study a simple variant of this problem,

wherein all links connecting the users to the switch are identical, the effects of

state decoherence are negligible, and the switch can store an arbitrary number

of qubits. We model the system using a discrete-time Markov chain and ob-

tain the capacity of the switch. When the switch operates at capacity, we also

present a numerical method for computing the expected number of qubits stored

at the switch, which depends on the number of users k and the probability of

successful entanglement generation at the link level p. We then compare the

results of our exact analysis to that of a continuous-time Markov chain model

of a quantum switch and argue that the latter is a reasonable approximation to

the more realistic model presented in this work.

Keywords: quantum switch, entanglement distribution, Markov chain

1. Introduction

Protocols that exploit quantum communication technology offer two advan-

tages: they can either extend or render feasible the capabilities of their classical

counterparts, or they exhibit functionality entirely unachievable through classi-

cal means alone. For an example of the former, quantum key distribution (QKD)5
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protocols such as E91 [1] and BBM92 [2] can in principle yield information-

theoretic security by using entanglement to generate secure key bits. These raw

secret key bits can then be distilled into a one-time pad to encode messages sent

between two parties. For an example of the latter, distributed quantum sensing

frameworks such as [3] and [4] employ entanglement to overcome the standard10

quantum limit [5].

While these applications hold a tremendous amount of potential for dis-

tributed quantum communication (and even computation, see, e.g., [6]), a sub-

stantial challenge is reliable generation of entanglement – an essential compo-

nent for many of these tasks – especially over a large distance. This is due to15

the fact that there is an exponential rate-versus-distance decay for quantum

state propagation both through terrestrial free-space and optical fiber chan-

nels [7, 8]. Quantum repeaters positioned between communicating nodes can

overcome this fundamental rate-versus-distance tradeoff [9, 10]. The process of

quantum repeater-assisted entanglement generation is illustrated at a high level20

in Figure 1 and can be divided into two main steps. In step one, each segment

connecting two adjacent nodes attempts to generate an entangled link. Qubits

from a successfully-generated entanglement are stored in quantum memories,

one in each node (Figure 1b). Once entangled links are present on all segments,

the quantum repeaters perform entanglement swapping [11] on their two locally-25

held qubits (Figure 1c). If all swapping operations succeed, this results in an

end-to-end entangled link between the communicating parties (Figure 1d).

In this work, we use the term “quantum switch” instead of “repeater” be-

cause in a more complex network than that of Figure 1, the device will likely be

connected to several nodes or users; hence it is reasonable to assume that it will30

be equipped with entanglement switching logic. Quantum repeaters, switches,

and similar devices (e.g., trusted nodes) will serve as building blocks for large-

scale quantum networks. It is natural, therefore, to ask questions about their

fundamental limits from a mathematical perspective, in order to gain insight

into what constitutes efficient operation for such a device, as well as to create a35

performance comparison basis for future protocols and algorithms that rely on
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(a) no entanglement present (b) all links successfully generate entangle-

ment

(c) repeater nodes perform entangling

measurements

(d) end nodes share an entangled state

Figure 1: Long-distance entanglement generation using quantum repeaters. The two nodes

at the edges are communicating parties, and the nodes between them are quantum repeaters.

Dashed lines represent lack of entangled links, while solid lines represent presence of entangle-

ment. The gray and red circles are unoccupied and occupied quantum memories, respectively.

these devices. To this end, we study a quantum switch that serves entangled

states to pairs of users in a star topology, with the objective of determining the

capacity of the switch, as well as the expected number of stored qubits in mem-

ory at the switch when it operates at capacity. We use a discrete-time Markov40

chain (DTMC) to construct a model that abstracts away various architecture

and physical implementation details about the system, e.g., the method used

for entanglement generation or how quantum memories are realized.

We focus on the simplest variant of this problem, wherein links connecting

users to the switch are identical, there is no quantum state decoherence, and45

the switch can store arbitrary numbers of qubits. Throughout this paper, we

often refer to the number of quantum memories at the switch as its buffer size.

An unfortunate property of our DTMC model is that it is difficult to extend to

include the aforementioned system characteristics. Prior literature on quantum

switch modeling utilizes continuous-time Markov chains (CTMCs) to account50

for these phenomena. Nevertheless, there is value in studying a quantum switch

using a DTMC, as the system is inherently a discrete-time system. Hence, while

CTMCs have been shown to be more expressive as a modeling technique, there

will undoubtedly be some differences in the resulting performance metrics. To

3



quantify these differences, and determine whether a CTMC model provides a55

reasonable approximation to the original system, we compare the performance

metrics obtained from both models.

Following is a summary of our results:

– the DTMC is stable if and only if the number of users k ≥ 3;

– the capacity of the switch is given by

C =
qkp

2
,

where k is the number of users or links, p is the probability of successfully60

generating entanglement at the link level, and q is the probability of a

successful swapping operation;

– when the switch operates at capacity (a detailed description of a switch-

ing policy that achieves the maximum entanglement switching rate is de-

scribed in Section 4), the expected number of stored qubits is given by

E[Q] =
1 + β

2(1− β)
,

where Q is the number of qubits stored at the switch in steady state,

across all links, and β is in the interval (0, 1) and is the unique solution

to the following equation1 when k ≥ 3:

(βp+ p)k−1(p+ βp)− β = 0;

– the expression for the capacity of the switch obtained using the DTMC

matches exactly that of the CTMC model found in literature. On the other

hand, the CTMC model overestimates the expected number of qubits in65

memory in steady state, but since the discrepancy is not significant, we

conclude that the CTMC model is a reasonable approximation to the

behavior of the system considered in this work.

1Throughout this paper, p ≡ 1− p.
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The rest of this paper is organized as follows: in Section 2, we introduce the

relevant background for quantum computation and communication. In Section 370

we discuss related work on quantum switch modeling. In Section 4, we formally

introduce the DTMC model and state the objectives. The analysis is performed

in Section 5. In Section 6, we compare the DTMC model introduced in this

work with an existing CTMC model. We conclude in Section 7.

2. Background75

A qubit is the quantum analogue of a bit and can be described by a two-

level quantum-mechanical system, e.g., the up or down spin of an electron, or

the horizontal and vertical polarization of a photon. An important distinction

between bits and qubits is that the latter can be in a superposition of two

possibilities. In Dirac notation, this is represented as

|ψ〉 = α |0〉+ β |1〉 ≡ α

1

0

+ β

0

1

 ,
where α and β are complex and |α|2 + |β|2 = 1. The probabilistic interpretation

is that if we prepare many states |ψ〉 and measure them (in the computational

basis {|0〉 , |1〉}), then over time, P (0) = |α|2 and P (1) = |β|2, where P (0) and

P (1) denote the probability of the qubit’s superposition collapsing into state |0〉

or |1〉, respectively.80

Multi-qubit quantum states can be represented mathematically using tensor

products. For an example, if Alice has a qubit A in state |0〉 and Bob has a

qubit B in state |1〉, we can represent the overall state as |0〉A ⊗ |1〉B ≡ |01〉.

Two qubits are said to be entangled if their state cannot be expressed as a

tensor product of their individual states (intuitively, this means that the state

of one qubit cannot be described independently from the state of the other).

One of the most essential resources for quantum communication is a maximally

entangled two-qubit state known as a Bell state or Bell pair. An example of

such a state is

|Φ+〉 =
|0〉A |0〉B + |1〉A |1〉B√

2
,
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where the subscripts A and B signify the two qubits, possibly separated by an

arbitrary distance. For Bell pairs, the probability of an outcome is always 1/2.

Since the qubits A and B are entangled, measuring one of them, say A, and

reading out the result tells us with certainty the state of the other qubit, B.

Note that the outcome of the first measurement is completely random: the state85

of qubit A may collapse to |0〉 or |1〉, each with probability 1/2, but if B is then

measured (in the same basis as A), even if it is a large distance away from A

and even if the second measurement is performed immediately after the first,

the outcome will be the same as that of the first measurement. Thus, A and B

are perfectly correlated, but in a much stronger way than is possible classically.90

The four Bell pairs are given by

|Φ±〉 =
|00〉 ± |11〉√

2
and |Ψ±〉 =

|01〉 ± |10〉√
2

and can be used as expendable resources in a number of distributed quantum

tasks, such as teleportation [12], superdense coding [13], or to generate a raw

secret key bit in entanglement-based QKD protocols.

One of the major challenges of implementation of distributed tasks in quan-

tum networks is the difficulty of safely transmitting a quantum state across a95

large distance. For optical fiber, channel transmissivity is η = e−αL, where L

is the length of the link and α the fiber attenuation coefficient. The probability

of successful entanglement generation p on a link is proportional to its trans-

missivity η. Transmission through free space poses its own challenges, such as

photon loss and phase changes due to scattering [14]. Non-entanglement-based100

protocols, such as BB84 [15], also suffer from limited distance for the same

reason: the likelihood of losing a quantum state in transit grows exponentially

with the distance, while the no-cloning theorem [16] prevents one from making

an independent copy of an unknown quantum state, thereby rendering losses

irrecoverable. A remedy for the issue of limited distance is the use of quantum105

repeaters [17] coupled with the process of teleportation. Teleportation works

by allowing one user to transport a (possibly unknown) qubit to another user

using a shared Bell pair, local operations, and classical communication.
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Quantum repeaters extend the distance between two or more communicating

parties via entanglement swapping operations. An example of these operations110

and their effects is illustrated in Figure 1, where each solid line is a Bell state. It

is worth noting that Figure 1 depicts one of the most valuable uses of Bell states

in a quantum network. In the special case of long-distance Bell pair generation

via connection of two shorter-distance Bell pairs, the switch performs the swap-

ping operation via a Bell state measurement (BSM). In linear optics, this is115

a probabilistic but heralded operation, with the success probability dependent

on the exact implementation of the BSM as well as gate operation efficiencies

[18, 19, 20]. We address this phenomenon in our model by introducing a pa-

rameter that represents the BSM success probability.

In general, all quantum states are subject to decoherence, which can be120

thought of as leakage of information from the quantum system into the environ-

ment. Fidelity, a number in [0, 1], is a measure of closeness of a possibly mixed

state to the desired pure state, with unit fidelity implying that the two states

have equivalent representations. Intuitively, fidelity can be thought of as the

quality of the entanglement. Fidelity may degrade when a qubit is in storage125

as well as after a swapping operation (i.e., the fidelity of the resulting state will

be lower than that of the original states used in the swap). In this work, we

assume that each successfully-generated quantum state (whether it is an ele-

mentary link-level Bell pair or a longer-distance entanglement resulting from an

entanglement swap) has unit fidelity and that the quantum memories used for130

storing qubits are capable of noiseless storage and have infinite coherence times.

While these assumptions create a highly idealized scenario, it is nevertheless

valuable to study as the analysis will yield an upper bound on the entanglement

switching rate of a quantum switch operating under more realistic conditions.

3. Related Work135

In [21], the authors introduce a CTMC-based model to analyze a quantum

switch that serves only bipartite end-to-end entangled states to pairs of users.
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While it is easier to extend this model to represent systems that are more com-

plex than that of this work, an important question that arises is whether the

CTMC model is a fair approximation to a more realistic DTMC model. We140

answer this question in Section 6, from the perspective of the chain’s stability

condition and expressions for switch capacity and expected number of qubits

in memory at the switch in steady state. In [22], the authors use a CTMC to

analyze a multipartite entanglement distribution switch for a similarly idealized

scenario as studied in our work: identical links, no quantum state decoherence,145

unit fidelities, and infinite quantum storage. While this switch serves n-partite

Greenberger-Horne-Zeilinger (GHZ) states [23], note that setting n = 2 yields

precisely the model presented in [21] (and thus, the analytical results are equiv-

alent for the two CTMCs).

Some analyses focus on specific quantum repeater architectures or protocols;150

e.g., in [9] the authors perform a rigorous and detailed analysis of the repeater

architecture proposed in [24], accounting for various non-idealities at the chan-

nel, detectors, and quantum memories. In contrast, our take on analysis is from

a rather opposite perspective in that we use mathematical tools to abstract away

as many details of the physical platform as possible, while keeping only a few155

relevant and important parameters in order to complete a high-level analysis

and gain a clear understanding of how they relate to the performance metrics

of interest.

Note that applications of the problem we have formulated in this work ex-

tend far beyond entanglement switching. In general, one may view the system160

as a stochastic assembly-like queue, or a “kitting” process, e.g., as in [25, 26, 27],

since in a sense, the switch “assembles” longer-distance entangled states using

shorter-distance ones, whose “arrival” into the system is driven by a stochastic

process. Interestingly, none of these similar problem formulations found in liter-

ature have a direct correspondence to our problem, as in our case, the number of165

users being serviced by the central node is allowed to be, in theory, infinite, and

our goal is to derive exact results, as opposed to approximate ones, or bounds.

Hence, the problem studied here is a novel one, and the results derived in this
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(a) (b) (c) (d) (e)

Figure 2: Example of quantum switch operation. No Bell pairs are present in (a). When

enough Bell pairs are successfully generated (solid lines in (b) and (c)), the switch performs

a BSM (d), entangling the two users’ qubits (e).

(a) (b) (c) (d) (e)

Figure 3: Example switch operation for a single time slot. At the beginning of the slot, (a),

all links have successfully generated Bell pairs. In (b), the switch performs a BSM to entangle

the two users on the left, see (c). Next, still within the same time slot, the switch performs

another BSM to entangle the two users on the right, shown in (d), (e).

work are of independent interest to queueing theory.

4. Switch Description and Objectives170

Figure 2a illustrates the initial problem setup: k ≥ 2 users are connected

to the quantum switch via dedicated, identical links. Time is slotted; the rest

of Figure 2 presents an example of a sequence of events that may take place

in subsequent time slots. The purpose of the switch is to facilitate end-to-

end entanglement generation for pairs of users that request it. The creation of175

an end-to-end entanglement involves two steps. First, in each time slot users

attempt to generate pairwise entanglements with the switch, which we call link-

level entanglements. A successful link-level entanglement results in a two-qubit
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Bell state, with one qubit stored at the switch and the other stored at a user.

In step two, the switch chooses two locally-held qubits, each entangled with a180

qubit held in a user’s quantum memory, and such that the two users wish to

share an entangled state, and performs a BSM. If the measurement is successful,

the result is a two-qubit maximally-entangled state between the corresponding

pair of users. The switch continues to fulfill entanglement requests as long as

there are available link-level entanglements for users who wish to communicate.185

If, at the end of the time slot, there are available link-level Bell pairs, but the

switch cannot use them to fulfill requests based on current user demands, then

the switch may choose to store the available entangled qubits in local quantum

memories until these qubits can be used in entangling measurements. This

two-step process is then repeated in the next time slot. Figure 3 illustrates a190

sequence of events within a single time slot.

One of our objectives is to derive the capacity of a quantum switch that op-

erates as described above. This quantity serves as a useful benchmark against

which to compare the performance of future entanglement switching protocols.

In this work, we also compute the expected number of qubits stored in memory195

at the switch, while the device operates at or near capacity. With this expres-

sion, we can obtain insight on the practical memory requirements of a switch.

The capacity of the switch is defined as the maximum achievable entanglement

switching rate of the device. This rate cannot be achieved with an arbitrary

switching policy, or for an arbitrary set of user demands – if the switch is con-200

strained to fulfill specific user requests, then the resulting rate would likely fall

below the capacity. One way to ensure that the switch operates at capacity is to

allow it to perform a BSM as soon as there are at least two Bell pairs available

on two distinct links, during a given time slot. This amounts to the assumption

that any pair of users wish to communicate within each time slot. BSMs are205

assumed to take up a negligible amount of time, and the switch may perform

as many of them as necessary in a single time slot, until there are no longer two

distinct links with available Bell pairs.

Further, in this work we assume that the switch uses the Oldest Link En-
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tanglement First (OLEF)2 rule when deciding which two users to pair up for an210

entangling measurement. As the name suggests, when using this rule the switch

prioritizes the oldest link-level Bell pairs for a BSM, as long as they belong to

two different links. When there is more than one possible choice for such a

pairing (e.g., if there are three link-level Bell pairs of identical age and they

are the oldest in the system), then the switch may choose any two at random.215

Note that the OLEF rule does not affect the switch capacity, but it does happen

to minimize the number of stored Bell pairs at the end of each time slot and

thus this rule affects the qubit occupancy distribution. Finally, to ensure that

the end users being serviced by the switch do not limit switch performance, we

allow end nodes to have infinite and noiseless quantum storage.220

Recall from Section 2 that we study a somewhat idealized version of a quan-

tum switch in this work in that the device has an infinite number of noiseless

quantum memories, and quantum states that are successfully generated (either

at the link or end-to-end level) have unit fidelities and are not subject to de-

coherence. Studying this simplified scenario is both valuable and prudent: the225

analysis performed here helps to lay out the foundation for – and possibly in-

spire – future work in modeling quantum switches, and our model serves as an

easily-applicable comparison basis for alternate quantum switch models, such as

that of [21]. Finally, note that the capacity of this “idealized” quantum switch

can also serve as an upper bound on the capacity of more “limited” systems,230

such as those with finite quantum memories, non-unit quantum state fidelities,

and explicit user requests. Note also that one may obtain an upper bound on

the capacity of a system with non-identical links, simply by converting that sys-

tem into one with identical links, where each link behaves as the most efficient

link – in terms of successful entanglement generation – of the original system.235

2The OLEF rule can be thought of as a First In, First Out (FIFO) policy for entanglement

switching.
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5. Analysis

In this section, we describe the DTMC model and present its analysis. Our

goal is to derive the switch capacity C (i.e., the number of end-to-end entangle-

ments produced per time unit), the expected number of stored qubits E[Q] in

steady state, and system stability conditions. A note on mathematical notation:240

in this paper, we will use the convention that for any y > x, the term
(
x
y

)
= 0.

5.1. Model Description

We model a switch serving k users, each of whom has a separate, dedicated

link to the switch, as a slotted system where each slot is of length τ seconds.

Both link-level entanglement generation and entangling measurements can be245

modeled as probabilistic phenomena [28]. In this work, we model the former as

follows: at each time step of length τ seconds, all k users attempt to generate

link-level entanglements. In general, link l successfully generates an entangle-

ment with probability pl ≈ e−αL, where L is the length of the link (e.g., optical

fiber) and α its attenuation coefficient. Since in this work, we assume all links250

are identical, i.e., they have equal length and have the same attenuation coef-

ficient, the entanglement success probabilities on all links are equal. Hence, let

p denote the probability that an entangled pair is successfully established on

any link, and define p ≡ 1 − p. Then the expected time to successfully create

a link entanglement is given by τ/p (this will be useful in Section 6, when we255

make comparisons to a CTMC model). We assume that whenever a link-level

entanglement or an end-to-end entanglement is successfully generated, it always

has fidelity one to the corresponding ideal Bell state. We also assume that mea-

surements performed by the switch succeed with probability q3. As discussed in

the previous section, we assume that any pair of users wishes to “communicate”260

(i.e., share an entangled state) as long as link-level entanglements are available,

3With a linear optical circuit, four unentangled ancilla single photons and photon number

resolving detectors, with all the devices being lossless, q = 25/32 = 0.78 can be achieved for

BSMs [19]. With other technologies q close to 1 can be achieved [20].
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Table 1: Notation for the DTMC model.

Notation Description

p probability of a successful link entanglement

S link with stored entanglements

Pf probability of gaining an entanglement in memory

Ps probability of remaining in current state

P(j) probability of using j of the stored entanglements

Pj,0 probability of going from state j ∈ {0, . . . , k − 1} to 0

Pj,1 probability of going from state j ∈ {0, . . . , k} to 1

and that the switch serves BSMs based on the OLEF policy described in Section

4.

Note that only one link stores entanglements at any one time, since whenever

a distinct pair of users has link-level entanglements, they are immediately paired265

up for a BSM. As a consequence of this and the identical-link assumption, it is

not necessary to keep track of which link has stored entanglements: one need

only keep track of how many are stored. Hence, the state space is given by Ω =

{0, 1, 2, . . . }. Let S denote the link that has at least one stored entanglement.

Figure 4 illustrates the possible transitions from a state i ≥ k + 1 (as we will270

see later, transitions for states i ∈ {0, 1, . . . , k} require special consideration).

Table 1 provides a notation reference that is used in the analysis.

i+1 i-1 i-2 i-k+1

Ps

P(1)

Pf

i 

P(k−1)
P(2)

Figure 4: A DTMC model with k users, infinite buffer, and identical links. Here, i ≥ k+1, Pf

is the probability of advancing forward in the Markov chain, Ps is the probability of remaining

in the current state, and P(j) is the probability of going back j states.
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5.2. Analysis

First, we fully define the transition probabilities for this chain. We expect

the stationary distribution to have a geometric form and show this to be true.275

However, a closed-form solution is not obtainable for large k, as it requires

solving a polynomial of degree k − 1 for an unknown factor, β. On the other

hand, not having a closed-form solution for the stationary probability vector

does not preclude us from deriving a simple expression for the capacity of the

switch – it is qkp/2. We will also show that this system is stable if and only if280

k ≥ 3. Finally, we also obtain a simple expression for the expected number of

qubits in memory at the switch, but are constrained to compute it numerically

due to its dependence on β.

5.2.1. Transition Probabilities

Figure 5 presents the transition probability matrix P for this DTMC. Note285

that repetition begins after the kth row of the matrix. We derive expressions for

all non-zero transition probabilities. In the discussion that follows, we say that

a link “succeeds” or “fails” for brevity, when referring to a link that successfully

generates an entanglement or fails to do so, respectively. Throughout the fol-

lowing, we will often refer to link S, which has at least one stored entanglement.290

First, consider any state i > 1. The transitions for this state are described as

follows:

i→ i+ 1: the only way to advance forward in the chain is if S successfully gen-

erates a new entanglement, but all other links fail to do so. This probability

is given by

Pf = ppk−1.

i→ i: there are two ways to remain in the current state: (a) all links fail or (b)

S succeeds and only one of the k − 1 other links succeeds. This occurs with

probability

Ps = pk + (k − 1)p2pk−2.
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P =



P0,0 P0,1 0 · · ·

P1,0 P1,1 Pf 0 · · ·

P2,0 P2,1 Ps Pf 0 · · ·
...

...

Pi−1,0 Pi−1,1 P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·

Pi,0 Pi,1 P(i−2) P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·

Pi+1,0 Pi+1,1 P(i−1) P(i−2) P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

. . .

Pk−1,0 Pk−1,1 P(k−3) · · · · · · P(1) Ps Pf 0 · · ·

0 Pk,1 P(k−2) P(k−3) · · · · · · P(2) P(1) Ps Pf 0 · · ·

0 0 P(k−1) P(k−2) P(k−3) · · · · · · P(3) P(2) P(1) Ps Pf 0 · · ·

0 0 0 P(k−1) P(k−2) P(k−3) · · · · · · P(4) P(3) P(2) P(1) Ps Pf 0 · · ·
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


Figure 5: Transition probability matrix P for the DTMC model.
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i → i − j , for j ∈ {1, . . . ,M}, where M = k − 1 if i ≥ k + 1 and M = i − 2

otherwise. Here, M signifies the maximum number of stored entanglements

that can be used when starting from state i. Note that even in the case where295

all k links succeed and i ≥ k, only k−1 of the stored entanglements are used:

the entanglement that was generated by S cannot be paired with another

entanglement from S. As stated above, we compute transition probabilities

to states 0 or 1 separately, since they require special consideration. This is

why M = i− 2 for states i < k + 1. Keeping these constraints in mind, the300

transition from i to i− j occurs in two types of events:

(a) S fails and exactly j of the k − 1 other links succeed,

(b) S succeeds and exactly j + 1 of the k − 1 other links succeed.

These events occur with probability

P(j) = p

(
k − 1

j

)
pjpk−1−j + p

(
k − 1

j + 1

)
pj+1pk−1−(j+1)

=

(
k − 1

j

)
pjpk−j +

(
k − 1

j + 1

)
pj+2pk−j−2.

Next, we discuss transitions to states 0 and 1, which, unlike the probabilities

above, depend on the value i of the state from which the transitions occur. To

help with this task, we first need to compute two types of probabilities: the first

is the probability that out of k link-level entanglement events, j ≥ i succeed,

where j is either zero or an even number, and we call this probability Pe(i, k);

and the second is the probability that out of k events, j ≥ i succeed, where

j is an odd number, and we call this Po(i, k). To compute these, we use the

following two indicator functions:

1{j is 0 or even} :=
1 + (−1)j

2
, 1{j is odd} :=

1− (−1)j

2
.

Then, Pe(i, k) =

k∑
j=i

(
1 + (−1)j

2

)(
k

j

)
pjpk−j ,

Po(i, k) =

k∑
j=i

(
1− (−1)j

2

)(
k

j

)
pjpk−j .
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Now, for any state i, 1 ≤ i ≤ k, the transition to state 1 occurs under the

following conditions:305

If i is even:

1. S fails and j ≥ i− 1 others succeed, j odd.

2. S succeeds and j ≥ i others succeed, j even.

Pi,1 = pPo(i− 1, k − 1) + pPe(i, k − 1).

If i is odd:

1. S fails and j ≥ i− 1 others succeed, j even.310

2. S succeeds and j ≥ i others succeed, j odd.

Pi,1 = pPe(i− 1, k − 1) + pPo(i, k − 1).

Similarly, for any state i ∈ {1, . . . , k − 1}, transitioning to state 0 occurs under

the following conditions:

If i is even:

1. S fails and j ≥ i others succeed, j even.315

2. S succeeds and j ≥ i+ 1 others succeed, j odd.

Pi,0 = pPe(i, k − 1) + pPo(i+ 1, k − 1).

If i is odd:

1. S fails and j ≥ i others succeed, j odd.

2. S succeeds and j ≥ i+ 1 others succeed, j even.

Pi,0 = pPo(i, k − 1) + pPe(i+ 1, k − 1).

In the special case 0→ 0, either all fail or an even number of entanglements are320

created. Hence, P0,0 = Pe(0, k). Finally, in the special case of 0 → 1, an odd

number of entanglements are created, given by P0,1 = Po(1, k).
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5.2.2. Stationary Distribution

We will show that a stationary distribution exists for k ≥ 3. The balance

equations for the DTMC are

k−1∑
i=0

πiPi,0 = π0, (1)

k∑
i=0

πiPi,1 = π1. (2)

For any state i ≥ 2, the balance equations have the form:

πi−1Pf + πiPs + πi+1P(1) + · · ·+ πi+k−1P(k−1) = πi, (3)

and finally, the normalizing condition is

∞∑
i=0

πi = 1. (4)

We postulate that πi = βi−1π1 for i ≥ 2, with β ∈ (0, 1). Introducing this value

of π1 in Eq. (3) yields f(β) = 0, with

f(β) := (βp+ p)k−1(p+ βp)− β, (5)

see Appendix A.1 for a proof. To show that πi = βi−1π1 for i ≥ 2 is indeed

the solution to this system, we must prove that:325

1. There exists β ∈ (0, 1) satisfying Eq. (5), and that this β is unique.

2. Given the solution above, note that both Eqs (1) and (2) can be written

in terms of only π1 and π0. Hence, for the proposed solution to be valid,

one of these equations must be redundant, i.e., we must show that Eq.

(1) is equivalent to Eq. (2).330

In Appendix A.2, we prove that the first statement above holds for k ≥ 3 and

in Appendix B we show directly that the DTMC is unstable when k = 2; thus,

the DTMC is stable if and only if k ≥ 3. The second statement above is proven

in Appendix A.3. We conclude that the proposed form for πi, i ≥ 2 is valid.
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Moreover, we can derive expressions for π0 and π1 in terms of β. From the

normalizing condition (4), we have

π0 = 1− π1
1− β

. (6)

In Appendix A.3, we rearranged (1) to look as follows:

k−1∑
i=1

βiPi,0 =
βπ0
π1

P0,1 (7)

and also showed that the left side of Eq. (7) equals

1

2

[
β

1− β
− 2β

1− β2
(pβ + p)k−1(p+ pβ)− (p− p)k β

1 + β

]
=

1

2

[
β

1− β
− 2β2

1− β2
− (p− p)k β

1 + β

]
by Eq. (5),

=
1

2

[
β

1 + β
− (p− p)k β

1 + β

]
.

Therefore, Eq. (7) becomes

βπ0
π1

P0,1 =
1

2

[
β

1 + β
− (p− p)k β

1 + β

]
, or

π0
π1
P0,1 =

1− (p− p)k

2(1 + β)
. (8)

Next, we compute

P0,1 = Po(1, k) =

k∑
i=1

1− (−1)i

2

(
k

i

)
pipk−i

=

k∑
i=0

1− (−1)i

2

(
k

i

)
pipk−i =

1

2
− 1

2
(p− p)k.

Substituting this into Eq. (8),

π0
π1

(
1− (p− p)k

2

)
=

1− (p− p)k

2(1 + β)
,

π0
π1

=
1

1 + β
,

1− π1
1− β

=
π1

1 + β
by Eq. (6),

π1 =
1− β2

2
. (9)
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Now, we can compute π0 in terms of only β:

π0 = 1− π1
1− β

= 1−
(

1

1− β

)
1− β2

2
=

1− β
2

.

5.2.3. Capacity and Qubits in Memory

Let Q represent the number of stored qubits at the switch in steady state.

Let N denote the number of end-to-end entangled pairs generated in one time

step of the DTMC at steady state. Then the capacity is defined as follows:

C = q

∞∑
i=0

πiE[N |Q = i].

To compute this expression, we consider two separate cases: case 1 is when

i ≥ k − 1 and case 2 is when i < k − 1. In case 1, there can be at most k − 1

entanglements; the expected number is given by

E[N |Q = i ≥ k − 1] =

k−1∑
j=0

j

(
k − 1

j

)
pjpk−1−j = (k − 1)p.

For case 2, we can have up to i+m entanglements, where m = b
(
k−i
2

)+c. The

expected number is then given by

E[N |Q = i < k − 1] =

i+m∑
j=0

jP (N = j|Q = i ≤ k − 2).

For the sum above, consider first j ∈ {0, . . . , i}. Here, we are looking for the

probability that there are fewer new entanglements than the number stored, so

the probability that we generate j pairs is given by

P (N = j|Q = i, i ≤ k − 2) =

(
k − 1

j

)
pjpk−1−j .

However, note that the case j = i is a special one: another way we can generate

i entanglements is if there are a total of i+ 1 successes from the k− 1 links that

have nothing stored, while S fails. Then, the extra entanglement has no pair,

and the total number of pairs generated is still i. This is given by

i

(
k − 1

i+ 1

)
pi+1pk−i−1.
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Next, we focus on the case where j ∈ {i+1, . . . , i+m}. After the first i successes,

there need to be 2 to at most k − i “extra” successes to generate new pairs.

Denote the number of these extra successes by the variable l ∈ {2, . . . , k − i},

and the number of new pairs (or BSMs) generated from them is
⌊
l
2

⌋
. We can

write the second sum as follows:

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l.

Combining everything we have learned, we obtain

C = q

k−2∑
i=0

πi

 i∑
j=0

j

(
k − 1

j

)
pjpk−1−j + i

(
k − 1

i+ 1

)
pi+1pk−i−1

+

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)
+ q(k − 1)p

∞∑
i=k−1

πi. (10)

In Appendix C, we show that the above evaluates to

C =
qkp

2
. (11)

Next, we derive the expected number of qubits stored at the switch, E[Q]. This

is given by

E[Q] =

∞∑
i=1

iπi = π1

∞∑
i=1

iβi−1 =
π1
β

∞∑
i=1

iβi

=
π1
β

β

(1− β)2
=

1− β2

2(1− β)2
=

1 + β

2(1− β)
. (12)

6. Comparison of DTMC Model with a CTMC Model

In this section, we compare the DTMC model from this work to a CTMC

model studied in [21] and validate the latter for the case of a system with

identical links, no quantum state decoherence, and infinite quantum memories

at the switch. We first introduce the CTMC model and the analytical results

from [21]. Here, the authors model entanglement generation at the link level as

a Poisson process with parameter µ representing the rate of successful Bell pair

creation on any link. For the identical-link, bipartite-only switching case, the
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CTMC is a simple birth-death process, with each state representing the number

of stored qubits corresponding to a single link (note that the assumption that any

pair of users wish to communicate is also required for the capacity computation).

The resulting capacity of the switch is

CCTMC =
qkµ

2
.

Recall that in the discrete model, the amount of time it takes to successfully

generate a link entanglement is τ/p. In the continuous model, the rate of suc-

cessful entanglement generation is µ, so the time to generate an entanglement

is 1/µ. Hence, τ/p = 1/µ or equivalently, µ = p/τ . Then, note that the DTMC

capacity that we derived in Section 5.2.3 is the capacity per time slot of length

τ seconds. Therefore, in order to make a comparison against the capacity given

by the CTMC model, we must perform a unit conversion: divide the discrete

capacity by τ in order to obtain the number of entanglement pairs per second,

as opposed to per time slot. This yields

CDTMC =
qkp

2τ
=
qkµ

2
= CCTMC.

We conclude that the capacities produced by the DTMC and CTMC models

match exactly.

Next, we compare the expected number of qubits in memory in steady state

at the switch, E[Q] as predicted by the DTMC and the CTMC models. The

CTMC model yields the following expression:

E[Q]CTMC =
k

2(k − 2)
.

Note that this expression has no dependence on µ, the link-level successful335

entanglement generation rate, implying that according to the CTMC model,

the expected number of stored qubits in steady state does not depend on the

probability p of successfully generating a Bell pair on a link. On the other hand,

we see from Eq. (12) that E[Q] resulting from the DTMC model does depend on

p, as it is a function of β. Finally, the DTMC model more accurately describes340

the buffer occupancy in steady state, at the cost of not being able to produce a

closed-form expression for E[Q].

22



0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.5

1

1.5

Q
u
b
it
s
 i
n
 M

e
m

o
ry

 (
E

[Q
])

3 links

discrete

continuousmaxRelErr 2.00

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.2

0.4

0.6

0.8

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

5 links

discrete

continuous
maxRelErr 0.67

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
u
b
it
s
 i
n
 M

e
m

o
ry

 (
E

[Q
])

10 links

discrete

continuousmaxRelErr 0.25

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u
b
it
s
 i
n
 M

e
m

o
ry

 (
E

[Q
])

20 links

discrete

continuousmaxRelErr 0.11

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u
b
it
s
 i
n
 M

e
m

o
ry

 (
E

[Q
])

50 links

discrete

continuousmaxRelErr 0.04

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

100 links

discrete

continuous
maxRelErr 0.02

Figure 6: Comparison of the expected number of qubits in memory E[Q] for the DTMC and

CTMC models, as the number of links is varied ∈ {3, 5, 10, 20, 50, 100} and for entanglement

generation probabilities p ∈ (0, 1). maxRelErr is the maximum relative error between the

discrete and continuous expressions for E[Q].

Figure 6 compares numerically the predictions made for E[Q] by the discrete

and continuous models, as the number of users k and probability p vary. For

each value of p and k, we use Eq. (5) to numerically solve for β. For each value

of k, we report the maximum relative error, defined as

maxRelErr(k) = max
p∈(0,1)

|E[Q]DTMC(k, p)− E[Q]CTMC(k, p)|
E[Q]DTMC(k, p)

,

where E[Q]DTMC and E[Q]CTMC are the discrete and continuous functions for

E[Q], respectively. We observe that the error is largest when p is close to 1.

Note that

lim
p→1

f(β) = lim
p→1

(βp+ p)k−1(p+ βp)− β = βk−1 − β.

Since f(β) = 0, we conclude that as p → 1 and k → ∞, β → 0 (note: β = 1

is always a root of f(β), but we always discard this root because it is not in

(0, 1)). As β → 0, E[Q] → 1/2 according to Eq. (12), which is consistent with345

the numerical observations. Meanwhile, as k → ∞, the continuous E[Q] also

approaches 1/2. We conclude that as k → ∞, maxRelErr → 0, as observed
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in Figure 6. Also, the largest value of maxRelErr occurs for the lowest value

of k = 3, when p → 1. But even in this (worst case), although the error is

maxRelErr(3) = 2, it corresponds to discrete and continuous versions of E[Q]350

differing by a prediction of only a single qubit.

Finally, both the continuous- and discrete-time Markov chains have station-

ary distributions if and only if k ≥ 3. From these analytic and numerical

observations, we conclude that the CTMC model is sufficiently accurate so as

to be useful for exploring issues such as decoherence, link heterogeneity, and355

switch buffer constraints.

In [21], the authors introduced CTMCs for systems where the switch has

finite-size buffers, links are not necessarily identical, and quantum memory co-

herence time is finite. Construction and analyses of these models is relatively

simple compared to the DTMC model in this paper. Even if one were to intro-360

duce a finite buffer into this model, several changes would be required to state

transitions and balance equations, resulting in even more complex expressions

for the stationary distribution (recall that even in the infinite-buffer case, we

must solve the model numerically). Attempting to model decoherence in dis-

crete time would require one to consider all possible combinatorial settings of365

stored qubit decoherence, further complicating the transition probabilities, but

also increasing the number of possible transitions from each state. Consider,

for instance, state i in Figure 4: each of the existing “backward” transitions

P(j), j ∈ {1, . . . , k− 1} would have to be modified based on the number of ways

that l qubits can decohere and m new entanglements can be generated such370

that l + m = j, and in addition, extra transitions must be added from state

i to states {0, 1, . . . , i − k + 2} because any number of the stored qubits can

decohere. This process can become highly cumbersome and prone to mistakes,

while CTMCs seem to offer much more in modeling power, albeit incurring an

accuracy cost that so far has only been quantified for the simplest variant of the375

entanglement switching problem.
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7. Conclusion

We studied an entanglement distribution switch that serves bipartite entan-

gled states to pairs of users connected to the device via dedicated links. Using

a DTMC, we studied a simple variant of the problem, wherein the links are380

identical, the switch has an infinite number of quantum memories, and quan-

tum states do not decohere, although entanglement generation may fail both

at the link level and at the end-to-end level. By studying this basic system,

we learned that the DTMC model exhibits limitations such that introducing

additional complexity to this model, such as finite buffers or quantum state385

decoherence, makes the resulting model exceedingly difficult to analyze, and

therefore may not be the most attractive option for modeling more complex

entanglement switching mechanisms.

We derived the capacity of the switch, the expected number of stored qubits

at the switch in steady state, and the stability conditions for the system. We390

also derived the stationary distribution of the DTMC, albeit not in closed form.

We compared the results of our analysis to those of an existing CTMC model.

We conclude that while the CTMC model is easier to analyze, it is less accu-

rate than the DTMC model. We quantified the discrepancy between the two

models for the expected number of stored qubits, and found that in the worst395

case, the predictions differ by less than one qubit. Hence, we conclude that the

CTMC is a suitable model for this particular variant of the problem, but more

work is required in order to completely assess the accuracy of CTMC models

for more complex switching scenarios. Our work is the first attempt at ana-

lyzing a quantum switch using a DTMC, and while the problem formulation400

is relatively simple, the analysis is non-trivial. Moreover, the expression for

switch capacity derived in this paper can be used as an upper bound on the

capacity of more complex systems, such as those with non-identical links and

where quantum states may decohere. Finally, while our work was initially in-

spired by entanglement switching, the problem is of independent interest from a405

queueing-theoretic perspective, and the results can be applied to any stochastic
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assembly-like queueing system that services two customers/jobs at a time.
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Appendix A. Stationary Distribution485

Appendix A.1. Proof of Eq. (5)

Introducing the value of πi = βk−1π1 into Eq. (3) yields

βi−1π1 = βi−2π1Pf + βi−1π1Ps + βi−1π1

k−1∑
j=1

βjP(j)

or equivalently

β = Pf + βPs + β

k−1∑
j=1

βjP(j)

= β(pk + (k − 1)p2pk−2) + β

k−1∑
j=1

(
k − 1

j

)
(βp)jpk−j

+
1

β

k−2∑
j=1

(
k − 1

j + 1

)
(βp)j+2pk−j−2 + ppk−1. (A.1)

With

k−1∑
j=1

(
k − 1

j

)
(βp)jpk−j = p

(
(βp+ p)k−1 − pk−1

)
and

k−2∑
j=1

(
k − 1

j + 1

)
(βp)j+2pk−j−2 =

k−1∑
i=2

(
k − 1

i

)
(βp)i+1pk−1−i

= βp
(
(βp+ p)k−1 − (k − 1)βppk−2 − pk−1

)
,

Eq. (A.1) becomes

β = β(pk + (k − 1)p2pk−2) + βp
(
(βp+ p)k−1 − pk−1

)
+ p

(
(βp+ p)k−1 − (k − 1)βppk−2 − pk−1

)
+ ppk−1

= ppk−1 + βpk + β(k − 1)p2pk−2 + βp(βp+ p)k−1

− βpk + p(βp+ p)k−1 − β(k − 1)p2pk−2 − ppk−1

= (βp+ p)k−1(p+ βp).

Hence, β satisfies the equation f(β) = 0 with

f(β) := (βp+ p)k−1(p+ βp)− β.
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Appendix A.2. Proof that Eq. (5) has a unique solution in (0, 1) when k ≥ 3

We have

f ′(β) = (k − 1)p(βp+ p)k−2(p+ βp) + p(βp+ p)k−1 − 1

and f ′′(β) is given by

(k − 1)(k − 2)p2(βp+ p)k−3(p+ βp) + 2(k − 1)pp(βp+ p)k−2

= (k − 1)p(βp+ p)k−3 [(k − 2)p+ 2(k − 1)p(βp+ p)] > 0.

This shows that the mapping β → f ′(β) is strictly increasing in [0, 1]. On the490

other hand,

f ′(0) = (k − 1)p2pk−2 + pk − 1

and f ′(1) = (k− 1)p+ p− 1 = (k− 2)p > 0. Let us show that f ′(0) < 0. Define

g(p) = (k − 1)p2pk−2 + pk − 1 = f ′(0). We find

g′(p) = −pk−3(p2k2 + 2p(1− 2k) + k).

Define h(p) = p2k2 + 2p(1 − 2k) + k so that g′(p) = −pk−3h(p). We have

h′(p) = 2(pk2 + 1 − 2k), which vanishes for p = p0 := (2k − 1)/k2. Also,495

h′′(p) = 2k2 > 0. We deduce from this that h(p) decreases in [0, p0) and

increases in (p0, 1]. Therefore, h(p) is minimized in [0, 1] for p = p0. We have

h(p0) = (−(2k − 1)2 + k3)/k2 which is easily seen to be strictly positive for all

k ≥ 3. This shows that h(p) > 0 for p ∈ [0, 1], which implies that g′(p) < 0 for

p ∈ [0, 1], so that g(p) < g(0) = 0 for p ∈ (0, 1] and, finally, f ′(0) < 0.500

From f ′(0) < 0, f ′(1) > 0 and the fact that the continuous mapping β →

f ′(β) is strictly increasing in [0, 1], we deduce that there exists β0 ∈ (0, 1) such

that f ′(β) < 0 for β ∈ [0, β0), f ′(β0) = 0 and f ′(β) > 0 for β ∈ (β0, 1]. This in

turn shows that β → f(β) is strictly decreasing in [0, β0) and strictly increasing

in (β0, 1]. But since f(0) > 0 and f(1) = 0, this implies that f has a unique505

zero in (0, 1). This zero is actually located in (0, β0).
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Appendix A.3. Equivalence of Eqs (1) and (2)

We start by rearranging (1):

k−1∑
i=0

πiPi,0 = π0,

k−1∑
i=1

πiPi,0 = π0(1− P0,0),

π1

k−1∑
i=1

βi−1Pi,0 = π0P0,1,

k−1∑
i=1

βiPi,0 =
βπ0
π1

P0,1.

Then, we rearrange (2) in a similar fashion:

k∑
i=0

πiPi,1 = π1,

π0P0,1 + π1

k∑
i=1

βi−1Pi,1 = π1,

π0P0,1 = π1

(
1− 1

β

k∑
i=1

βiPi,1

)
,

βπ0
π1

P0,1 = β −
k∑
i=1

βiPi,1.

Hence, to show that one of (1) and (2) is redundant, it suffices to show that

k−1∑
i=1

βiPi,0 = β −
k∑
i=1

βiPi,1, (A.2)

or equivalently,

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1 = β. (A.3)

Before we continue, we derive a few useful expressions. The first is as follows:

Pe(i, k − 1) + Po(i, k − 1) =

k−1∑
j=i

(
k − 1

j

)
pjpk−1−j .
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Next, we have

Pe(i, k − 1)− Po(i, k − 1) =

k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(−1)j .

Finally,

Po(i, k − 1)− Pe(i, k − 1) = −
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(−1)j .

Now, consider the left side of Eq. (A.2):
k−1∑
i=1

βiPi,0 is equal to

k−1∑
i=1

βi
[(

1 + (−1)i

2

)
(pPe(i, k − 1) + pPo(i+ 1, k − 1))

+

(
1− (−1)i

2

)
(pPo(i, k − 1) + pPe(i+ 1, k − 1))

]

=
p

2

k−1∑
i=1

βi

k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(1 + (−1)i(−1)j)


+
p

2

k−2∑
i=1

βi

 k−1∑
j=i+1

(
k − 1

j

)
pjpk−1−j(1− (−1)i(−1)j)


=
p

2

k−1∑
j=1

(
k − 1

j

)
pjpk−1−j

j∑
i=1

βi(1 + (−1)i(−1)j)

+
p

2

k−1∑
j=2

(
k − 1

j

)
pjpk−1−j

j−1∑
i=1

βi(1− (−1)i(−1)j)

=
1

2

[
β

1− β
− 2β

1− β2
(pβ + p)k−1(p+ pβ)− (p− p)k β

1 + β

]
.

Next, we look at
k−1∑
i=1

βiPi,1, which is equal to

k−1∑
i=1

βi
[(

1 + (−1)i

2

)
(pPo(i− 1, k − 1) + pPe(i, k − 1))

+

(
1− (−1)i

2

)
(pPe(i− 1, k − 1) + pPo(i, k − 1))

]

=
p

2

k−1∑
i=1

βi

 k−1∑
j=i−1

(
k − 1

j

)
pjpk−1−j

(
1− (−1)i(−1)j

)
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+
p

2

k−1∑
i=1

βi

k−1∑
j=i

(
k − 1

j

)
pjpk−1−j

(
1 + (−1)i(−1)j

)
= βp((βp+ p)k−1 − (βp)k−1) +

1

2

(
β

1− β
− 2β

1− β2
(pβ + p)k +

β

1 + β
(p− p)k

)
.

Summing these two expressions, we obtain
k−1∑
i=1

βi(Pi,0 + Pi,1),

β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ)− βp(βp)k−1.

Next, we compute

Pk,1 =

(
1 + (−1)k

2

)
pPo(k − 1, k − 1) +

(
1− (−1)k

2

)
pPe(k − 1, k − 1)

= p

((
1 + (−1)k

2

)(
1− (−1)k−1

2

)
pk−1 +

(
1− (−1)k

2

)(
1 + (−1)k−1

2

)
pk−1

)
= ppk−1.

Finally, the left side of Eq. (A.3) becomes

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1 =

β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ)− pβkpk−1 + βkppk−1

=
β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ).

Recall from (A.3) that the expression above must equal to β. Using Eq. (5),

we know that

(pβ + p)k−1(p+ pβ) = β,

and therefore,

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1 =
β

1− β
− β2

1− β
= β.
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Appendix B. Instability When k = 2

When k = 2, Eq. (3) becomes

πi−1Pf + πiPs + πi+1P(1) = πi, (B.1)

for i ≥ 2, and where Pf = pp, Ps = p2 + p2, and P(1) = pp. Summing these

equations yields

pp

∞∑
i=1

πi + (p2 + p2)

∞∑
i=2

πi + pp

∞∑
i=3

πi =

∞∑
i=2

πi,

or equivalently,

pp(π1 + π2) + (p2 + p2)π2 + (2pp+ p2 + p2)

∞∑
i=3

πi = π2 +

∞∑
i=3

πi,

and since 1− 2pp− p2 − p2 = 0, the above equation becomes

pp(π1 + π2) + (p2 + p2)π2 = π2,

which simplifies to π1 = π2. Substituting this relation into (B.1) when i = 2510

yields π3 = π2 = π1, and iterating this procedure over the remaining i’s yields

π1 = πi, ∀ i ≥ 2.

From Eq. (1), we have

π0 = π0P0,0 + π1P1,0, (B.2)

where P0,0 = p2 + p2 and P1,0 = pp, so that Eq. (B.2) is actually

π0 = π0(p2 + p2) + π1pp

and

π0 = π1
pp

1− p2 − p2
. (B.3)

Using the normalizing condition, along with (B.3) yields

π1
pp

1− p2 − p2
+
∑
i≥1

πi = 1. (B.4)

Since π1 = πi, ∀i ≥ 2, the only solution of (B.4) is πi = 0, for all i ≥ 1 (and

π∞ = 1), which proves instability for k = 2.
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Appendix C. Proof of Capacity515

For simplicity, let us first derive C with the assumption that q = 1. Since q

simply scales the capacity, we will multiply the resulting expression by q at the

end. Consider the first term of Eq. (10):

k−2∑
i=0

πi

i∑
j=0

j

(
k − 1

j

)
pjpk−1−j =

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

k−2∑
i=j

πi

=

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−jπ1

k−2∑
i=j

βi−1

=
π1
β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
k−2∑
i=0

βi −
j−1∑
i=0

βi

)

=
π1
β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
1− βk−1

1− β
− 1− βj

1− β

)

=
π1
β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
βj − βk−1

1− β

)

=
π1
β

k−1∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
βj − βk−1

1− β

)
=

π1
β(1− β)

(
(k − 1)(βp+ p)k−2βp− βk−1(k − 1)p

)
=
π1(k − 1)p

β(1− β)

(
(βp+ p)k−2β − βk−1

)
.

Next, keeping in mind that k − 1 ≥ 2, the last term of Eq. (10) is

(k − 1)p

∞∑
i=k−1

πi =
(k − 1)pπ1

β

∞∑
i=k−1

βi

=
(k − 1)pπ1

β

( ∞∑
i=0

βi −
k−2∑
i=0

βi

)

=
(k − 1)pπ1

β

(
1

1− β
− 1− βk−1

1− β

)
=

(k − 1)pπ1
β

βk−1

1− β
.

Hence, so far,

C =

k−2∑
i=0

πi

(
i

(
k − 1

i+ 1

)
pi+1pk−i−1 +

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)
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+
π1(k − 1)p

β(1− β)

(
(βp+ p)k−2β − βk−1

)
+

(k − 1)pπ1
β

βk−1

1− β

=
π1(k − 1)p

(1− β)
(βp+ p)k−2 +

k−2∑
i=0

πi

(
i

(
k − 1

i+ 1

)
pi+1pk−i−1

+

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)
. (C.1)

Next in Eq. (C.1) we have the term

k−2∑
i=0

πii

(
k − 1

i+ 1

)
pi+1pk−i−1 = π1

k−2∑
i=1

βi−1i

(
k − 1

i+ 1

)
pi+1pk−i−1

= π1

k−1∑
j=2

βj−2(j − 1)

(
k − 1

j

)
pjpk−j

=
pπ1
β2

(
(k − 1)(βp+ p)k−2βp− (βp+ p)k−1 + pk−1

)
.

Substituting this into Eq. (C.1), we have

C =

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l +

π1(k − 1)p

(1− β)
(βp+ p)k−2

+
pπ1
β2

(
(k − 1)(βp+ p)k−2βp− (βp+ p)k−1 + pk−1

)
=

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

+
pπ1
β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p(βp+ p)k−2

(βp+ p)

β(1− β)

=

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

+
pπ1
β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p

(βp+ p)k−1

β(1− β)
. (C.2)

Consider the remaining sum above. Let m = i+ l. Then

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l =

k∑
m=2

(
k

m

)
pmpk−m

(
m−2∑
i=0

πi

(⌊
m− i

2

⌋
+ i

))

=

k∑
m=2

(
k

m

)
pmpk−m

(
m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
− (m− 1)πm−1 −mπm

)
:= S.

(C.3)
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The inner sum above can be rewritten as follows:

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
=

m∑
i=0

πi

(
i+

(
m− i

2

)
1 + (−1)m−i

2
+

(
m− i− 1

2

)
1− (−1)m−i

2

)

=

m∑
i=0

πi

(
i+

m− i
2
− 1

2

(1− (−1)m−i)

2

)

=

m∑
i=0

πi

(
2m− 1

4
+
i

2
+

(−1)m−i

4

)

=
π1
β

m∑
i=1

βi
(

2m− 1

4
+
i

2
+

(−1)m−i

4

)
+ π0

(
2m− 1 + (−1)m

4

)

=
π1
β

(
2m− 1

4

(
1− βm+1

1− β
− 1

)
+

1

2

m∑
i=1

iβi +
(−1)m

4

(
1− (−β)m+1

1 + β
− 1

))

+ π0

(
2m− 1 + (−1)m

4

)
= π1

(
2m− 1

4

(
1− βm

1− β

)
+

1

2

(mβm+1 − (m+ 1)βm + 1)

(1− β)2
+
βm − (−1)m

4(1 + β)

)
+ π0

(
2m− 1 + (−1)m

4

)
.

Now, we can use the fact that π0 + π1/(1− β) = 1 to obtain

π1
2m− 1

4

1

1− β
+

2m− 1

4
π0 =

2m− 1

4
.

Using the same relation, we have

(−1)m

4

(
π0 −

π1
1 + β

)
=

(−1)m

4

(
1− 2π1

1− β2

)
.

Therefore,

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
= π1

(
2m− 1

4

(
−βm

1− β

)
+
mβm+1 − (m+ 1)βm + 1

2(1− β)2
+

βm

4(1 + β)

)
+

2m− 1

4
+

(−1)m

4

(
1− 2π1

1− β2

)
= −π1βm

β

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

(−1)m

4

(
1− 2π1

1− β2

)
+

π1
2(1− β)2

− 1

4
.

From Eq. (9), we know that π1 = (1− β2)/2. Using this,

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
= −π1βm

β

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

π1
2(1− β)2

− 1

4
.
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Next, we can write

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
− (m− 1)πm−1 −mπm

=
−π1βmβ

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

π1
2(1− β)2

− 1

4
− π1

β
mβm

(
1

β
+ 1

)
+
π1
β2
βm

=
m

2
+

π1
2(1− β)2

− 1

4
+ π1β

m

(
1

β2
− β

(1− β)2(1 + β)

)
− π1mβ

m

β2(1− β)
.

Hence, Eq. (C.3) becomes

S =

k∑
m=2

(
k

m

)
pmpk−m

(
π1β

m

(
1

β2
− β

(1− β)2(1 + β)

)
− π1mβ

m

β2(1− β)
+
m

2
+

π1
2(1− β)2

− 1

4

)
= π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k − π1kpβ(pβ + p)k−1

β2(1− β)

− pk
(
π1

(
1

β2
− β

(1− β)2(1 + β)

)
+

π1
2(1− β)2

− 1

4

)
− kppk−1

(
π1β

(
1

β2
− β

(1− β)2(1 + β)

)
− π1β

β2(1− β)
+

1

2
+

π1
2(1− β)2

− 1

4

)
+
kp

2
+

π1
2(1− β)2

− 1

4

= π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k − π1kp(pβ + p)k−1

β(1− β)
− pk

(
π1
β2

+
π1

2(1− β2)
− 1

4

)
− kppk−1

(
−π1

2(1− β2)
+

1

4

)
+
kp

2
+

π1
2(1− β)2

− 1

4
.

Substituting π1 = (1− β2)/2 above and simplifying yields

S = π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k − π1kp

β(1− β)
(pβ + p)k−1 +

kp

2
+

π1
2(1− β)2

− 1

4
− pk π1

β2
.

Finally, substituting this result into Eq. (C.2), C becomes

C =
pπ1
β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p

(βp+ p)k−1

β(1− β)

+ π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k

− π1kp

β(1− β)
(pβ + p)k−1 +

kp

2
+

π1
2(1− β)2

− 1

4
− pk π1

β2

=
−π1(βp+ p)k−1 (pβ + p)

(1− β)2(1 + β)
+
kp

2
+

π1
2(1− β)2

− 1

4
.

We know from Eq. (5) that

(βp+ p)k−1(p+ βp)− β = 0.
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Using this above, we obtain

C = − π1β

(1− β)2(1 + β)
+
kp

2
+

π1
2(1− β)2

− 1

4

=
π1

2(1− β2)
− 1

4
+
kp

2
.

Recall that π1 = (1− β2)/2. Hence,

C =
1− β2

2

1

2(1− β2)
− 1

4
+
kp

2
,

C =
kp

2
.

Finally, recall that we earlier assumed q = 1. Removing this assumption, we

obtain

C =
qkp

2
.
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