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Abstract—The Transmission Control Protocol (TCP) utilizes
congestion avoidance and control mechanisms as a preventive
measure against congestive collapse and as an adaptive measure
in the presence of changing network conditions. The set of avail-
able congestion control algorithms is diverse, and while many
have been studied from empirical and simulation perspectives,
there is a notable lack of analytical work for some variants. To
gain more insight into the dynamics of these algorithms, we:
(1) propose a general modeling scheme consisting of a set of
functional differential equations of retarded type (RFDEs) and of
the congestion window as a function of time; (2) apply this scheme
to TCP Reno and demonstrate its equivalence to a previous,
well known model for TCP Reno; (3) show an application of
the new framework to the widely-deployed congestion control
algorithm TCP CUBIC, for which analytical models are few
and limited; and (4) validate the model using simulations. Our
modeling framework yields a fluid model for TCP CUBIC. From
a theoretical analysis of this model, we discover that TCP CUBIC
is locally uniformly asymptotically stable – a property of the
algorithm previously unknown.

I. INTRODUCTION

TCP carries most of the traffic on the Internet. One of
its important functions is to perform end-to-end congestion
control to alleviate congestion in the Internet and to provide
fair bandwidth sharing among different flows. To date, many
different congestion control algorithms (variants) have been
developed, among which are Reno, Vegas, STCP [1], CUBIC
[2], H-TCP [3], and BBR [4]. Stability is an imperative
property for any dynamical system. The stability of several
of these variants including Reno, Vegas, and STCP has been
extensively and carefully studied, however, little is known
about the stability properties of more recent variants such as
CUBIC and H-TCP. These latter variants have typically been
studied through simulation and experimentation, neither of
which are adequate to make careful statements about stability.
As we will observe, for some variants this deficiency is due
to the lack of a modeling framework with which to develop
appropriate models that are amenable to a formal stability
analysis. The goals of this paper are to point out deficiencies
in the previous framework used to study variants such as Reno
that make it unsuitable to study a variant such as CUBIC, and
then to present a new framework and apply it to the analysis
of CUBIC. Our choice of CUBIC is because it is a popular
variant that is the default in the Linux distribution.

The traditional approach for modeling a congestion control
algorithm’s behavior is to derive a differential equation (DE)

for its congestion window (cwnd) or sending rate as a function
of time. Such DEs typically include the algorithm’s increase
and decrease rules, as well as loss probability functions, for
example, to incorporate an active queue management (AQM)
policy. This method is highly effective for modeling certain
types of controllers, such as TCP Reno and STCP, whose
cwnd update rules are very simple (e.g. Reno’s cwnd grows by
one every round trip and decreases by half upon congestion
detection). However, this approach reaches its limitations when
presented with a controller whose cwnd update functions are
complex, thereby making it difficult or impossible to write
a DE for the cwnd or sending rate directly. For example,
CUBIC’s increase update rule is a function of time since last
loss and of the congestion window size immediately before
loss. Moreover, in the case of CUBIC, the steady-state value
of cwnd lies at the saddle point of the window function, which
obstructs the stability analysis of this point of interest.

To overcome the impediments of the traditional approach,
we develop a novel framework that exploits the fact that
all cwnd- and rate-based controllers that utilize packet loss
information1 to make changes to the cwnd or rate have two
variables in common: the value of cwnd (rate) immediately
before loss and the time elapsed since last loss. As a con-
sequence, one can derive a set of two DEs: the first for
describing the maximum cwnd (rate) as a function of time, and
the second for describing the duration of congestion epochs.
This is a relatively easy task, compared to deriving a DE for
cwnd (rate) of a complex algorithm directly. The advantage
of such a model is that it offers tremendous versatility since
it does not define cwnd or rate functions within the set of
DEs, with the latter being identical for many controllers. Note
that the proposed model is applicable not only to TCP-based
congestion controllers, but also to UDT [5] and QCN [6].

In this work, we use simulation to validate our analytical
models. As NS3 [7] does not natively support CUBIC, and
existing implementations of this protocol have known prob-
lems, we introduce a lightweight simulation framework that
is easily programmed to switch between different congestion
control variants. We use this framework to validate the DE
model and observe that the average cwnd predicted by both
are in close agreement. As system parameters are varied, the

1Note that this includes not only ACK-based algorithms, but also packet
marking schemes as in ECN (Explicit Congestion Notification). From this
point forward, we refer to such schemes as “loss-based”.



simulation and the DE model agree on whether the system
is stable. For TCP CUBIC, we observe that instability can
be introduced by deviating the initial conditions too far from
their fixed-point values. While our analysis states that CUBIC
is locally asymptotically stable, these simulations complement
the theory by demonstrating that CUBIC is not globally stable.

The contributions of this work are as follows:
• a new modeling framework applicable to a diverse set of

algorithms,
• an application of this model to CUBIC, and a stability

analysis of this algorithm,
• validation of this model with simulation; the simulation

is of independent interest separate from this paper.
The rest of this paper is organized as follows: we discuss

related work in Section II. We introduce the modeling frame-
work in Section III-A and apply it to TCP Reno. In Section
III-B, we show that the new framework is equivalent to the one
presented in [8]. In Section IV-A, we apply the new modeling
scheme to TCP CUBIC. In the remainder of Section IV, we
perform a careful stability analysis of CUBIC and present a
convergence result. In Section V, we validate the new model
and the stability result for CUBIC using simulations. We draw
conclusions in Section VI.

II. BACKGROUND

There exist a number of analytical studies for modeling TCP
and analyzing its stability. In [8], Misra et al. derive a fluid
model for a set of TCP Reno flows and show an application
to a networked setting where RED (Random Early Detection)
is the AQM policy. Kelly proposed an optimization-based
framework for studying and designing congestion control
algorithms in [9], where STCP was an output. In [10], Srikant
presented a simple analysis of Jacobson’s TCP congestion
control algorithm. In [11], Hollot et al. analyze the stability
of TCP with an AQM system implementing RED.

Huang et al. develop and analyze the stability of a general
nonlinear model of TCP in [12], focusing on HighSpeed, Scal-
able, and Standard TCP for comparisons of relative stability.
The authors rely on functions f(w) and g(w), which are
additive and multiplicative parameters, respectively, and are
both functions of the current congestion window size. Our
model contrasts from these examples in that rather than mod-
eling the congestion window directly, we instead model two
interdependent variables (maximum cwnd and time between
losses) that in turn determine the evolution of the window. This
new method presents a window of opportunity for modeling
complex, nonlinear transport algorithms for which it is not
possible to write a DE for cwnd directly or whose f(w) and
g(w) functions cannot be written in closed form.

Bao et al. propose Markov chain models for average steady-
state TCP CUBIC throughput, in a wireless environment [13].
In [14], Poojary et al. derive an expression for average cwnd
of a single CUBIC flow under random losses. In contrast
to [13] and [14], the model we present in this work for
CUBIC provides insight into both the transient and steady-
state behavior of the algorithm. Moreover, we utilize Lyapunov
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Fig. 1: W (t), Wmax(t), and s(t) for TCP Reno.

Term Definition
C per-flow capacity
τ link delay
Wmax(t) the size of the cwnd immediately before loss
s(t) the time elapsed since loss
W (t) the cwnd as a function of time
p(t) a probability of loss function

TABLE I: Term definitions.

stability theory to prove that CUBIC is locally asymptotically
stable independent of link delay and other system parameters
(the parameters only affect the region of stability). This result
is one of the main contributions of this work.

III. THE MODEL

In this section, we present the new model, which is the focus
of this work. As a proof of concept, we apply this model to
TCP Reno and show that it is mathematically equivalent to the
well-known DE model originally presented in [8]. We note that
while the two models are equivalent, they make use of different
types of information, which is essential for developing a fluid
model for TCP CUBIC presented in Section IV.

In the analysis that follows, we will use the notation
f ≡ f(t) to represent a function or variable that is not time-
delayed. Similarly, we will use fT ≡ f(t − T ) to represent
a function or variable that is delayed by an amount of time
T . We will also use ḟ = df(t)/dt to represent a function or
variable f differentiated with respect to time.

A. The New Model

Table I presents some useful definitions. The main idea
behind the model is the following: instead of deriving a DE
for the cwnd function W (t) directly, which is specific to a
data transport algorithm, we instead derive DEs for Wmax(t)
– the size of the cwnd immediately before loss, and s(t) –
the amount of time elapsed since last loss, which are variables
common to all loss-based algorithms. Since W (t), is a function
of Wmax(t) and s(t), it is completely determined by their DEs.
The result is the following model2:

dWmax(t)

dt
= −(Wmax(t)−W (t))

W (t− τ)

τ
p(t− τ)

ds(t)

dt
= 1− s(t)W (t− τ)

τ
p(t− τ)

(1)

2Note that W (t) must be either derived explicitly, for example as in (2) for
TCP Reno or given in the definition of the controller, as in (7) for CUBIC.



Above, p(t− τ) is a loss probability function. The expression
W (t−τ)p(t−τ)/τ describes the rate of packet loss, which is
delayed by τ because loss occurs at the congestion point, not
at the source. The first DE describes the behavior of Wmax,
which takes the value of W (t) right before a loss. At the time
of loss, if Wmax(t) > W (t), then Wmax decreases by the
amount Wmax(t)−W (t); otherwise, it increases by the same
amount. The second DE describes the evolution of the time
since last loss s(t), which grows by one unit and is reset to
zero upon loss. This system can be adapted to a rate-based
scheme in terms of maximum rate and time since last rate
decrease, simply by dividing each DE by τ . Since we will
be describing applications of this model to TCP Reno and
CUBIC, which are both cwnd-based, we use (1) in the interest
of the paper.

Figure 1 illustrates Wmax(t), s(t), and W (t) for TCP Reno.
To adapt model (1) to TCP Reno, we define Reno’s cwnd
as a function of Wmax(t) and s(t). At the time of loss,
W (t) = Wmax(t) is halved. This becomes the initial value
of W (t) in the new congestion epoch. W (t) then increases by
one segment for every round-trip time, so the total increase is
s(t)/τ after s(t) time has elapsed since the last loss. Hence,

W (t) =
Wmax(t)

2
+
s(t)

τ
. (2)

Then the fluid model for Reno is (1) combined with (2).
The loss probability function can be customized according

to the specific characteristics of a given system, such as queue
size and AQM policy. For simplicity, we use the following
function in all subsequent models:

p(t) = max

(
1− Cτ

W (t)
, 0

)
. (3)

This function is presented in [10] as an approximation of the
M/M/1/B drop probability when the buffer size B →∞.

Note that model (1) does not specify W (t), and therein
lies the versatility of this scheme. For a given cwnd-based
transport algorithm, the modeler need only to substitute a
function describing the evolution of cwnd over time, as we did
for Reno. We demonstrate this technique again with CUBIC
in Section IV. This property of the model is useful both for
analyzing existing algorithms and examining the stability of
new ones.

B. Model Equivalence for TCP Reno

Consider the well-established model for TCP Reno’s cwnd
from [8] (equation (4) to be precise):

dW (t)

dt
=

1

τ
− W (t)

2

W (t− τ)

τ
p(t− τ). (4)

We assume τ to be constant for simplicity, even though the
round-trip time in [8] varies in time as a function of both the
propagation and queueing delays.

We now show that the two models (i.e. the model rep-
resented by (1), (2) and the model represented by (4)) are

mathematically equivalent. Differentiating (2) with respect to
t, we have:

Ẇ =
Ẇmax

2
+
ṡ

τ
. (5)

Substituting (1) into (5) yields

Ẇ =
1

τ

(
1− sWτ

τ
pτ

)
+

1

2

(
(W −Wmax)

Wτ

τ
pτ

)
. (6)

From (2), we know that Wmax = 2(W − s/τ). Substituting
this expression for Wmax into (6) and simplifying yields

Ẇ =
1

τ

(
1− sWτ

τ
pτ

)
+

1

2

((
W − 2

(
W − s

τ

)) Wτ

τ
pτ

)
=

1

τ
− sWτ

τ2
pτ −

W

2

Wτ

τ
pτ + s

Wτ

τ2
pτ

=
1

τ
− W

2

Wτ

τ
pτ .

The last line corresponds to equation (4) and completes our
proof of the equivalence of the models. When used with Reno,
model (1) can be linearized and used to derive a transfer
function. The latter can be analyzed to yield system parameter-
dependent conditions for Reno’s stability. This analysis is
similar to the one presented in [10].

IV. ANALYSIS OF TCP CUBIC

In this section, we perform a local stability analysis of
TCP CUBIC. To do so, we first create a fluid model for this
congestion control algorithm using the framework introduced
in the previous section. Then, we show that the system has
a unique fixed point and prove the existence and uniqueness
of a solution. Next, we show that the linearization method
yields inconclusive results when applied to the model, and
are thus motivated to use Lyapunov’s direct method to prove
the stability of the system. First, we introduce a Lyapunov
function candidate and since the system is time-delayed, use
Razumikhin’s Theorem to show that the candidate is suitable
and that stability holds in a neighborhood of the fixed point of
the system. A consequence of the failed linearization is that
we will not prove exponential stability for CUBIC, but we
can still show asymptotic and Lyapunov stability. Finally, we
derive convergence results on the system’s solution.

A. TCP CUBIC Fluid Model

TCP CUBIC’s congestion window function is defined in
terms of the time since last loss s(t) and maximum value of
cwnd immediately before the last loss Wmax(t) [2]:

W (t) = c

(
s(t)− 3

√
Wmax(t)b

c

)3

+Wmax(t) (7)

where b is a multiplicative decrease factor and c is a scaling
factor. Figure 2 illustrates the evolution of CUBIC’s cwnd over
time. The opaque red curves represent behavior in steady state:
the window is concave until a loss occurs at CUBIC’s fixed-
point value of cwnd, Ŵ . The light red curves describe cwnd
behavior if a loss does not occur: the window becomes convex,



also known as CUBIC’s probing phase. The fluid model for
CUBIC is then simply (1) coupled with (7), with (3) as the
loss probability function. Prior to the development of (1), we
attempted to develop a fluid model by first computing the
equilibrium point for CUBIC, but this exercise gave a value
of s at (7)’s saddle point and consequently, a confounding
linearization of dW/dt = 0. Further attempts at deriving
dW/dt, taking into account the time-dependencies s(t) and
Wmax(t), resulted in a highly complex DE involving both
Wmax(t), s(t), and their derivatives. Even obtaining the fixed
points of this DE would be highly cumbersome, compared to
obtaining the fixed point of (1).

B. Fixed Point Analysis
Let Ŵmax, ŝ, Ŵ , and p̂ represent the fixed point values of

Wmax(t), s(t), W (t), and p(t), respectively. Using the fact
that in steady state, W (t) = W (t − τ) = Ŵ and p(t) =
p(t− τ) = p̂, system (1) becomes

−(Ŵmax − Ŵ )
Ŵ

τ
p̂ = 0, (8)

1− ŝ Ŵ
τ
p̂ = 0. (9)

From (9), we see that

ŝ =
τ

Ŵ p̂
. (10)

It is clear that Ŵ and p̂ do not equal zero in steady state. Using
this information, along with (8), we conclude that Ŵmax = Ŵ .
In steady state, (7) becomes

Ŵ = c

(
ŝ− 3

√
Ŵ b/c

)3

+ Ŵ .

This equation yields

ŝ =
3

√
Ŵ b/c. (11)

Combining (10) and (11), we have

τ

Ŵ p̂
=

3

√
Ŵ b

c

where p̂ = 1 − Cτ/Ŵ (since p̂ > 0 in steady state).
Substitution yields

Ŵ (Ŵ − Cτ)3 = τ3c/b,

which can be solved for Ŵ as a function of solely the system
parameters c, b, C, and τ . This value can be used either with
(10) or (11) to obtain a value for ŝ solely as a function of the
system parameters. This concludes the fixed point analysis. An
interesting comparison is Ŵ as a function of p̂ for Reno and
CUBIC. Model (4) yields

ŴReno =

√
2

p̂
, while ŴCUBIC = 4

√
τ3c

p̂3b
.

In other words, whereas throughput under Reno depends
on loss probability as O(p̂−1/2), CUBIC exhibits a p̂−3/4

dependence.
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Fig. 2: CUBIC’s saddle point causes dW (t)/dt to evaluate to
zero at the fixed point of the system.

C. Change of Variables

To simplify stability analysis, we perform a change of
variables so that the fixed point of the system is located at
the origin. To accomplish this, define x as follows:

x(t) =

[
x1(t)

x2(t)

]
=

[
Wmax(t)− Ŵmax

s(t)− ŝ

]
=

[
Wmax(t)− Ŵ

s(t)− ŝ

]
where the last equality follows because Ŵmax = Ŵ . Also,
define Ψ(t) and p̃(t) as follows:

Ψ(t) = c

x2(t) + ŝ−
3

√
b(x1(t) + Ŵ )

c

3

+ x1(t) + Ŵ ,

p̃(t) = max

(
1− Cτ

Ψ(t)
, 0

)
.

Then the new system is:

ẋ1 =
(

Ψ− x1 − Ŵ
) Ψτ

τ
p̃τ ,

ẋ2 = 1− (x2 + ŝ)
Ψτ

τ
p̃τ .

(12)

Note that Ψτ and p̃τ are functions of x1(t− τ) ≡ x1τ

and x2(t− τ) ≡ x2τ
. It is easy to verify that

x∗ = [x1 x2 x1τ x2τ ]T = 0 is a fixed point of the new
system. We can analyze the stability of the system (12) at
the origin, which is equivalent to analyzing the stability of
the original system (1) at the equilibrium values Ŵmax and
ŝ. The CUBIC representation in (12) forms the basis for
our subsequent analyses. In the Appendix, we show that (1)
satisfies a local Lipschitz condition, showing existence and
uniqueness of solution.

D. Stability Analysis

In general, the linearization of (12) and (3) about x∗ = 0 is[
ẋ1

ẋ2

]
=

1

ŝ
A0

[
x1

x2

]
− ŝ

τ
A1

[
x1τ

x2τ

]
, where

A0 =

[
∂Ψ
∂x1
− 1 ∂Ψ

∂x2

0 −1

] ∣∣∣∣∣
x=x∗

, A1 =

[
0 0
∂Ψτ

∂x1τ

∂Ψτ

∂x2τ

] ∣∣∣∣∣
x=x∗

.



For CUBIC, ∂Ψ/∂x1|x=x∗= 1 and ∂Ψ/∂x2|x=x∗= 0, so that
ẋ1 = 0. This means that linearization has failed; i.e., stability
of the linearized system cannot be generalized to local stability
of the nonlinear system. The key cause of this problem is the
fact that the fixed point value of x2, 0, is the saddle point of
the function Ψ (or equivalently, ŝ is the saddle point of W (t)).
Figure 2 illustrates this phenomenon. This causes all first-order
partial derivatives of ẋ1 to evaluate to zero at x∗ = 0. Hence,
in order to incorporate a local contribution from ẋ1 in the
analysis, it is necessary to expand ẋ1 further. Specifically,
a third-order Taylor Series expansion is necessary, since all
second-order terms also evaluate to zero at the origin. The
expanded system looks as follows:

ẋ1 = −αx3
1 + βx2

1x2 − γx1x
2
2 + δx3

2 + h1

ẋ2 = −1

ŝ
x2 −

ŝ

τ
x1τ

+ h2

(13)

where α =
b3

27c2ŝ7
, β =

b2

3cŝ5
, γ =

b

ŝ3
, δ =

c

ŝ
and

h1 and h2 are higher-order terms of ẋ1 and ẋ2, respectively.
To analyze the stability of (13), we use the Lyapunov-

Razumikhin Theorem, the statement of which is given below
as it appears in [15]. For the purpose of this theorem, we
introduce some notation. Let C = C([−τ, 0],Rn) be the set
of continuous functions mapping the interval [−τ, 0] to Rn,
where τ is the maximum delay of a system. For any A > 0 and
any continuous function of time ψ ∈ C([t0 − τ, t0 + A],Rn),
and t0 ≤ t ≤ t0 +A, let ψt ∈ C be a segment of the function
ψ defined as ψt(θ) = ψ(t + θ), −τ ≤ θ ≤ 0. The general
form of a retarded functional differential equation is

ẋ(t) = f(t, xt). (14)

Below, R+ is the set of positive real numbers, and S̄ is the
closure of the set S.

Theorem IV.1 (Lyapunov-Razumikhin Theorem). Suppose f :
R× C → Rn takes R×(bounded sets of C) into bounded sets
of Rn, and u, v, w : R̄+ → R̄+ are continuous nondecreasing
functions, u(s) and v(s) are positive for s > 0, and u(0) =
v(0) = 0, v strictly increasing. If there exists a continuously
differentiable function V : R× Rn → R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn, (15)

w(s) > 0 for s > 0, and there exists a continuous nonde-
creasing function p(s) > s for s > 0 such that

V̇ (t, x(t)) ≤ −w(||x(t)||) (16)
if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))) (17)

for θ ∈ [−τ, 0], then the system (14) is uniformly asymptoti-
cally stable. If in addition lims→∞ u(s) =∞, then the system
(14) is globally uniformly asymptotically stable.

Note that in this work, we will only prove local stability
for CUBIC. Therefore, our goal is to show that we can find a
function V for which all conditions specified in the theorem
are valid locally, i.e., in a sufficiently small neighborhood
around the fixed point.

A popular choice of Lyapunov function is the quadratic
candidate, i.e. a function of the form

Z(x) = xTPx, where P =

[
p1 p2

p2 p4

]
(18)

is positive definite. Not surprisingly, the quadratic form Z,
which is a sufficient form in working with linear dynamic
systems, proves unsuitable. To understand why, consider the
time derivative of (18) along solutions to (13):

Ż = 2ẋ1(p1x1 + p2x2) + 2ẋ2(p2x1 + p4x2). (19)

The first term above is quartic in x1 and x2 (because ẋ1 in
(13) is cubic in x1, x2), but the second term is quadratic in
x1, x2, and x1τ

. In a small neighborhood of x∗, the quadratic
terms dominate; i.e., (19) becomes

Ż = 2

(
−1

ŝ
x2 −

ŝ

τ
x1τ

)
(p2x1 + p4x2) + h.o.t.,

where h.o.t. denotes higher-order terms. We cannot guarantee
negativity of these terms, even locally. The main problem
with Ż is that p2 must be non-zero for Ż to be negative
definite, yet this is the same coefficient responsible for the
cross term of x1 and x2 in (18), which prevents us from
effectively bounding x1τ

using condition (17) of Theorem
IV.1. However, the failure of this quadratic Lyapunov function
serves as an instructive example. Namely, we would like a
Lyapunov candidate to have the following two properties: (i)
it must prevent ẋ2’s terms from dominating the Lyapunov
derivative, and (ii) the cross terms of x1 and x2 in the
Lyapunov function should be absent so that delayed terms (like
x1τ

) can be easily bounded with non-delayed versions (like
x1) using (17). With these motivations, consider the following
Lyapunov-Razumikhin candidate:

V (x) =
d1

2
x2

1 +
d4

4
x4

2 (20)

where d1 and d4 are positive. V satisfies (ii), as necessary,
and allows us to choose a convenient function p(V (x(t))) for
(17). Let p > 1 be a constant, which can be arbitrarily close
to one. Then for (17), we can use p(V (x(t))) = pV (x(t)):

V (x(t− θ)) ≤ pV (x(t)), for θ ∈ [0, τ ].

Since there are no cross terms of x1θ
and x2θ

on the left-
hand side of the above inequality, bounding the absolute values
of these delayed variables individually is straightforward (and
instrumental in the proofs that follow).
V in (20) is a valid Lyapunov-Razumikhin candidate since

(15) is satisfied with

v(||x||) = ε0||x||22 and u(||x||) = ε1||x||42.

Note that our arguments are valid for a neighborhood
|x1|, |x2|< r, where 0 < r < 1. Appropriate choices for
ε0 and ε1 are discussed in the extended manuscript [16].

Now, consider the Lyapunov derivative of (20):

V̇ = d1x1ẋ1 + d4x
3
2ẋ2



Note that both of the terms above are now quartic in either
x1, x2, or both. However, ẋ2 still contributes a term with x1τ ,
which poses a challenge in proving local stability. Indeed, at
the core of the proof for V̇ ’s negativity is managing the x1τ

term, as well as proving that h1 and h2 in (13), which are
higher-order in both the delayed and non-delayed variables,
are also higher-order in only the non-delayed variables x1 and
x2.

The focus of the next discussion is the term that contains
x1τ . Substituting the expanded system (13) into V̇ and rear-
ranging terms, we have

V̇ = yTQy + d1δx1x
3
2 − d4

ŝ

τ
x3

2x1τ
+ d1x1h1 + d4x

3
2h2

where y =

 x2
1

x1x2

x2
2

 and Q =

−d1α d1β/2 0

d1β/2 −d1γ 0

0 0 −d4/ŝ

 .
Let I be the interval [t − τ, t]. Then by the Mean Value
Theorem (MVT), there exists some θ ∈ (0, τ) such that

ẋ1(t− θ) =
x1(t)− x1(t− τ)

t− (t− τ)
=
x1(t)− x1(t− τ)

τ
,

or ẋ1θ
τ = x1 − x1τ

, where ẋ1θ
= ẋ1(t− θ).

We would like to combine the terms d1δx1x
3
2 and −d4

ŝ
τ x

3
2x1τ

in V̇ using the MVT. To do so, let d1 = 1/δ = ŝ/c and
d4 = τ/ŝ. Note that this determines the exact form of the
Lyapunov-Razumikhin function:

V (x) =
ŝ

2c
x2

1 +
τ

4ŝ
x4

2.

The Lyapunov derivative becomes

V̇ = yTQy + x3
2ẋ1θ

τ + d1x1h1 + d4x
3
2h2.

Note that the last three terms above all have dependencies on
x1τ

and x2τ
. Our goal is to show that these terms are of higher

order than yTQy in variables x1 and x2 alone. Consider ẋ1θ
:

ẋ1θ
= Φ3

θ

Ψθ+τ

τ
p̃θ+τ ,

where Φθ is defined in the Appendix. We would like to find
an upper bound for |ẋ1θ

| only in terms of x1θ
and x2θ

. Since
θ ∈ (0, τ), we can expand Φ3

θ about v = [x1θ
x2θ

] = [0 0]
(in other words, the fixed point implicitly includes all x1(t−
ξ), x2(t − ξ), 0 ≤ ξ ≤ τ , not just x1(t), x2(t), x1(t − τ),
and x2(t − τ)). Note also that by performing this expansion,
we are applying a two-variable Taylor series expansion to a
four-variable function. Specifically, we can use a second-order
expansion and bound |ẋ1θ

| using only the remainder, which
consists of third-order partial derivatives.

In the expressions that follow, we use F and Φ as defined
in the Appendix. Also, let Γ = Ψθ+τ p̃θ+τ/τ . The zero-, first-,
and second-order terms in the expansion of ẋ1θ

are zero when
evaluated at v = 0. The third-order partial derivatives are:

∂ẋ1θ
(v = 0)

∂x3
1θ

=
−2b3

9c2
Γ
[
F−2
θ + 6ΦθF

−7/3
θ + 5Φ2

θF
−8/3
θ

]
,

∂ẋ1θ
(v = 0)

∂x2
1θ
x2θ

=
2b2

3c
Γ
[
F
−4/3
θ + 2ΦθF

−5/3
θ

]
,

∂ẋ1θ
(v = 0)

∂x1θ
x2

2θ

= −2bΓF
−2/3
θ , and

∂ẋ1θ
(v = 0)

∂x3
2θ

= 6cΓ.

We will bound the absolute values of these partial derivatives
and use the following proposition [17].

Proposition IV.1. If a function f is of class Ck+1 on an open
convex set S and |∂αf(x)|≤ M for x ∈ S and |α|= k + 1,
then the absolute value of the remainder Ra,k(h) of the kth-
order Taylor series expansion of f about the point a can be
bounded as follows:

|Ra,k(h)| ≤ M

(k + 1)!
‖h‖k+1, where

‖h‖ = |h1|+|h2|+ · · ·+ |hn|.

Above, ∂fα is the generic (k+ 1)th-order partial derivative
of f , and |α|= α1 + α2 + · · · + αn. In our case, a = 0, and
h = [x1θ

x2θ
].

In three of these partial derivatives, there are terms of the
form F−lθ , where l is a positive rational number. Hence, we
must bound x1θ

in a region [−ρŴ , ρŴ ], where 0 < ρ < 1.
Assuming that x1θ

, x2θ
, x1θ+τ

, and x2θ+τ
are constrained in

an appropriately-chosen local region [−r, r] around 0, there
exists a constant M0 such that |∂3x1θ

|≤M0. Then, using the
proposition,

|ẋ1θ
| ≤ M0

3!
(|x1θ

|+|x2θ
|)3 (21)

By Razumikhin’s Theorem, we require that V̇ (x) ≤ −w(‖x‖)
whenever pV (x(t)) ≥ V (x(t − θ)), θ ∈ [0, τ ], for an ε > 0
and some constant p > 1. When pV (x(t)) ≥ V (x(t− θ)),

p

(
d1

2
x2

1 +
d4

4
x4

2

)
≥ d1

2
x2

1θ
+
d4

4
x4

2θ
≥ d1

2
x2

1θ

→ |x1θ
|≤
√

p

d1

(√
d1|x1|+

√
d4

2
x2

2

)
. (22)

Similarly, |x2θ
|≤ 4

√
2p

d4

(
4
√
d1|x1|1/2+

4

√
d4

2
|x2|

)
. (23)

Substituting these results into (21), we have:

|ẋ1θ
| ≤ M0

6

(
√
p|x1|+

√
pd4

2d1
x2

2 + 4

√
2pd1

d4
|x1|1/2+ 4

√
p|x2|

)3

The lowest-order term in the equation above is (|x1|1/2)3 =
|x1|3/2. Hence, we see that the term |x3

2ẋ1θ
τ | can be bounded

by a function of order at least 4.5. We can use a similar
procedure to bound the remainders of ẋ1 and ẋ2, as we will
demonstrate.

First, consider the higher-order terms in ẋ1. Since x2θ

depends on
√
|x1|, we cannot simply use a third-order expan-

sion of ẋ1 and bound the remainder of fourth-order partials,
because a consequence of this is that the remainder will have a
term

(
|x1|1/2

)4
= |x1|2. Recall that in the Lyapunov derivative

V̇ , ẋ1 is being multiplied by x1, so the resulting term will have



an order of merely three. Using this logic, it is clear that we
need an expansion of at least order six; this way, the lowest-
order term in the remainder will be (|x1|1/2)7 = |x1|7/2,
and x1|x1|7/2 is order 4.5, which is sufficient. However, it
is not enough to simply do a sixth-order expansion of ẋ1: we
must also ensure that any fourth-, fifth-, and sixth-order partial
derivatives in the expansion in terms of x1, x2, x1τ

, and x2τ
,

are of order 3.5 or more in terms of only x1 and x2 (so that
when multiplied by x1 in the Lyapunov derivative, we have
terms of order at least 4.5 for these terms as well).

Claim IV.1. Except for the third-order terms, the sixth-order
expansion of ẋ1 in [x1 x2 x1τ

x2τ
] is of combined power at

least 3.5 in [x1 x2].
Proof: The proof is very similar to the above procedure for
bounding |ẋ1θ

|. See extended manuscript [16] for more detail.

Next, we analyze the higher-order terms and remainder of ẋ2.
Recall that in the Lyapunov derivative, ẋ2 is being multiplied
by x3

2. Hence, we require a second-order expansion of ẋ2 about
[x1 x2 x1τ x2τ ] = 0, and we must ensure that the second-
order terms, as well as the remainder, are of combined power
greater than one.

Claim IV.2. Except for the first-order terms, the second-order
expansion of ẋ2 in [x1 x2 x1τ

x2τ
] is of combined power at

least 1.5 in [x1 x2].
Proof: The proof is very similar to that of Claim IV.1. See
extended manuscript [16] for detail.

Finally, we show that the sum of the terms of order four in
the Lyapunov derivative V̇ is negative. These terms are

yTQy =
[
x2

1 x1x2 x2
2

] −d1α d1β/2 0

d1β/2 −d1γ 0

0 0 −d4/ŝ


 x2

1

x1x2

x2
2


It suffices to show that the matrix Q is negative definite. The
first leading principal minor, −d1α, is always negative, as
needed. The second leading principal minor should be positive:

d2
1αγ − d2

1

β2

4

?
> 0 (24)

After substitution and simplification, this condition is reduced
to checking if 1

27 −
1
36 > 0, and hence always holds. The third

leading principal minor should be negative:

−d1α
(
d1d4

γ

ŝ

)
− d1

β

2

(
d1
β

2

(
−d4

ŝ

))
?
< 0

It can be shown with simplification that this condition reduces
to (24) and hence is satisfied.

So far, we have shown that for a sufficiently small neigh-
borhood of x∗ = 0, the Lyapunov-Razumikhin candidate in
(20) has a negative definite derivative, i.e. V̇ (x) < 0 for all
x 6= 0 in this neighborhood and V̇ (x) = 0 if x = 0. Next, we
show that V̇ is bounded by a suitable function w as specified
in Theorem IV.1. Recall that we have shown that

V̇ = yTQy + h.o.t.

where Q is negative definite and the higher-order terms have
combined powers of at least 4.5 in x1 and x2. By using a
different symmetrization of the lower-order terms yTQy, we
can obtain the following:

V̇ = −zT Q̃z + h.o.t.

where z =

 x2
1√

2x1x2

x2
2

 and Q̃ =

 d1α − d1β

2
√

2
0

− d1β

2
√

2

d1γ
2 0

0 0 d4/ŝ

 .
Since we have previously shown that the sum of the lower-
order terms in V̇ is a negative definite function, it follows
that Q̃ is positive definite, so all of its eigenvalues are strictly
positive. Since Q̃ is a real and symmetric matrix, its Rayleigh
quotient is bounded below by its smallest eigenvalue λmin[Q̃].
Hence,

V̇ ≤ −λmin[Q̃]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 x2

1√
2x1x2

x2
2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

+ h.o.t.

= −λmin[Q̃]||x||42+h.o.t.

For |x1|, |x2| small enough, there exists a positive constant K
such that h.o.t. ≤ K||x||42.

Claim IV.3.

Let f(x1, x2) =
h.o.t.

||x||42
. Then lim

(x1,x2)→(0,0)

h.o.t.

||x||42
= 0.

Proof: A simple ε − δ proof can be used here. See extended
manuscript [16] for a detailed proof.

By Claim IV.3, we can always find a K small enough by
restricting x1 and x2 into a smaller neighborhood around 0.
Hence, we can find a K < λmin[Q̃], which would give us:

V̇ ≤ −(λmin[Q̃]−K)||x||42 (25)

where λmin[Q̃] − K > 0. By inspection, we have found
a w(||x||) that satisfies condition (16) under (17). In addi-
tion, w(||x||)) > 0 when ||x||> 0, as necessary. Finally,
lim||x||→∞ u(||x||) = ∞. By Theorem IV.1, we have shown
that the function that drives CUBIC’s cwnd, (7), is locally
uniformly asymptotically stable.

E. Convergence

Using the Lyapunov-Razumikhin function and its derivative,
it is possible to explicitly demonstrate the convergence of
trajectories to the fixed point. Recall that

V (x) ≤ ε0||x||22 → V 2(x) ≤ ε20||x||42.

Combined with (25), this gives us

V̇ ≤ − (λmin[Q̃]−K)

ε20
V 2.

We can solve this differential inequality and obtain

V (t) ≤ 1
(λmin[Q̃]−K)

ε20
(t− t0) + 1

V (t0)

.



Since V (t) ≥ ε1||x||42,

||x||42≤
1

ε1(λmin[Q̃]−K)
ε20

(t− t0) + ε1
V (t0)

. (26)

From (26) and the form of v(||x||), it follows that

||x||42≤
V (t0)

ε1
≤ ε0||x(t0)||22

ε1
.

Hence, from Definition 1.1 from [15], (13) is also Lyapunov
stable; i.e. sufficiently small initial conditions ||x(t0)|| give
rise to only small responses ||x||. One possible way to apply
this bound is in the implementation of TCP: one could specify
the initial slow start threshold to be close to Ŵ , so that when
CUBIC’s congestion avoidance phase begins, the systems is
more likely to settle into its stable state.

V. SIMULATIONS

We use simulations to validate model (12) and its stability
analysis for TCP CUBIC. Our simulation framework treats
loss as a non-homogenous Poisson process and generates new
loss events based on a user-defined probability of loss model.
An advantage of using this framework for validating the DEs
over, for example, NS3, is that we can observe the behavior
of solely the congestion avoidance phase of an algorithm,
which allows us to more easily verify the theoretical analysis
of the controller’s stability. Moreover, as we observe from
simulations of the DEs, an algorithm’s stability can be highly
sensitive to the initial conditions specified at the beginning
of the congestion avoidance phase. The initial conditions are
values of Wmax(0) and s(0) for all flows, and we can control
them more easily with our simulation framework. This can
be especially useful when testing the region of stability for a
given system.

Figure 3 compares the average cwnd generated by the Non-
Homogeneous Poisson Loss (NHPL) simulations against the
average value of cwnd generated by the DEs. The fixed-point
value of cwnd, Ŵ , is also shown (albeit sometimes entirely
hidden by the DE curve because of fast convergence). All
flows in this figure have a per-flow capacity of 1 Gbps, while
the round-trip time is varied (these combinations of C and τ
are sufficient to generate a diverse set of behaviors). All flows
have b = 0.2 and c = 0.4 (the default values used in Linux
implementations of CUBIC).

Panel 3(a) shows a single stable flow with τ = 1ms.
The transient response of both simulations is clearly visible,
and we observe that they reach steady-state within a similar
period. Not shown in this panel is the value of ŝ ≈ 4s. By
observing the time between losses in the NHPL simulation,
we see that there is a close agreement. Panel 3(b) shows the
same experiment, but with 20 flows. As expected, the average
value of cwnd from the NHPL simulation approaches Ŵ as
the number of flows is increased. Panels 3(c) and 3(d) show
one and 20 flows, respectively, for τ = 10ms. The initial
conditions (values of s(0) and Wmax(0)) are deliberately far
enough from the fixed point to demonstrate a more dramatic
transient response from both simulations. Figure 4 shows two

examples of 100ms flows: in (a), there is a single flow that is
stable, while the initial conditions in (b) cause instability for
20 flows in both the DEs and NHPL simulation.

Figure 5 illustrates the transient and steady-state responses
of a flow with C = 100 Mbps and τ = 10ms, as well ||x||2 as
it compares to the convergence bound (26). Observe that ||x||2
is always below the bound and approaches zero as the flow
reaches steady state. The bound appears flat in this example
because for this system, V (t0) dominates in the denominator.
We observe this phenomenon for many systems; this implies
that the initial conditions are crucial for a flow’s stability.

VI. CONCLUSION

The main contribution of this work is a novel and versatile
fluid model for cwnd- and rate-based data transport algorithms.
The model is structured so that the differential equations are
not dependent on the specific window or rate function of a
controller. As a result, this framework offers opportunities to
model and analyze the stability of a diverse set of controllers
whose window or rate functions may not be linear and whose
increase and decrease rules may not be given in explicit form.
We apply this model to two different algorithms: TCP Reno
and CUBIC. For the former, we prove that the new model
is equivalent to a well-established model for Reno. For the
latter, the new model succeeds where traditional methods of
modeling cwnd are ineffective. We go on to analyze the fluid
model for CUBIC and discover that for a given probability
of loss model, its window is locally uniformly asymptotically
stable. We derive a convergence bound on the solution of the
system as a function of the system parameters. Simulations
of the model support our theoretical results. As a future
direction, we plan to validate the model against a packet-based
simulation, as well as analyze the model using alternate loss
probability functions.

APPENDIX

To prove existence and uniqueness for system (12), it is suf-
ficient to show that ẋ1 and ẋ2 are continuously differentiable
functions in some neighborhood of the fixed point. We assume
that this neighborhood is small enough so that p̃τ > 0. Then
the system becomes:

ẋ1 =
(

Ψ− x1 − Ŵ
)

(Ψτ − Cτ)/τ,

ẋ2 = 1− (x2 + ŝ)(Ψτ − Cτ)/τ.

Let F = b(x1 + Ŵ )/c and Φ = x2 + ŝ− 3
√
F ; Φ ≡ Φ(t), and

Φτ ≡ Φ(t− τ). Following are the partial derivatives of ẋ1:

∂ẋ1/∂x1 = −bΦ2F−2/3(Ψτ − Cτ)/τ,

∂ẋ1/∂x2 = 3cΦ2(Ψτ − Cτ)/τ,

∂ẋ1/∂x1τ = (Ψ− x1 − Ŵ )
(
−bΦ2

τF
−2/3
τ + 1

)
/τ,

∂ẋ1/∂x2τ
= 3c(Ψ− x1 − Ŵ )Φ2

τ/τ.

These partials provide the first restriction to the region where
stability is being analyzed. Specifically, the term F−2/3 in-
dicates that x1 and x1τ should be restricted to an interval
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0 50 100 150 200

Time (s)

0

200

400

600

800

1000

1200

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 1250

NHPL Sim avg cwnd 1189

DE Sim avg cwnd 1242
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Fig. 3: Comparison of average cwnd (computed post-transient phase) generated by NHPL simulations against steady-state cwnd
generated by model (12) for TCP CUBIC. Also shown is the fixed-point value of cwnd. Per-flow capacity C = 1 Gbps.
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(a) τ = 100ms, stable
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(b) τ = 100ms, unstable

Fig. 4: The impact of initial conditions on stability. For both
(a) and (b), C = 1 Gbps, τ = 100ms. In (a), there is one
flow whose initial conditions W (0) and s(0) are very close to
the fixed point values Ŵ and ŝ, respectively. Both the NHPL
simulation and the model exhibit stability. In (b), there are
20 flows whose initial conditions are set too far from the
fixed point values, destabilizing the flows in both the NHPL
simulation and the DE system.
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Fig. 5: Convergence for CUBIC. At the top is the cwnd
generated by DEs as it converges to the fixed point value of
cwnd. Below these two curves is a comparison of ||x||2 against
the analytical bound in (26). C = 100 Mbps, τ = 10ms.

[−ρŴ , ρŴ ], 0 < ρ < 1. Next, we look at the partial
derivatives of ẋ2:

∂ẋ2/∂x1 = 0, ∂ẋ2/∂x2 = −(Ψτ − Cτ)/τ,

∂ẋ2/∂x1τ = −(x2 + ŝ)
(
−bΦ2

τF
−2/3
τ + 1

)
/τ,

∂ẋ2/∂x2τ
= −3c(x2 + ŝ)Φ2

τ/τ.

Under the restriction stated above, these partials are also
continuous, and hence, we have local Lipschitz continuity –
the requirement for existence and uniqueness.
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