
Models of TCP in High-BDP Environments and
Their Experimental Validation

Gayane Vardoyan
University of Massachusetts Amherst

Email: gvardoyan@cs.umass.edu

Nageswara S. V. Rao
Oak Ridge National Laboratory

Email: raons@ornl.gov

Don Towsley
University of Massachusetts Amherst

Email: towsley@cs.umass.edu

Abstract—In recent years, there has been a steady growth in
network bandwidths. This is especially true in scientific and big
data environments, where high bandwidth-delay products (BDPs)
are common. It is well-understood that legacy TCP (e.g. TCP
Reno) is not appropriate for such environments, and several
TCP variants were developed to address this shortcoming. These
variants, including CUBIC, STCP, and H-TCP, have been studied
in some empirical contexts, and some analytical models exist for
CUBIC and STCP. However, since these studies were conducted,
BDPs further increased, and new bulk data transfer methods
have emerged that utilize parallel TCP streams. In view of these
new developments, it is imperative to revisit the question: ‘Which
congestion control algorithms are best adapted to current net-
working environments?’ In order to answer this question, (i) we
create a general theoretical framework within which to develop
mathematical models of TCP variants that account for finite
buffer sizes, maximum window constraints, and parallel TCP
streams; (ii) we validate the models using measurements collected
over a high-bandwidth testbed and achieve low prediction errors;
(iii) we find that CUBIC and H-TCP outperform STCP, especially
when multiple streams are used.

I. INTRODUCTION

The congestion collapse in the ARPANET during the late
1980s prompted the adoption of what is now referred to as
legacy Transmission Control Protocol (TCP). Later, the advent
of high-BDP networks stimulated the development of several
TCP variants to overcome the inefficiencies of legacy TCP.
These include HSTCP (HighSpeed TCP) [1], FAST (FAST
AQM Scalable TCP) [2], BIC (Binary Increase Congestion
control) TCP [3], STCP (Scalable TCP) [4], CUBIC TCP
[5], and H-TCP (Hamilton TCP) [6]. To an extent, all of
these Congestion Avoidance (CA) algorithms are successful
in improving bandwidth utilization, although some exhibit
better fairness, friendliness, and convergence properties than
others. Several empirical studies of these algorithms exist ([7],
[8], [9], [10], [11], among others), and although CUBIC is
currently the default in Linux kernels, as of yet, there is no
definitive consensus on which CA algorithm is best.

Adding to this uncertainty, many other studies rely either
on simulations or networks with relatively low bandwidths
compared to current High-Speed Network (HSN) environ-
ments. Today, 10 Gbps Wide Area Network (WAN) links are
not uncommon between large-scale datacenters and computing
facilities. An example is the Extreme Science and Engineering
Discovery Environment (XSEDE) [12], a collection of su-
percomputing resources spanning several universities, national

labs, and other research institutions, all interconnected by 10
Gbps (and sometimes faster) links. XSEDE offers tools like
Globus GridFTP [13] and sftp for data transfers (note that
FTP relies on TCP for reliable data movement), and such bulk
data transfer mechanisms are becoming increasingly popular
in HSNs.

Since BDPs have grown significantly and new bulk data
transfer protocols that use parallel TCP streams have been
introduced, it is important to reevaluate TCP both analytically
and empirically. In this paper, we present a framework within
which we derive analytical models for TCP variants. Unlike
prior work, where models are studied in isolation for each
TCP variant, our framework is not variant-specific and can
be used to model a range of loss-based TCP variants. We
use measurements on an experimental testbed to motivate and
validate these models.

In some environments, researchers share WAN links for
data transfers. The drawback is that TCP streams belonging
to different users may compete for bandwidth and other
resources. An alternate method of transferring data is through
the use of virtual circuits (VCs) dedicated to a single user or
application. One example is the On-Demand Secure Circuits
and Advance Reservation System (OSCARS) [14], which
allows users to reserve high-bandwidth VCs for guaranteed
performance. According to the Energy Sciences Network,
more than 50 research networks deploy OSCARS, including
the US LHC Network; and OSCARS VCs carry half of the
Department of Energy’s (DOE) science traffic. The increasing
popularity of VC-based data transfer options serves as excel-
lent motivation to study TCP behavior in a controlled setting.
Moreover, it provides an incentive to examine scenarios with
only a fixed, rather than a dynamically changing, number of
TCP connections.

Most protocols that strive to achieve efficient bulk data
transfers do so by providing features that allow users to tune
them as they see fit. For example, GridFTP supports both
parallelism and concurrency (parallel streams use one socket
and concurrent streams use separate sockets; henceforth, we
use these terms interchangeably). It has become clear that the
reason for the emergence of tools like GridFTP is the fact that
TCP is not able to keep up with the demands of today’s high-
BDP networks. In this paper, we develop a framework that
enables us to study the performance of protocols like GridFTP
in dedicated high-BDP networks. To do so, we concentrate on

1



a possible underlying root cause of poor bandwidth utilization:
the congestion control (CC) algorithms used by all TCP-based
data transfer tools.

We take two approaches in an attempt to understand the
dynamics of TCP in modern environments: (i) first-principled
modelling and (ii) measurement-based. We create robust, de-
tailed analytical models of variants of the protocol. At the same
time, we evaluate these variants on a dedicated network link,
in a controlled setting that allows us to emulate diverse exper-
imental configurations while removing any interference (e.g.
I/O, background traffic) that could obscure TCP’s intended
behavior. We collect detailed measurements of memory-to-
memory transfers on two different testbed configurations using
iperf and tcpprobe, for three different TCP variants.

The main contributions of this work are:
• A general and comprehensive framework for modelling a

diverse set of congestion control algorithms. The framework
encompasses not only congestion avoidance, but also the
slow-start mechanism. The latter takes into consideration the
heuristic guidelines imposed by Hybrid slow-start (HyStart)
[15], which is the implementation of slow-start used in
current Linux kernels.

• A validation of these models using an extensive set of
measurements.

• Last, we observe from our measurements that (i) CUBIC
and H-TCP are comparable in terms of average throughput,
while they both outperform STCP, and (ii) TCP performance
benefits from the presence of a well-designed physical layer
(e.g. SONET).

We use only first principles to model the performance of
each TCP variant in terms of its average throughput as a
function of round trip time (RTT). The models also accept
link capacity, buffer size, transfer size, number of parallel
streams, and maximum congestion window (cwnd) size as
parameters. Using measurements, we validate the models
and compare the performance of the TCP variants. To our
knowledge, this work constitutes the first careful measurement-
based modelling study of TCP congestion control algorithms
in a high-BDP/HSN setting.

The remainder of the paper is organized as follows. We
describe the three variants and related work in Section II. In
Section III, we describe the testbed, measurement collection,
and first-hand observations from the collected data. In Section
IV, we delve into the analytical framework for slow-start,
congestion avoidance, and each of the variants separately,
presenting closed-form expressions for sending rate where
possible. In Section V, we present and validate our results.
Finally, we conclude the paper in Section VI.

II. BACKGROUND

A. TCP Variants

We study CUBIC because it is the most commonly used
variant in current HSN networks and the default CA algorithm
in the Linux kernel. Unlike most TCP variants, CUBIC is
not an acknowledgement (ACK)-based algorithm. Instead,

CUBIC’s cwnd is a cubic function of time since the last
congestion event such that the inflection point is the maximum
window size immediately before the most recent loss occurred.

We also study STCP because it was developed within
the optimization-based framework proposed in [16]. STCP is
a multiplicative increase, multiplicative decrease (MIMD) 1

algorithm with the following response functions:

cwnd cwnd + a

for every ACK received, where the increase factor a is usually
set to 0.01. Upon loss detection,

cwnd b ⇤ cwnd

Usually, b = 0.875 for STCP.
Finally, we study H-TCP because of its favorable fairness

and convergence properties [8]. H-TCP is an ACK-based
generalized additive increase multiplicative decrease (AIMD)
algorithm whose additive increase factor a is a function of the
time t since the last congestion event. Specifically, a is defined
as:

a 2(1� b)a(t)

where a(t) is

a(t) =
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L is usually set to one second so that for small congestion
epochs, H-TCP behaves like standard TCP. H-TCP’s decrease
factor b is defined as

b RTTmin

RTTmax
, b 2 [0.5, 0.8]

where RTTmin and RTTmax are the minimum and maximum
measured RTTs of a flow. Upon loss detection, cwnd is
updated as follows:

cwnd b ⇤ cwnd

B. Related Work
There exist a number of analytical studies for modelling

TCP. Kelly proposed an optimization-based framework for
studying and designing CA algorithms in [16], where STCP
was an output. In [17], Srikant presented a simple analysis
of Jacobson’s TCP CC algorithm. The derivation sets the
maximum window constraint to the sum of the BDP and the
size of the buffer. Our analysis is more refined in that it takes
into consideration two different maximum window constraints,
as discussed in Section IV. A model for slow-start is also
presented in [17]. We extend this model by considering the
latest version of slow-start currently in use by Linux kernels.

In [18], Misra et al. model TCP throughput using stochastic
differential equations. El Khoury et al. [19] present a model for
STCP that includes buffer size as a parameter, but only in the

1Note that although the per-ACK update rule for STCP is additive, this CA
algorithm is MIMD at the RTT level.

2



case of a very small buffer. In addition, they rely only on ns-2
simulations for validation. Bao et al. propose Markov chain
models for average CUBIC throughput, but for a wireless
environment [20]. Moreover, they do not directly account for
buffer constraints. Leith et al. present empirical evidence that
H-TCP fares well in bandwidth utilization compared to other
TCP variants [21], but the protocol’s CC dynamics have not
been analyzed in-depth.

There are some empirical studies that explore the behavior
of TCP with multiple concurrent flows. Morris looks at a
number of performance metrics using simulations and real
packet traces, but does not explore different TCP variants
[22]. Yu et al. compare the performance of three open-source
big data transfer protocols in [23] using memory-to-memory
transfers on a 10 Gbps international HSN. Bateman et al.
compare different TCP variants for fairness at high speeds
using ns-2 and Linux [24]. As far as we know, no previous
work attempts to model TCP with multiple flows using first
principles.

III. MEASUREMENTS

A. Emulation Testbed
Our testbed consists of two types of Linux hosts: 32-

core and 48-core HP ProLiant servers, each with Broadcom
10 GigE NICs, running Linux 2.6 kernel (CentOS release
6.6). It also consists of ANUE OC192 and IXIA 10 GigE
hardware connection emulators, and a 10 Gbps Force10 E300
WAN-LAN switch. Two separate configurations are utilized
for 10 GigE and SONET measurements. These hardware
connection emulators transport the physical packets between
hosts, delaying them during transit by an amount specified
at configuration. This process closely matches the effects of
physical connections, particularly, the TCP dynamics of hosts
connected to them, which in turn determine the throughput
rates achieved. They more closely capture the real-time TCP
dynamics compared to packet-level simulators (such as ns-
3 and OPnet) that are typically driven by discrete “packet
delivery events”.
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Fig. 1: Two testbed configurations for dedicated 10 Gbps
connections.

We consider two configurations that use OC192 and 10
GigE physical layer modalities. In the first configuration, 10
GigE NICs of host systems are directly connected to two IXIA
emulator ports as shown in Figure 1(a). Long range 1250 nm
optical transceivers are used on host NICs to communicate
directly with the emulator. The SONET configuration shown

in Figure 1(b) is more complicated compared to the 10 GigE
case, since hosts are equipped with 10 GigE NICs and do
not support SONET. In this case, the 10 GigE NICs are
connected to a Force10 E300 switch using multi-mode 850
nm optical transceivers in LAN-PHY mode. The E300 switch
converts between 10 GigE LAN-PHY and WAN-PHY frames
that are inter-operable with OC192 frames; the latter are sent
through its WAN ports, which are directly connected to OC192
ANUE emulator ports as shown in Figure 1(b). We note that
the peak capacity of an OC192 connection is 9.6 Gbps. We
utilize these emulators to collect TCP measurements for a
suite of dedicated connections where we set the RTT to 11.8,
22.6. 45.6, 91.6, 183 and 366 ms. RTTs in the mid-range
represent US cross-country connections, for example, ones
between DOE sites provisioned using the OSCARS system.
Higher RTTs represent transcontinental connections.

B. Measurement Collection
We collect TCP measurements for three TCP CC modules:

CUBIC, STCP, and H-TCP (all available as loadable modules
under the Linux 2.6 distribution). Two types of measurements
are collected in each case.

(a) Throughput measurements for memory-to-memory transfers
are collected using iperf. In addition, intermediate through-
put values from iperf at one-second intervals are collected
for a more detailed analysis.

(b) Kernel traces: Certain TCP variables including cwnd, are
collected using the tcpprobe kernel module to support a
more detailed analysis and parameter estimates for analytical
models. In this case, tcpprobe is configured to collect
tcp info variables each time a TCP segment is processed.

The iperf and tcpprobe traces are collected concurrently to
facilitate the correlation of TCP parameters with throughput.
Each test regimen is executed using a bash script that coor-
dinates the setup of parameters for emulators, invocation of
iperf and tcpprobe codes and collection of their outputs.

C. Empirical Observations
It is interesting to note the differences in measurements

produced by the SONET and 10 GigE links. In general, we
observe that the data obtained from SONET is well-behaved
and more deterministic than that collected from 10 GigE.
Figure 2 illustrates the stark contrast in TCP behavior between
these two testbeds. The evolution of cwnd over time exhibits
a consistent sawtooth pattern for SONET, whereas the 10
GigE transfer experiences non-uniformly-spaced losses and
seemingly flat regions for smaller RTTs. The data shown is for
STCP, for RTTs of 91.6 ms and 183 ms, although the results
are consistent across different variants and other RTT values.
These differences are important: they mean that for accurate
predictions, the models must account for both the frequency
of losses and the shapes of the cwnd curves. Section IV goes
into specifics on how this can be accomplished.

Figures 2(c) and 2(d) reveal another difference between
these two modalities: 10 GigE has more aggregate buffer space
than SONET. Visually, buffering occurs when cwnd grows as
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(b) RTT=91.6 ms, SONET
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(c) RTT=183 ms, 10 GigE
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(d) RTT=183 ms, SONET

Fig. 2: Comparisons between 10 GigE and SONET measurements. TCP variant: STCP. (a) and (b) show tcpprobe. (c) and (d)
show both iperf and tcpprobe.
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Fig. 3: Comparison of STCP, CUBIC, and H-TCP average throughputs on the 10 GigE testbed.

throughput remains relatively constant. The size of the buffer
corresponds to the white space between the two curves, and
since it is more prevalent in 10 GigE data, we know that this
configuration has the larger buffer size. Figure 3 presents a
comparison of the three variants in terms of their average
throughput. The dataset was collected over the 10 GigE link.
Each memory-to-memory flow was active until it transferred
10 GB of data. It is evident that for a small number of streams,
the three variants perform almost equally well. However, as the
number of flows grows, the differences in performance become
more notable: CUBIC and H-TCP significantly outperform
STCP with ten parallel flows.

IV. ANALYSIS

We first present a model for slow-start and discuss how it
can accommodate an important component of HyStart. Then,
we present single-stream analytical models for two different
types of loss-based congestion avoidance mechanisms: (i)
those that are ACK-based and (ii) those that grow cwnd as
a function of time since last loss (referred to as TSL-based
variants). STCP and H-TCP are ACK-based, while BIC and
CUBIC are examples of TSL-based algorithms. Finally, we
demonstrate how single-stream models can easily be extended
to incorporate multiple parallel TCP streams.
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Fig. 4: Buffer size � on a network. This includes buffers at
sender and receiver network interfaces, and routers.

Table I contains definitions of variables used in this section.
We assume that we know the link capacity C, aggregate buffer
size �, round-trip-time ⌧ , size of the transfer F , and increase
or decrease parameters. The minimum RTT, ⌧ , is the delay
measured before the buffer of size � begins to fill up. This
can be measured by running a simple ping command between
the source and receiver. � represents the aggregate size of
all buffers present on the link (e.g. on routers and NICs). An
illustration is shown in Figure 4. Wmax is a constraint on cwnd
typically imposed by the receiver (receive-window).

A. Slow-Start
In traditional slow-start, cwnd approximately doubles every

round trip time of length ⌧ in which loss is not detected:

w(t) = 2

t/⌧
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TABLE I: Variable definitions used in analysis.

Variable Definition Unit
C link capacity bits/sec
⌧ minimum round trip time sec
w(t) cwnd as function of time bits
W

max

maximum window constraint bits
W

m

size of cwnd immediately before loss bits
� aggregate buffer size bits
S sending rate bits/sec
⇥ throughput bits/sec
ssthresh slow-start threshold bits
a additive or multiplicative increase factor N/A
b multiplicative decrease factor N/A
F file size bits
k number of CA epochs for a transfer N/A
n number of parallel TCP flows N/A

Slow-start ends at time Ts, when w(t) reaches ssthresh and
CA begins.

Ts = ⌧ log2(ssthresh) (2)

The amount of data transferred during time Ts is Ns:

Ns =
1

⌧

Z T
s

0
2

t/⌧dt =
2

t/⌧

ln(2)

���
T
s

0
=

ssthresh� 1

ln(2)

(3)

These expressions are accurate when C⌧ (the BDP) is greater
than or equal to ssthresh. In HSN environments, this is a
reasonable assumption that is validated by the measurements
(see Figure 2 for examples).

At the time of writing, HyStart is the default slow-start
algorithm used in Linux. This algorithm uses the same cwnd
growth function as traditional slow-start. According to [15],
HyStart sets an upper bound on cwnd equal to Ca⌧/2 + �a,
where Ca is the available bandwidth and �a is the available
buffer space. There is also a lower bound on cwnd equal
to (Ca⌧)/2. In real scenarios (especially where packet loss
is highly prevalent), it is likely that the value of ssthresh
will change several times during the lifetime of a TCP flow.
However, for highly-reliable, dedicated connections, such as
ones encountered in HSN settings, it is safe to assume that
a flow will enter slow-start only once (in the beginning of a
transfer), and afterward will likely remain in CA state. This
assumption is further validated by our tcpprobe measurements.
In this case, only one estimate of ssthresh is required. At
the beginning of a connection, most of the link capacity and
buffer space are unused. Hence, we let ssthresh = C⌧/2+�,
which proves to work quite well in practice; in fact, we find
it much better to model ssthresh as a function of ⌧ , rather
than leaving it as a constant.

B. Congestion Avoidance
For all TCP variants, CA consists of two phases. Figure 5

illustrates them using generic cwnd curves (not specific to any
TCP variant). The goal is to derive expressions for Na, the
amount of data transferred during one such CA epoch, and
Ta, the duration of one CA epoch. The number of CA epochs
for a given transfer is approximately

k =

F �Ns

Na
.

The sending rate S can be approximated as

S =

Ns + kNa

Ts + kTa
.

Then, throughput ⇥ can be estimated as

⇥ = S(1� p)

where p is the packet loss probability for a TCP flow. For
small values of p,

⇥ ⇡ S

Next, we discuss how to obtain Na and Ta for various cases.

Case 1: Wmax  C⌧ . In Phase I, cwnd grows until
either the link capacity or Wmax is reached (if Wmax  C⌧ ).
In the latter case, cwnd remains flat until the transfer ends,
buffer overflow never occurs, and there is no second phase.
The amount of data transferred in this case is Na = F �Ns

(file size minus the amount of data transferred in slow-start),
and since the sending rate is capped at Wmax/⌧ , it takes
Ta = Na⌧/Wmax time until the transfer ends.

Case 2: Wmax > C⌧ . In this case, each congestion
epoch will have two phases.
Phase I: The methodology for obtaining N0 and T0 for Phase
I is the same for ACK-based and TSL-based variants. Given
a congestion window function w(t), we know that:

w(T0) = C⌧.

Using this relation, we can solve for T0: either directly (if
C⌧ < Wmax < Wm as in Figure 5b) or in terms of Wm (if
Wmax �Wm as in Figure 5a). In order to distinguish between
5b and 5a, we must first solve for Wm (discussed below). The
amount of data transferred in Phase I is:

N0 =

1

⌧

Z T0

0
w(t)dt.

Phase II: In Phase II, the sending rate is capped at C,
and the buffer begins to fill up. We first solve for Wm with
the hypothesis that 5a is the correct representation of our
congestion epoch. Once a value for Wm is obtained, this
hypothesis can be rejected or accepted by comparing Wm with
Wmax. However, how we solve for Wm depends on the type
of CA mechanism.

1) ACK-Based CA: The following ordinary differential
equation (ODE) describes the behavior for ACK-based TCP
variants:

@w

@t
=

@w

@A

@A

@t
(4)

where A represents an acknowledgement. Since the sending
rate is C, this is also the rate at which ACKs are being
received:

@A

@t
= C.
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Fig. 5: Example cwnd curves for one congestion avoidance epoch, with (a) and without (b) a Wmax constraint. Shaded areas
are the size of the buffer.

For every ACK, cwnd increases by a, so

@w

@A
= a.

Hence,

@w

@t
= Ca. (5)

The initial condition for this ODE is w(0) = C⌧ . The ODE
can now be solved to obtain a window function for Phase II,
w2(t).

2) TSL-Based CA: In a TSL-Based variant, cwnd grows
identically in Phase II as it does in Phase I. Hence, w2(t) =
w(t).

Now that we have w2(t), we make the following useful
observations:

w2(Tm) = Wm, (6)

Nm =

1

⌧

Z T
m

0
w2(t)dt, (7)

Nm � CTm � � = 0. (8)

Using (6), we can solve for the duration of Phase II, Tm, in
terms of Wm. The amount of data transferred in Phase II,
Nm, is given by (7), also in terms of Wm. Finally, we obtain
a value for Wm by finding the roots of (8) and selecting the
appropriate root (subject to the constraints that Wm 2 R and
Wm � C⌧ ).
Subcase 1: Wm  Wmax. In this case, we simply substitute
the value of Wm into the expressions for Tm, Nm, T0 and
N0. Then,

Na = N0 +Nm,

Ta = T0 + Tm.

Subcase 2: Wm > Wmax. In this case, 5b correctly depicts
the shape of the congestion epoch. Since Wmax is known, we

can solve for Tmax, the duration of sub-phase I of Phase II,
directly:

w2(Tmax) = Wmax.

The amount of data transferred during this sub-phase is

Nmax =

1

⌧

Z T
max

0
w2(t)dt.

The only unknown left is T� , the duration of sub-phase II,
and N� , the amount of data transferred during that interval.
However, we know that during sub-phase II, the sending rate
is capped at Wmax/⌧ , so

N� =

Wmax

⌧
T� .

We can solve the following equation for T� :

Nmax +N� � C(Tmax + T�)� � = 0.

Then,

Na = N0 +Nmax +N� ,

Ta = T0 + Tmax + T� .

C. Examples
We demonstrate the versatility of the generalized modelling

framework described in previous sections through three ex-
amples: STCP and H-TCP (both ACK-based variants) and
CUBIC (a TSL-based variant).

1) STCP: Since the additive increase factor for STCP is a
constant, the solution to the ODE in (5) is simply

w2(t) = C(at+ ⌧). (9)

Using this equation, we obtain:

Tm =

Wm � C⌧

Ca
,

Nm =

W 2
m � (C⌧)2

2Ca⌧
,

Wm = C⌧ +

p
2Ca⌧�.
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If Wm  Wmax, we have everything we need for Phase II.
Otherwise, we use Wmax instead of Wm in the expressions
for Tm and Nm; this gives us Tmax and Nmax:

Tmax =

Wmax � C⌧

Ca
,

Nmax =

W 2
max � (C⌧)2

2Ca⌧
.

Further,

T� =

�⌧

Wmax � C⌧
� Wmax � C⌧

2Ca
.

This completes the analysis for Phase II. We now analyze
Phase I by first constructing an ODE that describes cwnd
growth before the BDP is reached:
@w

@A
= a as in Phase II, but since S is below C,

@A

@t
=

w

⌧
.

The final ODE and its solution are:
@w

@t
=

w

⌧
a,

w(t) = geat/⌧ where g is a constant,
w(0) = bWm = g,

w(t) = bWmeat/⌧ . (10)

Next, we can solve for T0 and N0:

T0 =

⌧

a
ln

✓
C⌧

bWs

◆
,

N0 =

C⌧ � bWs

a
where

Ws = min (Wm,Wmax). (11)

This completes the analysis for STCP.
2) CUBIC: Because CUBIC is not ACK-based, there is no

need to derive two different window functions for its analysis:
w(t) grows as follows for both phases:

w(t) = c

 
t� 3

r
bWs

c

!3

+Ws (12)

where Ws is defined in (11), t is the time since the last
congestion event in unit of RTT, c is a scaling factor (usually
equal to 0.4), and b is a multiplicative decrease factor usually
equal to 0.2.

We present the closed-form solutions for the necessary
variables. Since CUBIC is TSL-based, it helps to think of T0

and Tm as points in time that delimit the phases, rather than
durations of phases (let T� remain as the duration of sub-phase
II of Phase II).

Tm =

3

r
bWm

c
,

Nm =

Wm

⌧
3

r
bWm

c

✓
1� b

4

◆
,

T0 =

3

r
C⌧ �Wm

c
+

3

r
bWm

c
.

Above, Nm is the amount of data transferred in the interval
[0, Tm]. Let N1 be the amount of data transferred in the
interval [T0, Tm].

N1 =

1

⌧

Z T
m

T0

w(t)dt = �1

⌧
3

r
C⌧ �Wm

c

✓
C⌧ + 3Wm

4

◆
,

N1 � C(Tm � T0)� � = 0.

The last equation above can be solved for Wm:

Wm = C⌧ � 4

s

c

✓
4�⌧

3

◆3

.

Since we know that Wm > C⌧ , we must take the negative
root of the fourth-root term above. If Wm is indeed less than
or equal to Wmax, then the sending rate is

S =

Ns + kNm

Ts + kTm
.

Otherwise, we use Wmax in the expressions for Tm and Nm

above to obtain Tmax and Nmax, respectively. Also,

T� =

� �Nmax � C 3

q
C⌧�W

max

c

W
max

⌧ � C
.

Finally, S is

S =

Ns + k (Nmax +N�)

Ts + k(Tmax + T�)
.

3) H-TCP: We do not present closed-form solutions for
H-TCP, since they are too complex; the majority of the
computations for this variant were performed using Matlab.
Since �

L is usually set to one second, for simplicity we use
it in the derivations below. We present the non-trivial case,
in which the transfer lasts for Ts + 1 seconds. For H-TCP,
let T0, Tm, Tmax, and T� be points in time, rather than phase
durations. For the first second of CA, H-TCP uses the increase
function shown in (1a). The cwnd function is then

w1(t) = bWm +

2(1� b)t

⌧
.

The amount of data transferred during this time is N�L ,

N�L =

1

⌧

Z T�L

0
w1(t)dt

where

T�L = min

✓
1s,

⌧(C⌧ � bWm)

2(1� b)

◆
.

This constraint on T�L is required because it may take less
than one second for w1(t) to reach C⌧ .

After the first second of CA, if w1(1) < C⌧ , H-TCP’s
increase function changes as shown in (1b). The cwnd function
changes to

w2(t) = w1(1) +
2(1� b)t

⌧

 
1 + 10(t� 1) +

✓
t� 1

2

◆2
!
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until cwnd reaches C⌧ at time T0. N0, the amount of data
transferred in the interval [0, T0], is:

N0 =

8
<

:

N�L , if T�L  1s,

N�L +

1

⌧

Z T0

1
w2(t)dt, otherwise.

T0 can be isolated from the relation w2(T0) = C⌧ . After T0

seconds have passed, the cwnd function changes again because
the transfer transitions into Phase II. This new function is
described by the ODE in (5), which uses the increase function
shown in (1a) or (1b) depending on the value of T�L :

@w = aC@t,

w3(t) = 2(1� b)C

Z
a(t)dt,

w3(T0) = C⌧ is the initial condition.

H-TCP then uses w3(t) for the rest of the congestion epoch,
which ends at time Tm. It is possible to solve for Tm in terms
of Wm using the relation w3(Tm) = Wm. The amount of data
transferred during Phase II is Nm:

Nm =

1

⌧

Z T
m

T0

w3(t)dt.

It is now possible to solve for Wm using the following
equation:

Nm � C(Tm � T0) = �.

If Wmax �Wm, then S is:

S =

Ns + k(N0 +Nm)

Ts + kTm
.

Otherwise, T� must be determined using a similar technique
used for STCP and S changed to:

S =

Ns + k
⇣
N0 +

1
⌧

R T
max

T0
w3(t)dt+

W
max

⌧ (T� � Tmax)

⌘

Ts + kT�

D. Parallel Flows
We now present a simple, yet effective modification to the

single-stream modelling framework presented above to accom-
modate multiple flows. The main idea is to model n parallel
flows as a single, more aggressive flow. The modifications are
as follows:
1) For any single-flow TSL-based CA cwnd function w(t), the
multiple-flow cwnd function is w(nt), where n is the number
of flows. For any single-flow ACK-based CA cwnd function,
the multiple-flow cwnd function is obtained by multiplying
the increase factor (as in the case of STCP) or the increase
function (as in the case of H-TCP) by n. The only exception
to this rule are cwnd functions in Phase II of ACK-based CA
variants, which must be left unchanged. For example, STCP’s
(10) becomes

w(t) = bWmeant/⌧

while (9) remains the same. The reason for this is that once an
ACK-based variant transitions into Phase II, ACKs continue

to arrive at a constant rate, so that there is no added advantage
of using multiple flows past the point where cwnd > BDP .
TSL-based variants, on the other hand, continue to grow the
aggregate cwnd at a rate approximately n times faster than
with a single flow, for as long as congestion is not detected.
2) Wmax gets scaled up by a factor of n. However, there must
be a hard constraint, WmaxH , on the aggregate cwnd, imposed
by memory and buffer limitations. Therefore,

Wmax = min (nWmax,WmaxH).

3) In slow-start, we keep the duration (Ts) the same as for
single flows, but multiply Ns by n. In addition, instead of
ssthresh, we use

thresh = min (ssthresh,C⌧/n,Wmax).

Interestingly, Crowcroft et al. have previously explored a
related idea, but as a means of delegating some flows a higher
fraction of the bandwidth on a network [25]. They propose a
controller, MulTCP, that attempts to increase the throughput
of a single flow by a factor of n by scaling the flow’s
additive increase parameter by the same amount . Simulations
showed that MulTCP does indeed achieve a sending rate of
approximately nS as long as n is not too large.

V. MODEL PERFORMANCE

Figure 6 shows throughput predictions for one, five, and
ten H-TCP streams (we also did this for two-four and six-nine
streams, not shown here). Measurement data obtained from the
10 GigE testbed is also presented in the figure and serves as
validation for the models. The predictions were obtained using
models presented in Section IV. Figure 7 shows the result of
using the multiple-stream models to predict the throughput
of one, two, four, six, eight, and ten parallel STCP flows (we
also did this for three, five, seven, and nine streams, not shown
here). Figure 8 shows the same for CUBIC.

We use different � and Wmax parameter values for predic-
tion in each dataset (although � and Wmax are kept constant
within a dataset). Note the odd ‘dip’ in throughput in Figure
7a for RTTs 11.8ms and 22.6ms: this is believed to be an
anomaly. Let average error be defined as follows:

E =

100

|RTTs|
X

r2RTTs

|Mr � Pr|
Mr

where Mr and Pr are the measured and predicted throughputs,
respectively, for RTT = r. The mean errors (averaged across
all RTTs and n 2 {1, . . . , 10}) for multiple-stream predictions
are as follows: 5.2% for H-TCP, 9.3% for STCP, and 4.5%
for CUBIC.

VI. CONCLUSION

In this work, we have derived a unifying scheme for ana-
lyzing single-stream and multiple-stream memory-to-memory
TCP transfers. We performed a detailed analysis for a diverse
set of TCP variants: STCP – a MIMD algorithm; CUBIC – a
non-ACK-based algorithm; and H-TCP – an adaptive AIMD
algorithm. The models that emerged from this analysis were
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(a) one stream

0 100 200 300 4000

2

4

6

8

10

RTT (msec)

Th
ro

ug
hp

ut
 (G

bi
ts

/s
ec

)

 

 

Measurement Avg
Measurement Median
Prediction

(b) five streams
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(c) ten streams

Fig. 6: Measurement averages and medians vs multiple-stream model predictions for H-TCP.
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(b) two streams
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(c) four streams
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(d) six streams
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(e) eight streams
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(f) ten streams

Fig. 7: Measurement averages and medians vs multiple-stream model predictions for STCP.

validated using an extensive set of measurements. The results
show that our models can be used to achieve accurate and reli-
able throughput predictions. The measurements independently
show that CUBIC and H-TCP consistently outperform STCP,
and the difference in performance becomes more pronounced
as the number of parallel flows grows. In future work, we
plan to expand the analysis to include (a) exogenous and
time-variant loss, (b) I/O constraints, and (d) considerations
of fairness and convergence.
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