
Integration of Planning with Recognition for Responsive Interaction
Using Classical Planners

Richard G. Freedman and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts
Amherst, MA 01003, USA

{freedman,shlomo}@cs.umass.edu

Abstract

Interaction between multiple agents requires some form of
coordination and a level of mutual awareness. When comput-
ers and robots interact with people, they need to recognize
human plans and react appropriately. Plan and goal recogni-
tion techniques have focused on identifying an agent’s task
given a sufficiently long action sequence. However, by the
time the plan and/or goal are recognized, it may be too late
for computing an interactive response. We propose an inte-
gration of planning with probabilistic recognition where each
method uses intermediate results from the other as a guid-
ing heuristic for recognition of the plan/goal in-progress as
well as the interactive response. We show that, like the used
recognition method, these interaction problems can be com-
piled into classical planning problems and solved using off-
the-shelf methods. In addition to the methodology, this paper
introduces problem categories for different forms of interac-
tion, an evaluation metric for the benefits from the interaction,
and extensions to the recognition algorithm that make its in-
termediate results more practical while the plan is in progress.

1 Introduction
In order for agents, whether they are robots, computers, or
humans, to interact with people in the world around them,
it is important that they are not just aware of the people’s
presence, but also able to understand what those people are
doing. In particular, interaction involving multiple agents
requires some form of coordination during plan execution.
In some cases, coordination could be achieved by com-
munication or executing a precise predetermined plan, but
other times interaction occurs spontaneously based solely
on observations (such as aiding someone who seems to be
struggling with a task). Maeda et al. (2014) collected data
from human teams performing tasks that enabled robots to
learn probabilistic motion primitives to mimic the interac-
tion. Their form of interaction is reactive, serving as a low-
level reflex to the partner’s motions. We instead focus on
responsive interaction, considering the partner’s activities at
a higher level and deciding how to act alongside her. Such
coordination must account for the uncertainty about the du-
ration and manner in which agents execute their actions.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The fields of plan and goal recognition have produced
methods for identifying an observed agent’s task or goal,
given her action sequence. This is often regarded as the
inverse of planning in which, given a set of goal condi-
tions representing a task, the agent aims to derive a se-
quence of actions that will achieve the conditions when per-
formed from a given initial state. Although planning was
one of the earliest research areas within artificial intelli-
gence, recognition was not investigated as rigorously un-
til recently, and the two problems were not initially in-
terconnected. Classical planning was focused on formulat-
ing tasks (Fikes and Nilsson 1971; McDermott et al. 1998;
Younes and Littman 2004) and developing reasoning and
search methods for solving these formulated problems (Hart,
Nilsson, and Raphael 1968; Hoffmann and Nebel 2001;
Helmert 2006), but early work in plan and goal recogni-
tion was motivated by extracting logical information from
text documents to derive explanations of the described tasks
(Kautz 1991; Charniak and Goldman 1991). The logical
databases of facts did not often resemble the formulations
used in classical planning until Geib and Steedman (2007)
provided a formal relation between natural language parsing
and plan recognition using hierarchical task networks (Erol,
Hendler, and Nau 1994).

Despite this past separation between planning and plan
recognition, the integration of these areas is crucial for in-
teracting well with others. Recognizing the plans and goals
of those with whom an agent is interacting provides a con-
text for the task and an expectation of how the other agents
are approaching it; planning within a similar context and
considering the other agents’ potential actions as constraints
allows the observing agent to develop a sequence of ac-
tions that work well with everyone else. This is not a one-
directional relationship because the planned actions may not
be exactly correct, or the other agents may vary their be-
haviors and invalidate the observed agent’s responding plan.
Thus plan recognition must still be performed to confirm the
validity of the current action choices and update the infor-
mation for potential replanning.

Some approaches to such interactive systems have been
developed, for example by creating action tables with pre-
calculated responses to recognized events (Koppula and
Saxena 2013; Kelley et al. 2012), specifying branching paths
of a plan where an interactive agent recognizes the path

taken and then plans for actions that will resolve missing
causal links for upcoming actions along the chosen path
(Levine and Williams 2014), or querying the observed agent
about hypothesized activities and then asking additional
questions about independent subtasks that it may perform
as assistance (Geib, Craensen, and Petrick 2016). The latter
two methods used both planning and plan recognition in tan-
dem, but both still have their limitations for the timing and
forms of interaction. Levine and Williams’s work only al-
lows interaction at specific moments of an orchestrated plan
assigned to the observed agent. This is reasonable for the
factory domains that motivate the approach, but general in-
teraction in daily life usually lacks a scripted procedure for
others to follow as a guide. Moreover, people often vary their
approach to a given task or interaction, requiring plan recog-
nition to be as general as possible and planning a response
to be as flexible as possible. Although Geib, Craensen, and
Petrick’s method allows this flexibility, the negotiation pro-
cess only enables the observing agent to do what it is per-
mitted, and these permitted tasks are subgoals that do not
directly interact with the observing agent. Although many
tasks have independent components, Levine and Williams
show that the interacting agent can also serve as an extra
set of hands during more complicated procedures, providing
tools and support without waiting for permission.

We introduce an approach with both these characteris-
tics by compiling intermediate results from Ramı́rez and
Geffner’s (2009; 2010) recognition algorithm into a new
planning problem. Their recognition approach, which in-
spired significant follow up work (Chen et al. 2013; Sohrabi,
Riabov, and Udrea 2016) and the metrics developed for goal
recognition design (Keren, Gal, and Karpas 2014; 2015), es-
tablished a simple transformation of plan and goal recog-
nition problems into classical planning problems for which
efficient off-the-shelf software is available. The outcome is
a probability distribution over a set of tasks. However, their
strong dependence on the observed agents’ optimality makes
the recognition most useful as a post-processing step when
some of the final actions are observed. This is usually too
late for effective interaction because the observed agents are
nearly finished performing their tasks. We propose an ex-
tension to create a foresight effect, making their work more
applicable to recognition of plans in progress, which is ar-
guably more useful for human computer/robot interaction.

We start with a formal discussion of the background and
recognition approach in Section 2. Then, Section 3 presents
a method for extracting information from the intermediate
results that allows us to formulate a planning problem that
determines a relevant interactive response from the current
state. Thus the observing agent may run a second pass of
the off-the-shelf planner to determine its own actions to per-
form during interaction. This section also defines different
types of responsive interaction and a metric for a response’s
amount of assistance. Section 4 discusses minor modifica-
tions to the recognition method that may reduce the effect
of the optimality bias, permitting foresight when the plan is
in-progress with fewer observations. We conclude with an
illustration of responsive interaction, a discussion of the ef-
fectiveness of the approach, and proposed future directions.

2 Background
A classical planning problem is defined by the tuple P =
〈F, I,A,G〉 where F is the set of propositional statements
that define the world, I ⊆ F is the initial state describ-
ing what is currently true in the world, G ⊆ F is the set
of goal conditions that must be satisfied to solve the task,
and a ∈ A is an action that the agent may perform to al-
ter the world’s state. Each action specifies these changes
via add and delete lists Add (a) , Del (a) ⊆ F that re-
spectively add and remove propositions from the current
state: a (s ⊆ F) = (s−Del (a)) ∪ Add (a). Each action
also has a set of preconditions Pre (a) ⊆ F that must
be true in the current state before the action is applicable,
and it often has a cost c (a) > 0. A solution to P is a se-
quence of actions a1, a2, . . . , ax ∈ A called a plan πG such
that G ⊆ ax (ax−1 (. . . a1 (I) . . .)) = πG (I) and for all
1 ≤ i ≤ x, Pre (ai) ⊆ ai−1 (ai−2 (. . . a1 (I) . . .)). As there
are usually multiple possible plans for a given problem, the
objective is to find an optimal plan π∗G with minimal cost:

c (π∗G) = min
πG

{
x∑
i=1

c (ai)

∣∣∣∣∣πG =
x

©
i=1

ai

}
where© is the composition over an action sequence.
Plan recognition model Ramı́rez and Geffner (2010) define
the plan recognition problem as triplet T = 〈P \G,G, O〉
whereP\G is the above planning problem without the spec-
ified goal conditions. Instead, there is a set of potential goal
conditions G ⊆ 2F \ ∅ (referred to as a domain to differen-
tiate itself from a library that describes specific states that
satisfy at least one set of goal conditions) for which one is
being approached via the strictly ordered (and possibly in-
complete) observed action sequenceO ∈ A|O| (Sohrabi, Ri-
abov, and Udrea (2016) alternatively observe fluents in the
sequence of states O ∈ F ∗). The objective is to determine
which G ∈ G the agent is trying to solve based on O, and
the probabilistic version determines a distribution over G of
the likelihood of each goal condition given the observations.
Notation and problem statement For clarity, we use a
slightly different notation to transform T into a planning
problem PT : FT = F ∪ {pi |0 ≤ i ≤ |O| }, IT = I ∪ {p0},
and AT is the same as A with modified AddT :

AddT (a) = Add (a) ∪ {pi−1 → pi |a = oi ∈ O} ,
where the new propositions pi represent the perception of
action oi ∈ A from sequence O. We include p0 in the ini-
tial state as the initiation of perception and then the new add
effects enforce the ordering of the observation sequence O.
For each set of goal conditions G ∈ G, a classical plan-
ner now solves for two modified sets of goal conditions.
G + O = G ∪

{
p|O|

}
must satisfy both the observations

and the goal, and G + O = G ∪
{
¬p|O|

}
must satisfy

the goal without all the observations. These new planning
problems of the form PG+O

T = 〈FT , IT , AT , G+O〉 and
PG+O
T =

〈
FT , IT , AT , G+O

〉
allow a comparison of how

much effort is necessary to solve the task with respect to O
because a rational agent is assumed to be optimal. That is,
adhering to the observed actions for a relevant task implies

that c
(
π∗G+O

)
< c

(
π∗
G+O

)
because O must be performed

to optimally solve G, but performing these actions for an ir-
relevant task instead implies that c

(
π∗G+O

)
> c

(
π∗
G+O

)
since G can be solved optimally without performing O.

The comparison is formally presented using Bayes’s Rule:

P (G ∈ G |O) = α−1P (O|G)P (G) ,

where α is the normalizing constant. Ramı́rez and Geffner
assume that the prior P (G) is uniform and the likelihood
P (O |G) is a Boltzman distribution over two states (captur-
ing the task relevance comparison above). Specifically,

P (O |G)=
∑
πG+O

P (πG+O |G) ≈ α′ −1exp
(
−β · c

(
π∗G+O

))
where α′ = exp

(
−β · c

(
π∗G+O

))
+exp

(
−β · c

(
π∗
G+O

))
is its normalization constant and β is a predefined constant.
Therefore, after using an off-the-shelf classical planner to
find π∗G+O and π∗

G+O
for each G ∈ G, we compute all the

likelihoods for the probability distribution over G.

3 Deriving an Interactive Response
Following the probabilistic recognition process described in
Section 2, the observing agent Ring may plan her own re-
sponses with respect to her predictions of the observed agent
Red. First, we use the distribution to extract the goal condi-
tions that Red most likely intends to solve.

Definition 1. The necessity of a proposition p with respect
to the set of tasks G is the expected probability that p is a
goal condition given a sequence of observed actionsO. That
is, N (p ∈ F |O) =

∑
G∈G P (G |O) · 1 (p ∈ G) where 1 is

the indicator function.

A necessity of 1 implies that all tasks with probability
> 0 require p as a goal condition and 0 implies that no pre-
dicted goals require p as a condition. Then for some thresh-
old τ , we define ĜRed = {p |N (p |O) ≥ τ } as the esti-
mated goal conditions that Red is trying to satisfy. Using
this estimation in addition to her own set of actions ARing
and current state Inow, we may define the responsive inter-
action problem as a centralized multiagent planning problem
PRing =

〈
F ′ ∪ FRed+Ring , I ′, ARed+Ring , GRing

〉
. Specif-

ically, we propose three forms of responsive interaction:

Definition 2. Assistive Interaction means that Ring’s goal
is to only help Red accomplish her goal. This planning
problem PAssistiveRing

is of the form F ′ = F , I ′ = Inow,
ARed+Ring = ARed ∪ {no-op} × ARing ∪ {no-op}, and

GRing = ĜRed .

The remaining forms of interaction indirectly use ĜRed
through a new fluent that denotes whetherRed accomplished
these conditions. We call this fluent success and add it
through the additional add effect success ∨

∧
g∈ĜRed

g →
success for each action in ARed , implying that solving the
goal conditions once is sufficient to complete the task. We
respectively call these modified sets FS and ASRed .

Definition 3. Independent Interaction means Ring has a
personal goalG′ to accomplish, but should avoid preventing
Red from accomplishing her own task at the same time. This
planning problem PIndependentRing

is of the form F ′ = FS ,

I ′ = Inow, ARed+Ring = (ARed ∪ {no-op})S × ARing ∪
{no-op}, and GRing = G′ ∪ {success}.
Definition 4. Adversarial Interaction means that Ring’s
goal is to prevent Red from achieving her goal for some du-
ration d. This planning problem PAdversarialRing

is of the form
F ′ = FS ∪ {0, 1, . . . , d}, I ′ = Inow ∪ {0}, ARed+Ring =

(ARed ∪ {no-op})S×
(
ARing ∪ {no-op}

)step
, andGRing =

{¬success, d} where {·}step applies an incremental add ef-
fect i→ (i+ 1), which can be done using fluents in PDDL.

For each form of interaction, Ring may use the same off-
the-shelf classical planner from the recognition step to de-
rive the joint optimal plan

π∗GRing
=

y

©
i=1

(
aRed,i, aRing,i

)
that Ring and Red should perform alongside each other.
However, this plan is optimistic since Red is acting inde-
pendently and she is not guaranteed to follow the joint plan
unless there is direct communication and Ring tells Red
what actions to perform. If there was communication, then
it would have been possible for Red to reveal G to Ring in
the first place; so we consider the case where direct commu-
nication between the agents is absent. Then Ring can only
perform her assigned actions from π∗GRing

, which we will
call

πRing =
y

©
i=1

aRing,i.

This introduces the need for replanning with new observa-
tions throughout the interaction; we defer identifying when
to replan to future work and currently assume that replan-
ning is only performed after Ring completes her actions and
the goal is not yet complete. There should be more obser-
vations available after performing πRing for more accurate
recognition, meaning that ĜRed should also become more
specific.

Adapting to Responsive Interaction
As Ring performs the actions in her plan πRing , new
changes to the state will occur that may affect Red’s
performance of π∗G. Changes from assistive interaction
are intended to facilitate Red’s ability to complete task G,
changes from independent interaction should not greatly
affect Red’s plan unless there is a resource conflict to
resolve, and changes from adversarial interaction should
inhibit Red from completing G. For all these categories,
we can run another execution of the off-the-shelf clas-
sical planner to measure the helpfulness of πRing using
a transformation similar to the one used for creating
PT , but instead simulating πRing in Red’s centralized
multi-agent planning problem. We define PRed←Ring =〈
FH , IH , ARed ∪ {no-op} ×ARing,H ∪ {no-op}H+ , G

〉

where FH = F ∪
{
pi
∣∣0 ≤ i ≤ y + 1 =

∣∣πRing ∣∣+ 1
}

,
IH = Inow ∪ {p0}, and {·}H and {·}H+ are the modified
sets of actions defined by:
• AddH (a) = AddH+ (a) =

Add (a) ∪
{
pi−1 → pi

∣∣a = πRing,i
}

• DelH (a) = DelH+ (a) = Del (a)

• PreH (a)=Pre (a)∪

(py ∧ py+1) ∨
∨

i∈{i|a=πRing,i }
(pi−1 ∧ ¬pi)

• PreH+ (a) = Pre (a) ∪

py ∨
∨

i∈{i|a=πRing,i }
(pi−1 ∧ ¬pi)

Thus the propositions pi now represent the performance

of each action in πRing , and the impossible precondition
(py ∧ py+1) forces Ring to execute no-ops once her plan is
executed — these no-ops may later become actions if replan-
ning is performed. Similar to the derivation of πRing , the
new actions that Red will perform as adaptation to Ring’s
responsive actions are

πRed←Ring =
z

©
i=1

aRed,i

where the optimal solution to PRed←Ring is

π∗G+πRing
=

z

©
i=1

(
aRed,i, aRing,i

)
.

Definition 5. The helpfulness of a responsive plan πRing
is the change in cost from agent Red acting on her
own to both agents working simultaneously H

(
πRing

)
=

c
(
π∗G,≥now

)
− c

(
πRed←Ring

)
. We assume c (π) = ∞ if π

does not exist.
Lemma 1. IfRing knowsG,Ring is being assistive or inde-
pendent, and there exists a non-invasive sequence of actions
such that Ring never affects a precondition of any action in
π∗G, then H

(
πRing

)
≥ 0.

Proof. (Sketch) Because Ring knows the correct goal,
GRing = G implying that the problems PRing and
PRed←Ring are identical (the additional fluents and action
modifications only ensure following the solution). Thus
π∗GRing

= π∗G+πRing
, and Ring could at least perform

the non-invasive sequence of actions as πRing while Red
performed her initial plan such that c

(
π∗G+πRing

)
≤

c
(
π∗G,≥now

)
. Hence H

(
πRing

)
≥ 0.

Lemma 1 shows that with a good prediction from recog-
nition, the observing agent will rarely hinder the observed
agent’s progress unless the domain and current state force
Ring to get in the way. Clearly this should not hold for ad-
versarial interaction because such an agent wants to provide
as little help as possible. However, it is more difficult to guar-
antee not being helpful due to the fact that there is usually
more than one (optimal) plan. Thus Red could perform an-
other sequence of actions that is not ‘blocked’ by πRing and
still solve the task.

Lemma 2. If Ring knows G, Ring is being adversarial, and
there exists an invasive sequence of actions such that Ring
always affects a precondition of some action in every possi-
ble π∗G, then H

(
πRing

)
≤ 0.

Theorem 1. −∞ < H
(
πRing

)
≤ c (π∗G)− c

(
π∗Red+Ring

)
where π∗Red+Ring is the optimal plan that solves the central-
ized multi-agent planning problem

〈
F,ARed+Ring , I, G

〉
and ARed+Ring = ARed ∪ {no-op} ×ARing ∪ {no-op}.

Proof. The lower bound follows from Lemma 2 because
Ring could perform some action that permanently prevents
Red from satisfying the preconditions of all actions whose
effects satisfy one of G’s conditions. The upper bound ex-
tends from the proof of Lemma 1; the best case is that both
agents work together from the beginning (even if that means
Ring does nothing). As each time step progresses, the cost
for both the single-agent and multi-agent will decrease uni-
formly so that c (π∗G) − c

(
π∗Red+Ring

)
= c

(
π∗G,≥now

)
−

c
(
π∗Red+Ring,≥now

)
.

Computational Complexity
For all the forms of responsive interaction, we are running
the recognition algorithm that simulates a classical plan-
ner twice per possible goal, summing over the possible
goals’ propositions to compute necessities, and then solving
a new planning problem that is generated from the neces-
sities. Hence the complexity is similar for all three forms.
As classical planning is PSPACE-complete (Bylander 1994)
and the computation of necessities/creation of a new plan-
ning goal can be done with negligible memory, their space
complexity is PSPACE-complete. The runtime complexity
is O ((2 |G|+ 1) · C) = O (|G| · C) where C is the run-
time complexity of the chosen off-the-shelf classical plan-
ner, which should be far greater than the time used for sum-
ming and creating a new goal.

4 Foresight for In-Progress Recognition
All the definitions and methods for responsive interaction
in Section 3 rely on the predictions from Ramı́rez and
Geffner’s (2010) recognition algorithm. While the recog-
nized distributions are shown to be very effective in their
experiments, the performance was best when a reasonable
percentage of the actions were observed from the agent’s
(possibly optimal) plan execution. This is because a greater
number of observations increases the probability of includ-
ing one of the later actions taken in the sequence. Although
the earlier and intermediate actions of a plan play a role in
the recognition algorithm, the later ones impose constraints
near the goal-satisfying states that will require an agent to go
out of her way to follow/avoid the observed action(s). This
distinguishing action is what motivates goal recognition de-
sign (Keren, Gal, and Karpas 2014), revealing the observed
agent’s intentions as early as possible.

The influence of the most-recent observation is visually
evident in Figs. 1 and 2 of Ramı́rez and Geffner’s (2010)

work — the values of P (G) for each step of a noisy ran-
dom walk produced a plot whose goal location(s) with the
greatest probability was(were) closest to the current location
of the agent at that time step. Thus the approach is greedy
in the sense that the observed agent’s optimality assump-
tion motivates finishing the task as soon as possible. This
creates a bias towards recognizing locally short-term plans
and avoiding tasks that require a greater cost. The bias is
given further emphasis in the extension by Sohrabi, Riabov,
and Udrea (2016) since their adapted function for P (O|G)
uses a weighted value that punishes goals with more unsat-
isfied conditions during the simulation of the observation
sequence, including goals that could not yet be completed.
These features are ideal for post-processing when it is as-
sumed that the observed agent has already completed its
plan and satisfied the goal.

Thus, for recognition while the plan’s execution is in-
progress, effective ways to apply foresight and recognize
long-term plans earlier is necessary in order to properly pre-
dict more costly tasks. Otherwise, it may be too late to de-
termine a proper response and/or interact. We propose mi-
nor extensions to the computations of the prior used for the
Bayes’ Rule computation to accomplish this.

Dynamic Prior Using Survival Analysis
The purpose of the prior in Bayesian statistics is to introduce
an initial belief, biasing one’s expectations of the posterior
distribution. The Bayesian update process, keeping track of
the observed outcomes and adjusting the prior based on the
counts, eventually converges to the true distribution. A more
accurate initial prior improves the convergence rate. Using a
uniform prior is reasonable for test domains that lack actual
users to whom the method can adapt, but this also has the
price of always assuming that every task is equally likely to
be performed. Thus the likelihood has all the influence in
the distribution over G, but it was designed to favor the most
optimal plans in this algorithm’s case.

We suggest counter-balancing this greedy likelihood with
a prior that is biased towards more costly tasks that would
typically be ignored. This is most important at the beginning
of the observation process when enough actions cannot be
taken to approach any of the more costly tasks, but it is not
beneficial to continue to favor long-term plans after there are
enough observations to identify with confidence the task the
agent is performing, reversing the direction of the bias to-
wards future tasks when the current ones are the most likely.
Hence we propose a dynamic prior that favors long-term
tasks with greater-cost optimal plans when the plan execu-
tion time/resource consumed t is lesser and converges to the
true prior P (G) as t increases, allowing the likelihood’s op-
timality assumption to take precedence. To do this, we re-
vise the probabilty formulation to include t for a joint dis-
tribution over the observed agent’s task G ∈ G and resource
consumption t ∈ N ∪ {0}:

P (G|O, t) = α−1P (O|G, t)P (G|t)
where P (O|G, t) = P (O≤t |G) is the likelihood for the ob-
servations seen so far and P (G|t) = α′′ −1P (t|G)P (G) is
the prior over the joint distribution. Although we let t be the

length of the optimal simulated plan that emulates O≤t in
order (so t = |O| if no observations are missing), t may be
any resource that can define cost such as clock time (for du-
rative actions and real-time problems), distance, energy con-
sumed, etc.; plan length simply assumes uniform action cost.
Then we only need to define the newly introduced probabil-
ity P (t|G), which requires survival analysis.
Definition 6. A plan π that successfully solves a planning
problem with goal G is in-progress at step i if G’s condi-
tions are not yet satisfied after performing π≤i. If π≥j for
j < |π| is no longer in-progress, then π≥j is maintaining.

We only consider plans without any maintaining actions.
Then a plan is surviving as long as it is in-progress, and
it ceases execution once the goal conditions are satisfied.
Clearly any plan for some goal G ∈ G must survive at least
c (π∗G) (such as |π∗G| actions) because the optimal solution is
the least cost needed to complete the plan. Then, depending
on the observed agent’s optimality, we will observe some
additional discrete amount k spent during the plan’s execu-
tion. As this is counting a finite quantity of events (additional
amount of discrete resources/executed actions) within a spe-
cific time window (one plan execution), we assume that the
probability of Red’s plan’s cost to solve G is

P (c (π) = t |G) =

{
0 if t < c (π∗G)

(λ+1)t−c(π
∗
G)+1

(t−c(π∗
G)+1)!·(eλ+1−1)

otherwise

The Poisson distribution Poisson (k ∈ N ∪ {0} ;λ ∈ N) =(
λk
)
/
(
k!eλ

)
is used for situations involving counts of

events over a fixed time window where the parameter λ is the
expected count and standard deviation. So a usually-optimal
agent should have parameter λ = 0 while a less optimal
agent should have a greater λ value, spending an expected
cost of (c (π∗G) + λ). However, the Poisson distribution can-
not allow λ = 0 since the numerator would always be 0;
thus we used the positive Poisson distribution

Poisson+ (k ∈ N;λ ∈ N) =
λk

k! (eλ − 1)

(Singh 1978) in the ‘otherwise’ case above and incremented
the values k = (t− c (π∗G)) and λ by 1 to handle the re-
moved 0. Besides the posterior updating prior P (G), λ can
be updated as an agent is observed through multiple trials or
interactions.

Survival analysis is an area of statistics that determines
the probability that something continues to live with respect
to a life-expectancy distribution. Thus, given the piecewise
equation above as the life-expectancy of a plan solving goal
G, the probability of the plan’s survival is relative to how
likely it is still in-progress for the current cost t:

P (t|G) = P (c (π) ≥ t |G) = 1− cdft (c (π) |G)

where cdft is the cumulative distribution func-
tion from 0 to t. The hazard function h (t) =
P (c (π) = t |G) /P (c (π) ≥ t|G) also tells us the like-
lihood that the plan will terminate execution at time t,
which could be useful for reasoning about whether the
observed agent is almost finished with her task.

H

T

E

R

L

S

M

O

F

W

B

A

HER (6, 2) FATHER (18, 8) FOSTER (12, 6)
OTHER (16, 6) LATHER (18, 8) HATER (12, 6)
BOTHER (22, 10) MASTER (16,8) LATER (12, 6)
MOTHER (18, 6) FASTER (16, 8) WATER (12, 6)

H

T

E

RL

S

M

O

F

W

B

A H

T

E

RL

S

M

O

F W

B

A

Figure 1: (Left) Initial state and goals with c (π∗
G) and c

(
π∗
Red+Ring

)
. (Right) States where assistive interaction begins and ends.

0 2 4 6 8 10 12 14 16
Time Step t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ili

ty
 P

(G
|O

,t)

Recognition Over Time, Epsilon = 0

0 2 4 6 8 10 12 14 16
Time Step t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ili

ty
 P

(G
|O

,t)

Recognition Over Time, Epsilon = 1

0 2 4 6 8 10 12 14 16
Time Step t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 P

(G
|O

,t)

Recognition Over Time, Epsilon = 3

0 2 4 6 8 10 12 14 16
Time Step t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 P

(G
|O

,t)

Recognition Over Time, Epsilon = 6

Figure 2: Recognized distribution over G as each action of π∗
G is taken.

Instead of using the hazard function, we will use just the
survival function with foresight to advance the resource con-
sumption. When computing the likelihoods, we can find the
subplan with the fewest consumed resources to identify a
current value for t. Then, because the likelihood will prefer
goals that will not consume too many more resources than
t, we compute the prior at future time t+ ε for some ε ≥ 0.
If there is enough variation between c (π∗G) for each G ∈ G,
then this will bypass the goals preferred by the likelihood
and contribute probability mass to the long-term goals that
cannot yet be achieved. Specific assignments for ε will vary
by many factors such as the variation of the goals’ optimal
plan costs, time already elapsed (if t becomes too large, then
all the goals will be surpassed for a more uniform prior), and
preferred amount of look-ahead for interactive purposes.

5 Illustrated Example
To demonstrate the process of responsive interaction, we
create a problem based on the Block-words domain from
Ramı́rez and Geffner’s (2010) dataset1. Similar to the tra-
ditional Blocksworld, each block contains a letter so that
stacks of blocks may spell words from top-to-bottom. Fig. 1
illustrates the initial state and lists the 12 possible goals G
for our example. To extend Block-words for two interacting
agents, all actions in ARed+Ring are performed in parallel
when different blocks are involved, but actions that share
blocks are modified to account for joint actions: putting
down the same block that is picked up is considered a han-
dover, and two consecutive blocks may be picked up or put
down in a stack simultaneously. We omit pairs of actions that

1Note that the legacy code borrowed for our implementation
does not scale to cases larger than the problems used in the In-
ternational Planning Competition for which it was designed. The
competition’s problems turned out to be too limited to illustrate our
work due to the types of problems available (grid world-like prob-
lems do not introduce many interaction opportunities) and their
typical solution lengths (Ring would not have sufficient informa-
tion to interact until Red completes the short tasks).

have race conditions, such as placing a block on top of one
that is being picked up.

We walk through a single example of assistive interac-
tion and assign values to parameters as needed; adversarial
and independent perspectives are presented afterwards as al-
ternative interactions. We assume that Ring only computes
one responsive plan without replanning; so the decision of
when to join can be evaluated as well. To begin, we imple-
mented our proposed dynamic prior extension to Ramı́rez
and Geffner’s (2010) probabilistic recognition algorithm and
used the state-of-the-art Fast-Downward planner (Helmert
2006) to solve the compiled problems. Then, Red uses the
planner to find an initial optimal plan π∗G to solve her goal
G: spelling MASTER. As Red performs each action at in
π∗G,Ring observes her and then computes P (G |O, t) where
O≤t = π∗G,≤t. These recognition results for several choices
of foresight parameter ε are shown in Fig. 2. We observe
marginal differences for smaller ε, but larger ε exaggerate
the probability of more costly goals as each action is taken.
We will use ε = 3 because it maximizes the necessities,
but the threshold τ = 0.3 (slightly less than the greatest
probability given to a goal at the beginning) yields the same
propositions for all ε ≤ 5.

Because all the goals share the same last two letters ER,
we note that the necessity for ‘stack E on top of R’ and ‘place
R on the table’ are always 1. So for any τ , these two condi-
tions will be part of ĜRed . When the distribution is more
uniform at the earlier timesteps, any goal condition that fre-
quently appears in G has greater necessity. For example, ob-
serving the first two actions (Red takes H off of T and places
it on the table) does not disambiguate any of the goals so that
the conditions ‘stack H on top of E’ and ‘stack T on top of E’
both have necessity 0.5; half the goals end in HER and the
other half end in TER. However, both conditions cannot be
true simultaneously so that ĜRed = GRing has no solution
and Ring is unable to join in yet. After performing the sixth
action (Red places S on top of T), the recognition algorithm
identifies MASTER and FASTER as the most likely candi-

H

T

E

RL

S

M

O

F

W

B

A

State two actions after the assistive inter-
action began, but with adversary Ring .
Stacking S on top of M undid two sat-
isfied necessities while Red was begin-
ning to uncover the A block.

Figure 3: Illustration of the adversarial perspective.

dates and their shared goal conditions become the only ones
with sufficient necessity — greater ε also deem their con-
flicting conditions necessary. The red lines in Fig. 1 show
the conditions that are already satisfied, and the green dot-
ted lines show the unsolved condition: ‘stack A on top of
S.’ πRing and πRed←Ring complete this together in 4 steps
rather thanRed completing it alone in 8 steps.Red then com-
pletes G by stacking M on top. Hence H

(
πRing

)
= 4, indi-

cating a helpful assistance in solving the task.

Adversarial Perspective
In the case that this example interaction was adversarial,
then we must consider the scenario for several durations
d. Recall that Ring’s goal is to ensure that G is not com-
pleted within d actions after the current time step. Thus, us-
ing the same example and again waiting until the sixth ac-
tion is performed, Ring may easily accomplish its goal with
any arbitrary plan if d < 2 and almost any arbitrary plan if
d < 10 because the quickest Red may accomplish the task
is c (π∗G) = 16 alone and c

(
π∗Red+Ring

)
= 8 with an assis-

tive partner. We emphasize ‘almost’ because any πRing that
helps to spell G’s goal word allows the goal to be completed
within the reduced duration if two agents can solve the task
within that time.

However, once d is great enough that Red can solve the
plan on her own, then Ring has to use plans that prevent at
least one ofG’s conditions from being satisfied at every time
step. For our Block-words example, there is a ‘trivial plan’
πhoard
Ring

where Ring picks up one of the required blocks, such
as S, and then performs no-ops indefinitely. Red is unable
to obtain the block held by Ring and she can never com-

plete the task; thusH
(
πhoard
Ring

)
=−∞. As most off-the-shelf

classical planners apply search methods and do not use such
logic, we instead expect πRing to continue to pick up and re-
arrange the blocks that will undoRed’s progress. Such πRing
will usually have a finite negative helpfulness so that it is
possible to find a (less optimal) solution πRed←Ring . Fig. 3
displays the state after unstacking S from the goal word and
stacking it on top of M, but Red can still complete the task if
this is the entire πRing ; thus Ring will eventually need to re-
plan and resume taking the tower of blocks apart. This back-
and-forth interaction of Ring’s deconstruction and Red’s re-
assembly emphasizes the need for planning and recognition
to continuously update each other.

Independent Perspective
Lastly, let us consider two independent interactions where
G′1 is to spell the word HOWL and G′2 is to spell the word

State four actions after assistive interaction began, but with indep-

H

T

E

RL

S

MO

F W

BA

endent Ring . Red does not use
the framework and thus covers
H with F, but Ring also moves
M instead of helping Red un-
cover A as she did during assis-
tive interaction.

Figure 4: Illustration of independent perspective for G1.

WOLF, both using the same blocks. G′1 is the simpler case
because none of its blocks are involved in the necessities af-
ter Red performs the first six actions. Thus πRing will even-
tually pick up W and put it on top of L, which helps Red by
reducing the number of actions needed to reach the A block.
Then πRing will later pick up O in order to place it on top of
W, but Ring will first need to move the M block. Ring will
not place M on top of the stack of blocks spelling G’s goal
word because that will prevent success from becoming true
(see Fig. 4) unless A was already put on top of S. Likewise,
if Ring had to move other blocks afterwards (though, in this
case, she just picks up H and places it on top of O), then she
would not place them on top of M because ĜRed contains a
condition to leave nothing on top of the M block (in case G
spells MASTER).

Because ĜRed also contains a condition to leave noth-
ing on top of the F block in case G spells FASTER, G′2 is
more difficult to accomplish. The most Ring can do is un-
cover the H, O, and W blocks and start to stack them. How-
ever, stacking them is not practical because she will have to
undo the stack in order to place them on top of F later. Thus
more observations may be necessary beforeRing interacts in
this case so that she can later update ĜRed and confirm that
‘stack nothing on top of F’ is not a necessity. Unless Red
stacks a block on top of F, then this would unfortunately re-
quireRing to wait untilG is already complete due to the am-
biguity of the two goals. This presents an interesting path of
future work where both agents are simultaneously observing
each other for independent interaction.

6 Discussion
Many interactive systems currently employ recognition and
planning without leveraging the potential benefits of inte-
grating the two processes. However, machines need to be
versatile when cooperating with different people and can-
not rely on strong assumptions about their behavior. Thus, it
is necessary to consider the integration of recognizing gen-
eral tasks and responding flexibly with a generated plan. We
propose a novel framework for such a system that extends
an existing planning-compilation approach to probabilistic
recognition. The introduction of a dynamic prior allows the
distribution over tasks to be less greedy and consider long-
term goals for foresight of how to respond. This updated dis-
tribution is used to identify the necessity of goal conditions
so that, depending on the agent’s form of interaction, she
may create a planning problem whose solution is a response
to the currently recognized task(s). We also introduce help-
fulness as a means of quantifying the effectiveness of the re-

sponse. Lastly, we explore several examples of interaction to
investigate the trade-offs for parameter choices and their ef-
fects on the integrated process. This provides initial insights
into responsive interaction, which can facilitate the interac-
tion between agents in a wide range of applications.

This work opens up many new research avenues for fur-
ther exploration, ranging from simple tasks such as identi-
fying conditions for parameter value choices to more com-
plicated challenges such as identifying when to replan. Per-
forming recognition during plan execution will update the
necessary goal conditions with more observations and iden-
tify whether the observed agent’s actions are straying from
expectation. While our interaction framework works with
plans in-progress, calling off-the-shelf planners multiple
times per iteration is a significant drawback, particularly in
settings that require real-time interaction. In future work,
we plan to examine ways to improve scalability by exploit-
ing the similarity in search spaces between multiple planner
calls (Davidov and Markovitch 2006), by using landmarks
for generating local intermediate plans (Hoffmann, Porte-
ous, and Sebastia 2004), and by considering the possible
role of explicit communication (Goldman, Allen, and Zilber-
stein 2007). Another direction is to extend the work to han-
dle sensor information for observing actions rather than re-
lying on high-level descriptions. With these improvements,
responsive interaction will be possible to compute in realis-
tic settings in near real-time, enhancing the applicability of
the framework to complex interactions with humans.

Acknowledgments
We thank the anonymous reviewers for their feedback and
Alex Fukunaga for early discussions that inspired this work
while the first author collaborated with him on NSF grant
1515258. This work was supported by NSF grant 1405550.

References
Bylander, T. 1994. The computational complexity of propositional
STRIPS planning. Artificial Intelligence 69(1-2):165–204.
Charniak, E., and Goldman, R. 1991. Probabilistic abduction for
plan recognition. Technical Report CS-91-12, Brown University,
Providence, RI, USA.
Chen, J.; Chen, Y.; Xu, Y.; Huang, R.; and Chen, Z. 2013. A plan-
ning approach to the recognition of multiple goals. International
Journal of Intelligent Systems 28(3):203–216.
Davidov, D., and Markovitch, S. 2006. Multiple-goal heuristic
search. Journal of Artificial Intelligence Research 26:417–451.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning: Com-
plexity and expressivity. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, 1123–1128.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving. In Pro-
ceedings of the Second International Joint Conference on Artificial
Intelligence, 608–620.
Geib, C. W., and Steedman, M. 2007. On natural language pro-
cessing and plan recognition. In Proceedings of the Twentieth In-
ternational Joint Conference on Artificial Intelligence, 1612–1617.
Geib, C.; Craensen, B.; and Petrick, R. P. A. 2016. Combining
plan recognition, goal reasoning, and planning for cooperative task
behavior. In Fourth IJCAI Workshop on Goal Reasoning, 1–8.

Goldman, C. V.; Allen, M.; and Zilberstein, S. 2007. Learning to
communicate in a decentralized environment. Autonomous Agents
and Multi-Agent Systems 15(1):47–90.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–107.
Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. Journal of Artificial Intelligence Research
22(1):215–278.
Kautz, H. A. 1991. A formal theory of plan recognition and its
implementation. In Allen, J. F.; Kautz, H. A.; Pelavin, R. N.; and
Tenenberg, J. D., eds., Reasoning About Plans. San Francisco, CA,
USA: Morgan Kaufmann. 69–125.
Kelley, R.; Tavakkoli, A.; King, C.; Ambardekar, A.; Nicolescu,
M.; and Nicolescu, M. 2012. Context-based bayesian intent recog-
nition. IEEE Transactions on Autonomous Mental Development
4(3):215–225.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition design.
In Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling, 154–162.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition de-
sign for non-optimal agents. In Proceedings of the Twenty-Ninth
International Conference on Artificial Intelligence, 3298–3304.
Koppula, H. S., and Saxena, A. 2013. Anticipating human ac-
tivities using object affordances for reactive robotic response. In
Proceedings of Robotics: Science and Systems, 2071–2078.
Levine, S., and Williams, B. 2014. Concurrent plan recogni-
tion and execution for human-robot teams. In Proceedings of the
Twenty-Fourth International Conference on Automated Planning
and Scheduling, 490–498.
Maeda, G.; Ewerton, M.; Lioutikov, R.; Ben Amor, H.; Peters, J.;
and Neumann, G. 2014. Learning interaction for collaborative
tasks with probabilistic movement primitives. In Proceedings of
the Fourteenth IEEE-RAS International Conference on Humanoid
Robots, 527–534.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The plan-
ning domain definition language – Version 1.2. Technical Report
CVC TR-98-003, Yale Center for Computational Vision and Con-
trol, New Haven, CT, USA.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proceedings of the Twenty-first International Joint Conference
on Artificial Intelligence, 1778–1783.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recogni-
tion using off-the-shelf classical planners. In Proceedings of the
Twenty-Fourth AAAI Conf. on Artificial Intelligence, 1121–1126.
Singh, J. 1978. A characterization of positive poisson distribution
and its statistical application. SIAM Journal on Applied Mathemat-
ics 34(3):545–548.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recognition
as planning revisited. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, 3258–3264.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An exten-
sion to PDDL for expressing planning domains with probabilistic
effects. Technical Report CMU-CS-04-162, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA.

