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Abstract—This paper considers a data-driven framework
to model target selection strategies using runtime kinematic
parameters of individual patients. These models can be used
to select new exercise targets that conform with the deci-
sion criteria of the therapist. We present the results from
a single-subject case study with a manually written target
selection function. Motivated by promising results, we propose
a framework to learning customized/adaptive therapy models
for individual patients. Through the data collected from a
normally functioning adult, we demonstrate that it is feasible
to model varying strategies from the demonstration of target
selection.

I. INTRODUCTION

In the past several decades, research interests in the
use of robots in rehabilitation has increased significantly
[1]. A common approach is to construct special-purpose
robots and devise assistive motor controllers. They provide
assistance for low functioning patients to complete otherwise
unattainable movements while exercise targets are displayed
on computer screens. These robots, however, rely on external
software programs for generating exercise targets that could
meet the needs of individual patients and adapt to the
changes in the patient’s motor performance.

Often exercise targets are embedded in entertaining
games and motivate the patients to engage in exercise
longer. In most of these approaches, patients go through
different difficulty levels to essentially achieve higher perfor-
mance [2]–[4]. However, many of these approaches consider
generic games where exercise targets in each difficulty level
are pre-programmed independent of the specific symptoms
and needs of individual patients. The patient’s performance
is often assessed over an entire game rather than individual
exercise targets. Hence, these games may neither optimally
meet the needs of each individual patient nor readily adapt
to the changing performance of the patients.

Addressing this, some investigate enabling therapists
to have more control over customizing/adapting exercise
targets. In one case, given different sets of targets, therapists
can specify the thresholds and transition logic to switch
among different difficulty levels [5]. However, the therapists
are still forced to work with pre-determined sets of exercise
targets. In another case, therapists can customize exercise
targets directly, but this approach requires frequent interven-
tion of therapists to achieve adaptation because the targets
are encoded in the Cartesian space [6].

Consequently, it is necessary to validate the efficacy of
the target selection approach and to investigate a means to
model the therapist’s intention in the selection of exercise
targets through a more autonomous way of increasing the
control and reducing the burden of the therapists. Section II
reports the results from a single-subject case study and
demonstrates that a patient can benefit even from a manually-
written simple target selection function. In order to automate
the process, we propose a learning framework in Section III
and then introduce one way of implementing the framework
in Section IV. The learned models may be used to administer
therapy sessions by robots as well as computer games.
Lastly, we summarize and conclude in Section V.

II. EFFICACY OF ADAPTIVE THERAPY STRATEGIES

We advocate adaptive selection of individual exercise
targets based on the performance of individual patients. In
this section, we first validate the efficacy of adaptive therapy
strategies in both standardized assessment tools, e.g. Fugl-
Meyer Assessment (FMA), and in task-specific measures. A
general-purpose service robot is used for the current study
with residential use in mind. We adopt the inclusion criteria
and therapeutic tasks from Jung et al. [6]. For the completion
of the work in this paper, we reproduce them below.

A. Method

1) Participant: The post-stroke patient was recruited
based on the following inclusion criteria: the participant
should be at least 18 years old and had a stroke at least
6 months prior to enrollment. The assessed impairment of
upper extremity motor function should score between 7 and
38 (out of 66) on the FMA. The recruited subject was a
73-year old male who experienced a stroke 10.5 years prior
to enrollment and presented with hemiparesis. He scored 32
(out of 66) on the FMA at the baseline test.

2) Study Design: Fig. 1 outlines our single-subject case
study design. Each condition consisted of fifteen sessions for
five weeks. Sessions were performed on Mondays, Wednes-
days, and Fridays unless there were scheduling conflicts.
Each session consisted of three tasks which were performed
for five minutes each. Between tasks, the patient took a break
of approximately five minutes.

1) Task 1. The patient held two hands together and
stretched his arms to reach for the robot’s hand
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Fig. 1. The design of a single-subject case study used in this paper

(a) Robot presenting a target (b) Client lifting the arm

Fig. 2. A research assistant demonstrating one of the physical therapy tasks
that is determined after discussion between the patient and the therapist
(images reproduced from [6] with permission)

which was presented at various points within his
reachable workspace. During the exercise, his intact
arm assisted the impaired arm which enabled a
larger range of motion.

2) Task 2. The patient lifted his impaired arm to touch
the robot’s hand which was presented above his
hand (Fig. 2a & 2b). Since the task was challeng-
ing, we considered it successful even if he attained
the presented target positions by only lifting his
forearm rather than his whole arm.

3) Task 3. The patient lifted and rotated the impaired
forearm to touch the robot’s hand which was pre-
sented above his hand. This may appear similar to
Task 2, but the recruited muscles are different.

3) Procedure: The procedure was adapted from Jung et
al. [7], [8]. Before the start of the study, the patient, the
therapist, and the technicians gathered along with the robot.
The therapist assessed the patient’s motor capability for the
three tasks to determine the initial sets of target positions
(P1,P2,P3) as well as the arm postures that were suitable
to induce desired therapeutic arm movements. The origin
of the frame was placed at the patient’s center of mass
(COM). Since it was difficult to track the COM exactly,
we approximated it by manually measuring the position of
the second sacral vertebrae on the pelvis, and it was roughly
controlled throughout the study by constraining the position
of the chair and the sitting position of the patient.

To determine the initial set of exercise targets that is
therapeutic and sufficiently challenging for the patient, the
therapist controlled the positions of the robot hands to
determine ideal reaching targets and asked the patient to
reach and touch the robot’s hand. Based on the therapist’s
observation and the statement of the patient, desirable targets
were added to Pi for each task i. Each set Pi consisted of
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(b) The distance of one of the exercise targets (blue line, left
axis) and the time taken by the patient to attain it (green
circle/line, right axis) as the target position is adjusted over
sessions

Fig. 3. Selected results of an exercise target over trials (best viewed in
color)

Ni target positions in the Cartesian space for each task.

Pi = {pj |1 ≤ j ≤ Ni}

The therapist then instructed the technicians in the appropri-
ate adaptation metric for each Cartesian position:

pj := pj +


pj

|pj |k when increasing the difficulty
0 when keeping the difficulty
− pj

2|pj |k when reducing the difficulty

Each target’s position was moved based on the performance
of the patient when reaching for it. Using the equation
above, the difficulty of each target was increased when the
patient successfully attained the given target position in three
consecutive sessions. The difficulty was reduced when the
patient failed to attain the given target position. Additionally,
the patient was allowed to request to change the difficulty of
each target. In this experiment, the therapist chose k = 0.05
(m). The robot was programmed to present the exercise
targets repeatedly in sequence for the predefined duration.

4) Measures: The FMA score was used to measure the
patient’s overall performance change before and after the



TABLE I. THE THERAPEUTIC OUTCOMES MEASURED USING
STANDARDIZED ASSESSMENT TOOLS

Tests Baseline Test Maintenance

FMA 32 34 32

TABLE II. PERFORMANCE IMPROVEMENT

Task Initial/Final Mean Distance (m) Change (%) t-test w/ α = 0.01

1 0.76 / 0.91 +20 p < 0.01, df = 84

2 0.62 / 0.74 +19 p < 0.01, df = 80

3 0.65 / 0.74 +14 p < 0.01, df = 90

study. For a more detailed analysis, we employed two task-
specific measures as well. First, we collected the mean
distances of exercise targets in each session for each task
to track the change in average distance that the patient
could reach over sessions. Second, we collected the average
distance of individual targets to the patient and the duration
that the patient needed to reach them to track how fast the
patient could attain the target over multiple sessions as its
position was adjusted.

B. Results

After the completion of the five-week study, the pa-
tient scored 34 points in the FMA showing 2 points of
improvement in comparison to the baseline (TABLE I). The
improvement is observed in the task-specific data as well.
Fig. 3a shows the overall trend in the average distance
between exercise targets and the patient over sessions for
all three tasks. Comparing the average distances in the first
and the last sessions showed that the patient is able to reach
farther, conforming to the finding in Jung et al. [8]. We
ran a one-tail t-test with α = 0.01 and observed that all
the improvements are statistically significant with p < 0.01
for all three tasks (TABLE II). Fig. 3b shows the average
distance of an individual target as well as the average time
taken by the patient to achieve the target as its position is
adjusted over sessions. The target position was adjusted after
sessions 10 and 13, marked by the red vertical lines. Between
the adjustments, a decreasing pattern in durations can be
observed which conforms with the finding in Jung et al. [7].

Collectively, these results suggest that the patient can
achieve significant motor performance by practicing cus-
tomized and adaptive exercise targets, which suggests the
importance of selecting cutomized/adaptive exercise targets.
However, the model is written manually making it difficult
to capture the detailed strategies of the therapist, who may
consider various aspects of the patient’s performance. Also,
at target adaptation, each target is only projected in and
out which may cover only the subspace of therapeutically
meaningful space. These shortcomings are addressed below.

III. PROBLEM FORMULATION & PROPOSED
FRAMEWORK

A. Problem Formulation

We assume that a therapeutic task consists of N exercise
targets P = {p1, · · · ,pN} that yield observable motor
performance F = {f1, · · · , fN} of the patient where each

fn = [f1, · · · , fM ]
T and M is the number of features de-

scribing the motor performance while the patient is attaining
each target pn. Some examples of these tasks include:

1) a reach-n-touch exercise where the therapist
presents a Cartesian position p = {x, y, z} and the
patient reaches and touches the given target,

2) a pick-n-place exercise where the therapist presents
an item (a salt shaker) at Cartesian position p =
{x, y, z} on a table and the patient picks up the
item and places it at a designated position,

3) a ball passing exercise where the therapist passes a
ball to the patient at height and velocity p = {h, v}
to perturb his balance while walking on a treadmill.

Given any of these tasks, our goal is to learn a modelM that
captures the mechanisms that are used to select the exercise
targets P and generates new exercise targets P′ based on
the observed motor performance features F.

B. Proposed Framework

The fundamental idea behind the proposed framework
(Fig. 5) is that the therapist’s decision making criteria is
reflected in the patient’s runtime performance F while the
patient is attaining the given exercise targets P.

1) Determining Exercise Targets: This first step is re-
sponsible for prescribing therapeutic tasks and selecting
sufficiently challenging targets to reflect the deficits and
meet the specific needs of individual patients. Naturally, it is
important to have an experienced therapist assess the motor
performance of the patient and discuss the potential tasks
with the patient. Based on this, the therapist can prescribe a
specific task and select exercise targets that are therapeutic
for the individual patient, which results in P.

2) Extracting Motor Performance Features: This step is
responsible for describing the desired characteristics of each
p by a set of features f that is measured while the patient
attains p. It is hypothesized that these motor performance
features describe the desired characteristics of the exericse
targets, e.g. the appropriate difficulty level, within the spec-
ified tasks. Typical motor performance features could be
kinematic parameters, including but not limited to:

1) the time taken for the the patient to reach a target
in the reach-n-touch exercise

2) the mean jerk of a certain joint while moving an
object in the pick-n-place exercise

3) the peak velocity of a certain joint while receiving
or throwing a ball in the ball passing exercise

Note that for each target that the therapist determines, there
may be other exercise targets that show the same or similar
motor performance. Essentially, the choice of features and
the specific values will serve to define the search space from
which new targets can be selected.

3) Training Models: Given the motor performance fea-
tures F for the corresponding exercise targets P, we need
to train generative models. The choice of a model should be
made to reflect the therapist’s strategy and the underlying
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Fig. 5. The implementation of the framework in the current paper

stucture of the data. If the therapist’s strategy does not
change over time within each session, a simple model may
suffice. However, the therapist may have a dynamic strategy
that changes over time or has a particular structure. For
instance, the therapist may start with easy exercise targets
and select the ones that take incrementally more time until
she starts regularly selecting targets of different times to take.
This may be better captured by models that incorporate a
temporal component.

4) Generating Motor Performance Features: We note
that the models are built on the performance features F so
that they generate new feature values F′. Since there might
be more than one target that has the generated feature values,
they can be used to define the search space from which
new targets can be selected based on their expected feature
values, e.g. expected time to reach the target. Consequently,
the following step is necessary to sample exercise targets.

5) Sampling Exercise Targets: It is most likely that the
observed exercise targets in the patient’s entire workspace
can be sparse and we need to compute the expected motor
performance at unobserved target positions before we can
actually sample new targets. For example, in a reach-n-touch
exercise, new targets should be sampled from the entire
reachable workspace of the patient rather than just from a
small set of reaching targets that the patient already tried.
This may be achieved by applying regression techniques over
the entire target space given a set of observed values. This
will allow the selection of exercise targets to be from not just
a set of the ones observed, but from the entire workspace.

IV. DEMONSTRATION

In this section, we apply the proposed framework to a
reach-n-touch exercise for a normally functioning adult to

(a) On-body IMU sen-
sors delpoyed on the
subject’s body
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Fig. 6. Experiment Apparatus and a sample motor performance feature
(best viewed in color)

demonstrate how it achieves customization/adaptation in a
mock-up scenario beyond the level that a hand-built function,
which was discussed in Section II, can provide.

A. Participant & Experimental Setting

Two normally functioning males participated in the data
collection; one as a trainee and another as a trainer. On-body
inertial measurement unit (IMU) sensors were deployed on
the trainee’s body to track the movement of body segments.
Nine InvenSense MPU-9150 Motion Fit Wireless SDKs
(0.035m×0.043m×0.001m) were used (InvenSense, Inc.,
San Jose, CA). Two sensors were placed on each limb and
one was placed on the torso (2 × 4 + 1 = 9). The origin
of the frame was placed at the center of the trainee’s feet
(Fig. 6a). The trainee was instructed to hold a one-kg object



in his dominant hand and keep his feet at the same positions
throughout the data collection.

B. Procedure

1) Determining Exercise Targets: The trainer was pro-
vided with a graphical user interface with multiple windows,
each displaying a pre-measured motor performance feature
profile of the trainee on a 2-dimensional Cartesian space
(Fig. 6b); the specific features provided to the user are
explained below. In other words, The trainer knew what the
motor performance of the trainee would look like before the
selection of targets. Given this, the trainer referenced the
motor performance feature of his choice and determined the
exercise targets P = {p1, · · · ,pN} that would yield the
performance he deemed appropriate (Fig. 7).

2) Extracting Motor Performance Features: In the lit-
erature, many investigated and used various kinematic pa-
rameters to analyze the change in the motor performance of
individual patients before and after therapy given the same
set of exercise targets [9]–[12]. We used these parameters
to keep track of the performance of the trainee within each
session and across multiple sessions.

The following parameters were computed adopting the
convention in the literature. Given each p ∈ P, we measured
a time series of joint angles θ1:T for each of the nine body
segments. This raw trajectory θ1:T was divided into reaching,
contacting, and retracting episodes. Reaching episodes were
the arm movements from the resting position to the target
position. Contacting episodes were the arm movements from
the end of the reaching epsiode to the start of the retracting
movement. Retracting episodes were the arm movements
from the target position to the resting position.

Specifically, we first computed the contact point time by
t∗ = argmaxt θ1:T . In [1, t∗), a peak velocity was computed
by v∗ = max v where v = ∆θ

∆t . The actual activation time
ta of the reaching movement was when the v > 0.05v∗

in [1, t∗) for the first time. The deactivation time td of the
reaching movement was when the v < 0.05v∗ in [1, t∗) for
the last time. [ta, td) defines the reaching episode. Similarly,
[t′a, t

′
d) was computed and represented the retracting episode.

[td, t
′
a) defined the contacting episode.

For each reaching/contacting/retracting episode, we com-
puted a peak velocity, peak acceleration, mean jerk, and
movement time. Consequently, we could compute up to
twelve features for each joint and a hundred and eight for
all the measurable body segments (4 ∗ 3 ∗ 9 = 108), giving
us F = {f1, · · · , fN} where fn = {f1, · · · , f108}. For the
sake of simplicity, the trainer used only a peak velocity
for the right elbow joint in the reaching episode to select
the targets. This work considered a family of topic models
to learn and generate the underlying structure of the data.
Hence, we first mapped the features to word tokens by
discretizing each v∗ using the step size of 8 deg/sec2 and
replaced with a corresponding symbol wn. Given F, we had
W = {w1, · · · , wN} for the training data.

3) Training Therapy Models: In this work, we explored
Latent Dirichlet Allocation (LDA, [13]) and the composite

model [14], which are commonly used to analyze document
data1. LDA takes collections of sequential data, usually
words, using distributions with the bag of words assumption
which omits any sequential relationships in the given data.
On the other hand, the composite model embeds LDA within
a hidden Markov model (HMM) such that one state of the
HMM uses LDA. This allows the model to discover and
represent the structural relationships in the data.

4) Generating Motor Performance Features: After LDA
and the composite model were learned, we used the learned
parameters to generate new documents by sampling N words
W = {w′1, · · · , w′N}. Each word w′n would correspond to
some descritized peak velocity value. Since LDA treats the
data as bag of words, the order of the words was omitted.
However, the HMM states of the composite model was able
to capture the sequential relationship of the data.

5) Sampling Exercise Targets: With the discretization
step size used in an earlier step, we recovered the expected
peak velocity for desirable exercise targets from the newly
generated word token w′. Since there might exist more
than a single target that could yield the same or similar
value, we computed a pool of candidate targets that met
||µ(x, y)−f ′||2 < 2σ(x, y) where µ and σ are the expected
feature value and the standard deviation that we computed
using Gaussian Processes with Matérn covariance function
[15]. Fig. 8–10 show the subset of these pools for the five
generated exercise targets in a row in the beginning and in
the middle of the session.

C. Results

Here we present the results from a learned LDA model
with 5 topics and a learned composite model with 5 topics
and 8 states. Fig. 7–Fig. 10 show the exercise targets
(white filled circles) overlapped on the peak velocity feature
profile. In the training data, the trainer started with exercise
targets of high peak velocities for warming-up exercise and
subsequently started intensive therapy by selecting targets
of low peak velocities (Fig. 7). As expected, LDA presents
the combination of these targets (Fig. 8) but the composite
model was able to capture the change in the trainer’s strategy
(Fig. 9). Fig. 10 demonstrates how the proposed framework
can adapt to the change in the motor performance profile.

V. CONCLUSION

In this paper, we addressed the problem of adaptive
therapy strategies in two parts. We first investigated the
efficacy of the adaptive sampling of exercise targets and
showed that it can lead to an increase in a patient’s motor
performance. Motivated by these results, we then proposed
a data-driven framework to learn models of the therapist’s
target selection strategies. The realization of the proposed
framework was demonstrated using LDA2 and the composite
model.

1Note that, however, there is no constraint in the choice of generative
models and one can choose any necessary representation that corresponds
to their choice of models/algorithms.

2More detailed results using LDA can be found in Jung et al. [16].
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Fig. 7. Demonstrated exercise targets in the beginning and the middle of
the session. (best viewed in color)
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