
Initial Empirical Evaluation of Anytime Lifted Belief Propagation

Richard G. Freedman, Rodrigo de Salvo Braz∗, Hung Bui∗, Sriraam Natarajan
Wake Forest University, ∗ SRI International

Abstract

Lifted first-order probabilistic inference,
which manipulates first-order representations
of graphical models directly, has been receiv-
ing increasing attention. Most lifted infer-
ence methods to date need to process the en-
tire given model before they can provide in-
formation on a query’s answer, even if most
of it is determined by a relatively small, lo-
cal portion of the model. Anytime Lifted
Belief Propagation (ALBP) performs Lifted
Belief Propagation but, instead of first build-
ing a supernode network based on the en-
tire model, incrementally processes the model
on an as-needed basis, keeping a guaranteed
bound on the query’s answer the entire time.
This allows a user to either detect when the
answer has been already determined, before
actually processing the entire model, or to
choose to stop when the bound is narrow
enough for the application at hand. More-
over, the bounds can be made to converge
to the exact solution when inference has pro-
cessed the entire model. This paper shows
some preliminary results of an implementa-
tion of ALBP, illustrating how bounds can
sometimes be narrowed a lot sooner than it
would take to get the exact answer.

1 Introduction

Recently, there has been a surge in interest in the area
of Statistical Relational Learning (SRL) [1] and sev-
eral different representations have been proposed. The
central problem in all these models is that of efficient
inference. Earlier inference methods were based on
sampling methods or methods that completely instan-
tiate all the objects in the domain and hence were pro-
hibitively expensive. Lifted inference [2, 3], inference
that manipulates and keeps the first-order structure,

avoiding extensive propositionalization, has been re-
ceiving increasing attention recently. To date, all lifted
inference methods require a model to be shattered
against itself and evidence, before inference starts.
Shattering means dividing the random variables of the
model into clusters of exactly symmetric variables. Ev-
idence is often provided at the level of random vari-
ables on specific individuals, typically causing all ran-
dom variables involving them to form singleton clus-
ters. For many problems this is very close to propo-
sitionalization, and the gains from lifted inference are
greatly decreased.

The reason shattering is needed in advance is because
the algorithms that have been lifted (belief propaga-
tion and variable elimination) do require the entire
model in order to compute a query’s belief. So in gen-
eral the entire model needs to be used, requiring it
to be entirely shattered. However recent work on box
propagation [4] shows how to derive bounds on beliefs
from using only a portion of a model. This allows us
to gradually shatter the model while obtaining useful
bounds on the query. Interestingly, this also corre-
sponds to the intuition that reasoning only considers
sub- or individual cases in an as-needed basis, as it is
done in theorem proving where unification and resolu-
tion are gradually used.

The box propagation algorithm was later extended to
the SRL case as Anytime Lifted BP (ALBP) [5]. The
key idea in ALBP is to perform incremental shatter-
ing with the propagation of bounds. In this work, we
extend the previous paper by presenting the pseudo-
code for the ALBP algorithm and by empirically eval-
uating the algorithm on a small domain. This is a
work-in-progress and the results that we present are
initial observations. Nonetheless, some of these results
clearly show the advantage of box propagation when
the bounds can be narrowed much sooner than con-
verging to a point estimate. A similar approach has
been taken in [6] where the messages are grouped af-
ter every few iterations without constructing the full



lifted network.

2 Algorithmic Details

Algorithm 1 Pseudocode explaining the iterative
process of Anytime Lifted Belief Propagation.

1: for all Query q in queryList do
2: rn ← createSupernode(lift(q));
3: cn ← rn; . Start at query
4: addSupernode(fg, rn);
5: stillSplittingAndShattering ← true;
6: . Use rules and evidence to shatter and split
7: while stillSplittingAndShattering do
8: for all Rule r in ruleList do
9: if (r contains cn.predicate) and

(not splitBy(cn, r)) then

10: performSplit(cn, r, fg); . Extends
11: end if
12: end for
13: for all Evidence e in evidenceList do
14: if (e contains cn.predicate) and

(not shatteredBy(cn, e)) and

(isSubset(e.constriants, cn.groundings))

then
15: performSplit(cn, e, fg); . Extends
16: performShatter(cn, e, fg); . Breaks
17: end if
18: end for
19: . Ground the query on the first iteration

20: if 1st iteration then
21: performShatter(rn, q, fg); . Breaks
22: end if
23: . Box propagation gets marginal bound
24: interval ← runBoxPropagation(rn, fg);
25: if intervalinterval < δ then
26: break;
27: end if
28: . Select the next node to split and shatter
29: cn ← getNextNode(fg, METHOD);
30: if cn == null then
31: stillSplittingAndShattering ← false;
32: end if
33: end while
34: end for

Lifted belief propagation [7] is based on the idea
that symmetric variables (that is, variables with ex-
actly the same set of dependencies) will receive and
generate the same belief messages. It determines
these sets (called supernodes) by shattering as a pre-
processing step, and performs message passing be-
tween them. The main problem with this and the
other lifted inference methods is that the nodes that
are not even part of the evidence relevant to the
query are shattered in advance. For example, consider
the following two parfactors: ∀Y φ1(funny(Y )) and
∀X,Y φ1(funny(Y ), likes(X,Y )). Now if the query is
P (funny(fred) |likes(Tom,Fred)), and if it is ob-
served that Tom is a friend of Fred, then by shatter-
ing, likes(tom, Fred), 〈likes(X,Fred), X 6= tom〉 and
〈likes(X,Y ) X 6= tom Y 6= Fred〉 will form the three

clusters. Note that though there are no other evidence
present, we still have to split likes(X,Y ) into two more
clusters, one for Y = Fred and one for Y 6= Fred. If
we had another evidence, say that Mary is a friend of
Fred, then we will have more clusters. As the amount
of evidence increases, the number of shatterings also
increases as the clusters may need to be shattered even
if they are not part of the evidence.

ALBP on the other hand, does not consider shattering
the model completely against the evidence and shat-
ters only if required. Instead, ALBP extends box prop-
agation to the relational setting. ALBP works by us-
ing only a subset of the model for box propagation,
but with supernodes, as in Lifted BP. Shattering is
performed only as needed for accommodating the par-
factors considered at each step, thus minimizing the
number of shatterings. Also, the propagation of the
bounds can possibly allow for decision making even if
the marginal has not converged.

Algorithm 1 presents the outer loop of the algorithm1.
The outer loop explains the overall process of each iter-
ation of the ALBP algorithm. Beginning with a single
supernode that represents the query predicate with no
constraints (root node rn), the lifted factor graph (fg)
is further extended and broken on each iteration until
the marginal probability bounds are satisfactory or fg
is completely shattered. In each iteration, a chosen
node (cn) in fg is extended by all rules that involve
cn’s predicate; this mimics the unraveling process of
theorem proving. Any evidence on a subset of the
constraints of cn also results in breaking fg in order to
separate the constraints with respect to the difference
in observation. Since the query likely applies to a sub-
set of rn’s constraints, we also break at rn in the first
iteration with respect to the query’s constraints.

3 Initial Experiments

We have run our implementation of Anytime Lifted
Belief Propagation on a variation of the popu-
lar smokers example with the following MLN [8]:

2.3 ¬cancer (x)
1.4 ¬smokes (x)
2.0 ¬friends (x, y)
−0.5 hospital (x)
2.5 party (x)
1.5 smokes (x)→ cancer (x)
1.1 friends (x, y)→ (smokes (x)↔ smokes (y))
1.4 party (x) ∧ smokes (x)
0.5 cancer (x)→ hospital (x)
−1.0 party (x)→ hospital (x)

Our domain contained five persons, and we queried
how likely each person had cancer given various ob-
servations. For each person, up to one randomly cho-

1An example and additional pseudocode can be found
at http://tsi.wfubmc.edu/labs/strait/ALBP.pdf



Figure 1: Plots of the marginal probability bounds during ALBP for various queries on the dataset. The red line
represents the upper bound and the blue line represents the lower bound.

sen attribute was observed. Either zero, one or three
friends relation were observed for each individual. The
effects the varying observations had on the bounds of
a single query (cancer(X)) are presented in Figure 1.

We observe three effects – (1) If there is immediate ev-
idence about the query then ALBP converges quickly
where the bound becomes zero rapidly (right two cases
in the top figure). (2) If there is evidence close to
the query but is not very strong, the bound becomes
narrow quickly but convergence happens later. (3) Fi-
nally, if multiple evidences appear as the network is
expanded, the bounds progressively decrease to zero.
Currently, the choice of the next parfactor to be shat-
tered is made at random. A better heuristic can lead
to faster convergence of the bound in many cases. Our
initial results are still promising as in most cases, the
bounds become quite narrow before ALBP converges.

4 Conclusion

We presented the ALBP algorithm that performs lifted
inference without shattering the entire model in ad-
vance. This allows for faster useful inference when
bounds are enough (such as for decision-making). Im-
portantly, it allows us to treat classes of random vari-
ables as a group even when they are not exactly sym-
metric; in other words, it allows us to reason in general
about objects that are only approximately symmetric,
where the notion of approximation becomes more re-
stricted the more precise an answer is required. Our
initial experiments are promising as the bounds be-
come narrower before the algorithm converges.

An interesting extension in that direction would be
making the algorithm consider the cost of obtaining

evidence or sharper bounds on certain variables. Sim-
ilarly, exploring the different methods of identifying
the next parfactor to shatter would be an important
future work. Finally, the algorithm should be evalu-
ated on large real domains.

Acknowledgements The authors gratefully acknowl-
edge the support of Defense Advanced Research Projects
Agency (DARPA) Machine Reading Program under Air
Force Research Laboratory (AFRL) prime contract no.
FA8750-09-C-0181. Any opinions, findings, and conclusion
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the view of the
DARPA, AFRL, or the US government.

References

[1] L. Getoor and B. Taskar. Introduction to Statistical
Relational Learning. MIT Press, 2007.

[2] D. Poole. First-Order Probabilistic Inference. In IJ-
CAI, pages 985–991, 2003.

[3] R. de Salvo Braz, E. Amir, and D. Roth. Lifted First
Order Probabilistic Inference. In IJCAI, 2005.

[4] J. M. Mooij and H. J. Kappen. Bounds on marginal
probability distributions. In NIPS, 2008.

[5] R. de Salvo Braz, S. Natarajan, H. Bui, J. Shavlik,
and S. Russell. Anytime lifted belief propagation. In
Statistical Relational Learning Workshop, 2009.

[6] K. Kersting, Y. El Massaoudi, B. Ahmadi, and
F. Hadiji. Informed lifting for message–passing. In
AAAI, 2010.

[7] P. Singla and P. Domingos. Lifted first-order belief
propagation. In AAAI, pages 1094–1099, 2008.

[8] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for AI. Morgan & Claypool, 2009.



Initial Empirical Evaluation of Anytime Lifted
Belief Propagation - Supplement

Richard G. Freedman, Rodrigo de Salvo Braz, Hung Bui, Sriraam Natarajan

1 Additional Pseudocode

Algorithm 1 ALBP Pseudocode for Extending
1: function PERFORMSPLIT(Supernode splitAt,

Rule r, FactorGraph fg)
2: . A new parfactor represents the rule
3: newP ← createParfactor(r);
4: addParfactor(fg, newP );
5: . Adjacent supernodes will be created
6: for all Predicate p in r.predicates do
7: newS ← createSupernode(p);
8: . If it already exists, then replace new one
9: if fg.supernodes contains newS then

10: newS ← retrieve(fg.supernodes, newS);
11: else
12: addSupernode(newS);
13: end if
14: setAdjacent(newS, newP );
15: appendToBack(newS, newSList);
16: end for
17: . Synchronize adjacent supernode constraints
18: unifyArguments(newSList, r, splitAt);
19: . Prior shattering may duplicate groundings
20: for all Supernode sn in newSList do
21: for all Supernode sf in fg.supernodes do
22: if (sf .constraints ⊂ sn.constraints)

and (sf 6= sn) then
23: . Match through breaking
24: performShatter(sn, sf , fg);
25: end if
26: end for
27: end for
28: end function

1



2 ALBP Example
Consider the following knowledge base:
pf1 : φ1(hasGoodOffer(Person),

offer(Job,Person),goodFor(Person,Job))

pf2 : φ2(goodFor(Person,Job),cityPerson(Person),

inCity(Job))

pf3 : φ3(goodFor(Person,Job),goodEmployer(Job))

...

0.9: offer(mary,Job), Job in {a,b,c}.
1.0: not offer(mary,Job), Job not in {a,b,c}.
0.8: goodEmployer(Job), Job in {a,c}.
1.0: inCity(c).

...

φi is the potential of ith parfactor (denoted as pfi). The higher the potential, the
higher is the probability of the ground instance being true. Let the goal be to pre-
dict if Mary has a good job offer. Figure 1 outlines how the Anytime Lifted BP al-
gorithm proceeds to answer this query. First, the algorithm begins with the query
variable hasGoodOffer(Mary). Now, it considers the parfactor hasGoodOffer(Person),
offer(Job,Person), goodFor(Person,Job). Just considering the blanket factor from this
node (since there is no evidence associated with these nodes), reduces the bounds to lie
between [0.1, 1.0]. Note that the bound already decreases without having to perform
any shattering. In (iii), it can be observed that the factor graph is now shattered into
two distinct regions corresponding to the instantiations of 〈P = Mary〉 and 〈P 6=
Mary〉. Since, we are not currently interested in the non-Mary case, we will ignore
the bottom half of (iii). Note that this will not affect the bound on the query since this
is disconnected from the model that predicts about Mary. This is very similar to Prolog
queries with unbound variables that get bounded to possibly many values. Also, the
network is further shattered based on whether or not the job J is in {a, b, c}.

The top portion of part (iii) is presented in part (iv). As can be observed, currently
the network has 2 distinct components based on the value for the job J . In (v), the
algorithm propagates further and requests for bounds from the parfactor pf3 that cor-
responds to (goodFor(Person,Job),goodEmployer(Job)) when instantiated with Mary
for P and with 〈a, b, c〉 for J . Note that this corresponds to shattering the parfactor pf3
based on the instantiations of Job. Finally in (vi), given the parfactor 0.8 : goodEm-
ployer(Job), Job in {a,c}, the bounds decreases to between [0.82, 1.0]. If the bound is
satisfactory the algorithm terminates. Else, it proceeds to consider the other parfactors
and shatters them based on the constraints and the other instantiations. It should be
noted that the bound has been shrunk to a width of just 0.18 with the network being
shattered just twice. If the model proceeds with shattering further, the bounds will
be further reduced. It is worth noting that in (vi), considering the parfactor pf3 splits
baway from the group of jobs. More importantly, a and c are grouped together even
though they are not indistinguishable given the entire model. All the previous lifted in-
ference algorithms would have separated them. This clearly shows that our algorithm
avoids shattering unless it is absolutely necessary.

The key thing to note is that the shattering takes place in a lazy manner in that the

2



Algorithm 2 ALBP Pseudocode for Breaking
1: . Shattering on queries and supernodes is similar
2: function PERFORMSHATTER(Supernode
shatterAt, Evidence e, FactorGraph fg, Set <Node> shatteredNodes = {},
Map <Parfactor, Parfactor> shatteredParfactors = {})

3: . Shattering duplicates the supernode
4: s1← createSupernode(lift(shatterAt.predicate));
5: s2← createSupernode(lift(shatterAt.predicate));
6: . The constraints complement each other
7: s1.constraints←

shatterAt.groundings ∩ e.constraints;
8: s2.constraints←

shatterAt.groundings − e.constraints;
9: . If already exists, then replace new one

10: if fg.supernodes contains s1 then
11: s1← retrieve(fg.supernodes, s1);
12: else
13: addSupernode(fg, s1);
14: end if
15: if fg.supernodes contains s2 then
16: s2← retrieve(fg.supernodes, s2);
17: else
18: addSupernode(fg, s2);
19: end if
20: putInSet(shatteredNodes, shatterAt);
21: . Shatter the parfactors adjacent to shatterAt
22: for all Parfactor p in

shatterAt.adjacentParfactors do
23: if shatteredParfactors.keys contains p

then
24: newP ← retrieveMapOf(

shatteredParfactors, p);
25: else
26: if shatteredParfactors.elements

contains p then
27: newP ← retrieveKeyOf(

shatteredParfactors, p);
28: else
29: newP ← hardCopyParfactor(p);
30: addParfactor(fg, newP );
31: putInMap(shatteredParfactors, p,

newP );
32: end if
33: end if
34: . Recursively shatter adjacent supernodes
35: if not shatteredNodes contains p then
36: performShatter(p, e, fg, shatteredNodes,

shatteredParfactors);
37: end if
38: . Swap adjacencies to isolate shatterAt
39: replaceAdjacent(shatterAt, s1, p);
40: replaceAdjacent(shatterAt, s2, newP );
41: end for
42: removeSupernode(fg, shatterAt);
43: end function

3



Algorithm 3 ALBP Pseudocode for Breaking
1: function PERFORMSHATTER(Parfactor
shatterRelay, Evidence e, FactorGraph fg,
Set<Node> shatteredNodes, Map
<Parfactor, Parfactor> shatteredParfactors)

2: putInSet(shatteredNodes, shatterRelay);
3: for all Supernode s in

shatterRelay.adjacentSupernodes do
4: if not shatteredNodes contains s then
5: performShatter(s, e, fg, shatteredNodes,

shatteredParfactors);
6: end if
7: end for
8: end function

model is shattered as and when it is needed. In this model, we first considered the
instantiation of Person and then that of Job. The messages are passed back to the query
node from the node that has been shattered. The messages always decrease the bound.
When the bound has been decreased to the desired level, the algorithm can be allowed
to terminate. Note that in many cases, we need a rough estimate of probability and not
the exact value. This is especially true while decision-making as we might be interested
in knowing if the probability of one event is significantly higher than the other and not
on the exact values of the probabilities.

4



hasGoodOffer(P)

[0,1]

(i)

hasGoodOffer(P)

goodFor(P,J)

offer(J,P)[0.1, 1.0]

(ii)

hasGoodOffer(mary)

goodFor(mary,J),
J in {a,b,c}

offer(J,mary),
J in {a,b,c}

goodFor(mary,J), J not in {a,b,c}

offer(J,mary), J not in {a,b,c}

hasGoodOffer(P),
P not mary

goodFor(P,J), P not mary

offer(J,P), P not mary

[0.1, 1.0]

0.9: 
offer(mary,J),
J in {a,b,c}.

[0.1, 1.0]

(iii)

hasGoodOffer(mary)

goodFor(mary,J),
J in {a,b,c}

offer(J,mary),
J in {a,b,c}

goodFor(mary,J), J not in {a,b,c}

offer(J,mary), J not in {a,b,c}

[0.1, 1.0]

(iv)

goodEmployer(J),
J in {a,b,c}

φ(goodFor(mary,J),goodEmployer(J)),J in {a,b,c}
split from
φ(goodFor(P,J), goodEmployer(J))

hasGoodOffer(mary)

goodFor(mary,J),
J in {a,b,c}

offer(J,mary),
J in {a,b,c}

goodFor(mary,J), J not in {a,b,c}

offer(J,mary), J not in {a,b,c}

[0.1, 1.0]

(v)

goodFor(mary,b)

offer(b,mary)

goodEmployer(J),
J in {a,b,c}

0.8:
goodEmployer(J),
J in {a,c}.

goodEmployer(b)

[0.82, 1.0]

hasGoodOffer(mary)

goodFor(mary,J),
J in {a,c}

offer(J,mary),
J in {a,c}

goodFor(mary,J), J not in {a,b,c}

offer(J,mary), J not in {a,b,c}

(vi)

Figure 1: An illustrative example of Anytime Lifted Belief Propagation.

5


