
On Variations of the SRB Entropy of the

Expanding Map on the Circle

Richard (Rick) G. Freedman
Mentored by Dr. Miaohua Jiang

May 24, 2012

Abstract

Many people are familiar with the geometrical shape called the circle.
Based on this figure, the circle space S

1 connects the endpoints of the
interval [0, 1] together so that 0 ≡ 1 (mod 1). On this space, the ex-
panding map f : S1

→ S
1 stretches an initial distribution of points along

the circle and then rewraps the lengthened distribution tightly about the
circle; overlapping regions are compressed together to yield the new dis-
tribution along the circle. By iteratively performing the expanding map,
we get a discrete dynamical system whose orbits are chaotic. The entropy
is an observation of the complexity of this chaos with respect to a given
measure. We study variations of the entropy of expanding maps that are
small perturbations of the uniformly expanding map on S

1 with respect
to the physical measure, also known as the Sinai Ruelle Bowen (SRB)
invariant measure. Due to the complexity of these computations, we dis-
cuss methods for computing this entropy numerically and approximate
the entropy for one- and two-parameter variants of the expanding map.

Contents

1 Introduction 2

1.1 Defining the Circle Space . 2
1.2 The Expanding Map on S1 . 2
1.3 Applying Perturbation to the Expanding Map f 4
1.4 Invariant Measures on g∗ . 4
1.5 Entropy of Dynamical Systems 7

1.5.1 Entropy of Measure-Preserving Transformations 8
1.5.2 Topological Entropy . 9
1.5.3 Weighted Entropy . 9

1.6 Validity of Methodology . 11

1

2 Methods Used in Numerical Computation 12

2.1 Numerically Computing the Density function ρ(x) 12
2.1.1 Precomputation Using g∗ 12
2.1.2 Numerical Implementation Details for Finding ρ(x) 13

2.2 Numerically Computing the SRB Entropy hµ∗(g∗) 14

3 Discussion 14

3.1 Results and Conjectures . 14
3.2 Future Research . 18

4 Appendix A: List of Functions and Variables Used 18

5 Appendix B: Pseudocode 19

1 Introduction

1.1 Defining the Circle Space

The circle, a geometric figure whose locus is the set of all points in a plane
equidistant from a center point, may be interpreted along the real number line
as S1 = [0, 1). In such a case, 0 acts as a position marker for some point on the
circle and each p ∈ S1 represents a point on the circle whose clockwise distance
from 0 is 2πr · p where r is the radius of the circle. Since it is possible to wrap
around a circle infinitely many times, p could actually represent all points along
the circle whose clockwise distance from 0 is of the form 2πr · (k + p) for all
k ∈ Z. Thus we can map all points in R onto S1 using the function x 7→ x

mod 1. As the unit circle can also be represented using complex numbers, a
similar definition of the circle in the complex plane is S1 = {e2πiz | z ∈ [0, 1)}.

1.2 The Expanding Map on S1

The expanding map on S1 is a dynamical system with phase space S1 that
represents an expansion of the number line along the circle. That is, if we were
to consider:

1. Wrapping an elastic band around the circle,

2. Marking some point p ∈ S
1 on the elastic band,

3. Stretching the elastic band to k > 1 times its length, and

4. Rewrapping the stretched elastic band around the circle

then the mapping from p to its new location p′ ∈ S1 would be the expanding
map. We formally define this map as f : S1 → S1 where f(x) = kx mod 1
for some k > 1. In this thesis, we only focus on the case where k = 2 which
signifies doubling the length of the elastic band, and any further reference to f(x)
specifically pertains to this case. A plot of f(x) may be seen in Figure 1. It is

2

Figure 1: A plot of the expanding map on S1 f(x)

evident by this figure that f(x) is invertible on small intervals whose cardinalities
are at most half. This property classifies f(x) as a local diffeomorphism .

There are other simple, yet interesting traits of the expanding map which
make it a popular choice for studying chaotic systems. To be a chaotic system ,
the dynamical system must satisfy the following properties [1]:

• The map must be transitive. This is satisfied if there exists an orbit
generated by the map that is dense in the phase space.

• The set of all periodic points must be dense in the phase space.

• The map must have sensitive dependence on the initial conditions.
That is, two input values that are “nearby” are not guaranteed to yield
output values that are “nearby.”

The expanding map on S1 satisfies this definition by the following examples:

• The function can be shown to be transitive by the orbit generated by any
irrational initial value. The orbit

π mod 1, 2π mod 1, 3π mod 1, 4π mod 1, . . . , kπ mod 1, . . .

has values that may be found between any two real numbers x1, x2 ∈ S1.

• The set of periodic points in f is also dense in S1 since any p ∈ S1 whose
least significant digit is even is periodic. Some simple examples are the or-
bits 0.2, 0.4, 0.8, 1.6 mod 1 = 0.6, 1.2 mod 1 = 0.2 and 0.12, 0.24, 0.48, 0.96, 1.92
mod 1 = 0.92, 1.84 mod 1 = 0.84, 1.68 mod 1 = 0.68, 1.36 mod 1 =
0.36, 0.72, 1.44 mod 1 = 0.44, 0.88, 1.76 mod 1 = 0.76, 1.52 mod 1 =
0.52, 1.04 mod 1 = 0.04, 0.08, 0.16, 0.32, 0.64, 1.28 mod 1 = 0.28, 0.56, 1.12
mod 1 = 0.12.

• We prove the sensitive dependence on initial conditions by comparing
0.5 + ǫ and 0.5 − ǫ which are only a distance of 2ǫ > 0 apart. As ǫ

approaches 0, 0.5 + ǫ approaches 2(0.5 + ǫ) mod 1 = 2ǫ while 0.5 − ǫ

approaches 2(0.5− ǫ) mod 1 = 1−2ǫ so that the outputs are 1−4ǫ apart.
Hence decreasing the distance between the inputs through a smaller ǫ

increases the distance between the respective outputs.

3

Figure 2: Plots of g∗ where ∗ = ǫ < 0 (Left) and ∗ = 0, ǫ2 > 0 (Right)

1.3 Applying Perturbation to the Expanding Map f

As the expanding map f(x) has been studied before, we choose to look at
variations that preserve the chaotic system. De La Llave, Shub, and Simó have
done similar work looking at variations of the form x 7→ kx + α + ǫ sin(2πx).
This exposed the expanding map to horizontal translations (α), scalar dilations
(k), and increased curvature (ǫ) [4]. The increased curvature of the function
results in a non-uniform expansion of the elastic band - some regions of the
band will be stretched more than others. Our variations will focus on the
changes in curvature in the expanding map using k-ary parameters. That is,
for a list of k parameters ∗ = ǫ1, ǫ2, . . . , ǫk, we define the function g∗ : S1 → S1

as g∗(x) = 2x + ǫy sin(2πx) where y = z ∈ {1, 2, . . . , k} if z−1
k
≤ x < z

k
. Our

focus will be on the single-parameter variation gǫ(x) = 2x+ ǫ sin(2πx) and the
two-parameter variation gǫ1,ǫ2 = 2x+ ǫy sin(2πx) where y = 1 if 0 ≤ x < 1

2 and
y = 2 if 1

2 ≤ x < 1. Allowing more parameters would run the risk of breaking
the continuity along the intervals [0, 0.5) and (0.5, 1). Examples of some of these
variations may be viewed in Figure 2.

1.4 Invariant Measures on g∗

A measure is a function on a space that maps a value to its respective mag-
nitude within the space. That is, it measures the value with regards to the
definition of the space. For example, numbers in p-addic space with larger de-
nominators have a greater measure than those with smaller denominators which
gives 5

32 a greater measure than 100. For this thesis, we will assume that all
our measures have density functions; ρ is a density function along an interval

4

Figure 3: The inverse of the expanding map on S1 on some interval [a, b]

[a, b] if:

• ρ(x) ≥ 0 for all x ∈ [a, b]

•
∫ b

a
ρ(x)dx = 1

A common example of a density function is any probability distribution found
in statistics. The measure µ that has density function ρ is defined by:

µ(c1, c2) =

∫ c2

c1

ρ(x)dx where c1, c2 ∈ [a, b]

.
A measure µ is invariant under a function if the measure of the function’s

preimage on any small interval or set is equal to the measure of the interval or set
itself. This would imply that the function’s preimage of set S is equivalent to S.
Mathematically, we represent µ as an invariant measure under g∗ if µ(g

−1
∗ (S)) =

µ(S) where g−1
∗ (S) = {x | g∗(x) ∈ S}. When S is an interval of the form [a, b]

such that (b−a) < 1
2 , it is clear that g∗(a, b) = B1∪B2 where B1∩B2 = ∅. One

of these disjoint sets represents values about 0+κ while the other set represents
values about 1

2 + κ; κ is an offset dependent of the parameters of g∗.
In particular, when we consider the expanding map on S1 without pertur-

bation, we can easily see that µ having density function ρ(x) = 1 is invariant
under f = g0 = g0,0. The disjoint sets for the above interval [a, b] have cardinal-
ity |B1| = |B2| =

1
2 (b − a) centered about 0 and 1

2 . Figure 3 provides a visual
example of this preimage property.

Furthermore, for our various perturbed expanding maps on S1, the invari-
ant meausures defined by density functions ρ are equivalent to the transfer
function (also referred to as the transfer operator)

L∗(ρ(x)) =
ρ(g−1

∗;1(x))

g′∗(g
−1
∗;1(x))

+
ρ(g−1

∗;2(x))

g′∗(g
−1
∗;2(x))

where g−1
∗;1(x) ≤ g−1

∗;2(x)

. Here g−1
∗;1(x) ∪ g−1

∗;2(x) = g−1
∗ ({x}) since every p ∈ S

1 has two points in its
preimage. This equivalence primarily comes from

5

Proposition 1 µ having probability density ρ is invariant under g∗ if and only
if ρ is a fixed point of the transfer operator L∗.

Proof:

(⇐) First let µ be invariant. Then

µ(g−1
∗ [a, b]) = µ([a, b]) =

∫ b

a

ρ(x)dx

where [a, b] is a small interval on S1. Then because the inverse of the ex-
panding map on an interval yields two non-overlapping intervals, g−1

∗ ([a, b]) =
[

g−1
∗;1(a), g

−1
∗;1(b)

]

∪
[

g−1
∗;2(a), g

−1
∗;2(b)

]

. So we derive

µ(g−1
∗ ([a, b])) = µ(

[

g−1
∗;1(a), g

−1
∗;1(b)

]

∪
[

g−1
∗;2(a), g

−1
∗;2(b)

]

)

= µ(
[

g−1
∗;1(a), g

−1
∗;1(b)

]

) + µ(
[

g−1
∗;2(a), g

−1
∗;2(b)

]

)

=
∫ g

−1

∗;1
(b)

g
−1

∗;1
(a)

ρ(x)dx +
∫ g

−1

∗;2
(b)

g
−1

∗;2
(a)

ρ(x)dx

Now we define z = g∗(x) which means x = g−1
∗ (z) and dz = g′∗(x) · dx

which may be rewritten as

dx =
dz

g′∗(x)
=

dz

g′∗(g
−1
∗ (z))

Since g∗(g
−1
∗;j (m)) = m for all (j,m) ∈ {1, 2} × S1, we perform a u-

substitution to get

∫ g
−1

∗;1
(b)

g
−1

∗;1
(a)

ρ(x)dx +

∫ g
−1

∗;2
(b)

g
−1

∗;2
(a)

ρ(x)dx

=

∫ b

a

ρ(g−1
∗;1(z)) ·

dz

g′∗(g
−1
∗;1(z))

+

∫ b

a

ρ(g−1
∗;2(z)) ·

dz

g′∗(g
−1
∗;2(z))

which further simplifies to

∫ b

a

(

ρ(g−1
∗;1(z)) ·

1

g′∗(g
−1
∗;1(z))

+ ρ(g−1
∗;2(z)) ·

1

g′∗(g
−1
∗;2(z))

)

dz

Recall that from this chain of equalities

∫ b

a

(

ρ(g−1
∗;1(z))

g′∗(g
−1
∗;1(z))

+
ρ(g−1

∗;2(z))

g′∗(g
−1
∗;2(z))

)

dz = µ(g−1
∗ ([a, b])) = µ([a, b]) =

∫ b

a

ρ(x)dx

As this applies for any arbitrarily selected [a, b] ∈ S1, we may conclude
that

ρ(x) =
ρ(g−1

∗;1(x))

g′∗(g
−1
∗;1(x))

+
ρ(g−1

∗;2(x))

g′∗(g
−1
∗;2(x))

= L∗(ρ(x))

Thus ρ is a fixed point of the transfer operator L∗.

6

(⇒) Let ρ be a fixed point of the transfer operator L∗. Then

ρ(x) = L∗(ρ(x)) =
ρ(g−1

∗;1(x))

g′∗(g
−1
∗;1(x))

+
ρ(g−1

∗;2(x))

g′∗(g
−1
∗;2(x))

Integrating the left- and right-hand sides of the above equality from a to
b with respect to x gives us

∫ b

a

ρ(x)dx =

∫ b

a

ρ(g−1
∗;1(x))

g′∗(g
−1
∗;1(x))

+
ρ(g−1

∗;2(x))

g′∗(g
−1
∗;2(x))

dx

The left-hand side is clearly equal to µ([a, b]). By performing the simplifi-
cations and u-substitutions from the⇐ component of this proof in reverse
order, we can also simplify the right-hand side to µ(g−1

∗ ([a, b]). Then we
may conclude that µ([a, b]) = µ(g−1

∗ ([a, b]) by the transitive property of
equality. As this lattermost equality satisfies the definition of invariance,
we may conclude that µ is invariant under g∗. �

As a consequence of Proposition 1, we will work with density functions and the
transfer operator in order to find invariant measures on g∗. See Section 1.5.3..

1.5 Entropy of Dynamical Systems

For chaotic dynamical systems such as f and g∗, it can be hard to understand
their orbits. However, other dynamical systems such as the Leibniz Butterfly
have orbits that are far more difficult to interpret. Thus entropy is a quantity
that characterizes the system’s complexity level.

In order to properly explain the computation of the entropy, we will first
need to discuss measurable partitions. Measurable partitions are collections
of measurable subsets that fully divide up an entire space and share no common
elements. Each subset is considered to be measurable with respect to some
function if it’s inverse is also measurable. The use of the inverse in this definition
acts recursively so that subset Cα is measureable with respect to a function h

if the subsets h−1(Cα), h−2(Cα), h−3(Cα), . . . are all measurable. For example,
a measurable partition of S1 with respect to function g∗ is ξ = {C1, C2} =
{[0, 12), [

1
2 , 1)}.

To determine the entropy of a dynamical system, we compute the following
for some measurable partition ξ on measure µ:

H(ξ) = Hµ(ξ) = −
∑

α∈ξ

µ(Cα) log µ(Cα)

where we allow 0 · log 0 = 0. Those familiar with statistics and some fields of
engineering may recognize this as Shannon’s equation for entropy of information
loss over a probability distribution,

H = −
n
∑

i=1

pi log(pi) where

n
∑

i=1

pi = 1

and it is derived from the same concept. [2]

7

1.5.1 Entropy of Measure-Preserving Transformations

Given a measure-preserving transformation T , we extend the definition of a
measurable partition ξ = {U1,U2,U3, . . . ,Un} to a joint partition. A joint
partition ξT−n is a set that consists of all possible intersections of the partition
subjected to the last n− 1 iterations of the inverse of T . That is:

ξT−n = ξ ∨ T−1(ξ) ∨ T−2(ξ) ∨ . . . ∨ T−n+1(ξ)

Example: Let us begin with a simple partition of S1 where we break it into two
equal-sized intervals: ξ = {U1,U2} = {[0, 12], [

1
2 , 1]}. We recall that 0 ≡

1 (mod 1) when defining these intervals. Since f is a measure-preserving

transformation, we will compute the joint partition ξ
f
−2 = ξ∨f−1(ξ) where

f−1(U1) = f−1
([

0, 12
])

=
[

0, 14
]

∪
[

3
4 , 1
]

f−1(U2) = f−1
([

1
2 , 1
])

=
[

1
4 ,

1
2

]

∪
[

1
2 ,

3
4

]

Since the binary operator ∨ yields the set of all intersections of elements
in the left and right operands, ξf−2 will contain four elements since ξ and
f−1(ξ) each contain two elements:

1. U1 ∩ f−1(U1) =
[

0, 1
4

]

2. U1 ∩ f−1(U2) =
[

3
4 , 1
]

3. U2 ∩ f−1(U1) =
[

1
4 ,

1
2

]

4. U2 ∩ f−1(U2) =
[

1
2 ,

3
4

]

The joint partition is used in computing the entropy with respect to T . Re-
ferred to as the metric entropy of T relative to ξ, it is computed by
h(T, ξ) = hµ(T, ξ) = limn→∞ n−1H(ξT−n) where µ is an invariant measure on T .
h(T, ξ) is guaranteed to exist, and it follows that the entropy of the measure-
preserving transformation with respect to the measure is h(T) = hµ(T) =
sup{hµ(T, ξ) | ξ is a measurable partition of finite entropy}. [2] The above
supremum is reached when ξ is a “generator partition” which is defined in [2].

Example Let us continue to use the partition ξ =
{[

0, 12
]

,
[

1
2 , 1
]}

and measure-
preserving transformation f from the previous example. Katok and Has-
selblatt state that ξ is a generator partition for f and measure µ where
µ(S) is the length of the arc S ∈ S1. Clearly ξ = ξ

f
−1, the cardinality of

ξ
f
−1 is 2, and µ(

[

0, 1
2

]

) = µ(
[

1
2 , 1
]

) = 1
2 . By the results of the previous

example, we also know that the cardinality of ξf−2 is 4 and µ(U) = 1
4 for

all U ∈ ξ
f
−2.

It can easily follow from induction that the cardinality of ξf−n is 2n and

µ(U) = 1
2n for all U ∈ ξ

f
−n. Thus we can compute:

H(ξf−n) = Hµ(f, ξ) = −
∑

U∈ξ
f
−n

µ(U) log µ(U) = −2n ·
(

1
2n · log

(

1
2n

))

= −(−n) log(2) = n log(2)

8

It follows that hµ(f, ξ) = limn→∞ n−1Hµ(f, ξ) = limn→∞ n−1·(n log(2)) =
log(2) is the metric entropy of f relative to ξ.

Proposition 2 For the measure-preserving expanding maps on S
1 of the form

j(x) = kx (mod 1), hµ(j) = log(k) for all k ∈ N.

1.5.2 Topological Entropy

Proposition 2 now allows us to find the entropy hµ(f) as a function with respect
to the measure µ alone. However, we still need to have some caution since there
exist many invariant measures for a given transformation T . For example, the
point-mass measure at {0} defined for S ⊂ S1 as:

µ(S) =

{

1 if 0 ∈ S
0 if 0 6∈ S

is invariant with respect to the expanding map f since µ(f−1(S)) = µ(S) for
all possible S. This follows from the fact that 0 is a fixed point of f and that
0 ≡ 1 (mod 1). As this maps all subsets of S1 to the fixed point, we conclude
that the entropy is hµ(f) = log(1) = 0 in this case.

Thus the entropy of a measure-preserving transformation T varies with re-
spect to the chosen measure µ. This arises from the fact that the entropy with
some measure µ is the observed complexity through that particular measure.
Since a measure is nothing more than a tool to provide perspective relations
to the elements in a space, the observation of the transformation’s entropy is
limited to the individual measure’s viewpoint of the space.

If we prefer to remove this bias of perspective, then we must consider a view
where measures see all elements of the space equally (that is, where µ(x) =
C for all x in the space). The topological entropy is defined topologically
to accomplish this so that no measure is involved in the observation. The
topological entropy may be determined by the theorem below.

Theorem 1 For a fixed measure-preserving transformation T , the topological
entropy is hµ(T) = supµ{hµ(T)}.

Example For any expanding map f on the circle space, the topological entropy
happens to be log(n) where n is the number k that is the scalar of x which
we found in Proposition 2.

[2]

1.5.3 Weighted Entropy

Let us define a potential function ϕ : S1 → R that is continuous. In particular,
the purpose of ϕ is to apply varying weights to the points along the circle space.
Then the weighted entropy of a measure-preserving transformation T with
respect to ϕ and invariant measure µ is

hµ(T) +

∫

ϕdµ

9

The invariant measure µ∗ that yields the maximum value of the above for-
mula for a fixed T and ϕ is referred to as the equilibrium measure/state of
ϕ. We present some propositions below regarding the existence and uniqueness
of µ∗ and direct the reader to [5] for further details and proofs.

Proposition 3 µ∗ exists if ϕ is continuous.

Proposition 4 µ∗ is unique if ϕ is Hölder continuous. This means that
for all α > 0, there exists a constant C ∈ R such that |ϕ(x)− ϕ(y)| ≤
C |x− y|α.

We consider a special potential function with regards to T . It is ϕ(x) =
− log(T ′(x)) which is continuous. Any example where T ′ is Hölder continu-
ous implies that ϕ is Hölder continuous. Then we have satisfied Propositions
3 and 4 so that µ∗ exists and is unique. For this particular potential function,
µ∗ is also called the Sinai-Ruelle-Bowen (SRB) measure or the physical
measure since it captures the behavior of typical orbits of the system from
the equilibrium’s point-of-view. Due to capturing this behavior, it is the most
important of the entropy observations.

We recall from Section 1.4 that as an invariant measure, µ∗ has a density
function ρ on S1. That is, there exists a density function ρ(x) ≥ 0 such that

µ∗([a, b]) =

∫ b

a

ρ(x)dx

for all intervals [a, b] ∈ S1. µ∗ is invariant with respect to T if and only if the
associated density function ρ is the fixed point of the transfer operator L∗ for
the measure-preserving transformation T .

Hence iteratively computing the measure on T is equivalent to iteratively
computing the transfer operator L∗ on the measure’s density function. We can
find µ∗ by starting with any initial density function which we will call ρ0. We
note that ρ0 does not need to be invariant. A new density function ρ1 can then be
induced by L∗ as ρ1(x) = L∗(ρ0(x)). Furthermore, we may induce later density
functions by L∗ as ρn(x) = L∗(ρn−1(x)). As a fixed point (which happens to
be an attractor), it follows that limn→∞ Ln

∗ (ρ0(x)) = ρ(x) associated with the
SRB measure µ∗. Upon finding the equilibrium state µ∗, we can compute the
entropy with respect to it by taking advantage of Theorem 2 below:

Theorem 2 (Ruelle) The weighted entropy of T with respect to µ∗ when µ∗ is
the SRB equilibrium state is 0. [5]

Thus we can solve for hµ∗(T) via the following integral computation:

hµ∗(T) +
∫

ϕ · dµ∗ = 0
⇓

hµ∗(T) +
∫

(− log(T ′(x))) · ρ(x)dx
⇓

hµ∗(T) =
∫

(log(T ′(x))) · ρ(x)dx

10

where ρ(x) can be found through infinite iteration as shown above and T ′(x)
can be computed using differential calculus. Due to the difficulty of performing
an infinite number of iterations, we will use numerical methods to obtain a
reasonable convergence estimate of ρ(x). We will also use numerical methods
to approximate the integral needed to find the SRB entropy hµ∗(T) since it
may be difficult to derive for particular choices of T .

1.6 Validity of Methodology

In Section 1.5.3., we provide a method for finding the SRB measure that involves
infinitely iterating the transfer operator L∗ on an arbitrary initial density func-
tion ρ0. However, the contraction mapping theorem from functional analysis
does not apply since L∗ is not a contracting map. That is, we have no guaran-
tee that

d(ρi(a), ρi(b)) > d(ρi+1(a), ρi+1(b))

which means that each density function is not guaranteed to shrink towards the
fixed point.

Depsite this, it can easily be shown that L∗ is a linear operator such that
L∗(ρ(x) + η(x)) = L∗(ρ(x)) + L∗(η(x)) and L∗(c · ρ(x)) = c · L∗(ρ(x)) for all
density functions ρ(x) and η(x) as well as all scalars c ∈ R. Thus we are able
to study the spectrum of L∗ and it happens to be the case that its largest
eigenvalue is λ = 1⇒ L∗(ρ(x)) = ρ(x). For L∗ to have been a contracting map,
it would have been necessary for the absolute value of all its eigenvalues to be
strictly less than 1.

Yet there exists a gap between this eigenvalue of 1 and the remaining eigen-
values of L∗. This gap is defined by the existence of a real number λ0 < 1 such
that sup{|λ| |λ ∈ Λ(L∗)\1} = λ0 where Λ(L∗) is the collection of all eigenvalues
of L∗. An illustration of this gap may be viewed in Figure 4. We further note
that the Lasota-Yorke inequalities are satisfied; we refer the reader to [3]
for an explanation of this condition.

Lasota has also shown that when a map P (x) is not contracting, we can
still guarantee convergence to the fixed point of the map x∗ through infinite
iteration as long as:

1. The greatest eigenvalue of P is 1.

2. There is a gap between the eigenvalue of 1 mentioned above and all other
eigenvalues.

3. The Lasota-Yorke inequalities are satisfied.

That is, given that the three conditions are satisfied,

lim
n→∞

Pn(x) = x∗

Because L∗ satisfies the conditions, it also follows that L∗(ρ0) → ρ(x) where

µ∗([a, b]) =
∫ b

a
ρ(x)dx. [3]

11

Figure 4: A graphical representation of a gap between the eigenvalue of 1 and
the remaining eigenvalues in the complex plane. The supremum is represented
by the dashed circle with radius λ0.

2 Methods Used in Numerical Computation

2.1 Numerically Computing the Density function ρ(x)

We recall that L∗ is the transfer operator defined with respect to g∗ as:

L∗(ρ(x)) =
ρ(g−1

∗;1(x))

g′∗(g
−1
∗;1(x))

+
ρ(g−1

∗;2(x))

g′∗(g
−1
∗;2(x))

where g∗(x) = (2x + ǫi sin(2πx)) mod 1 if i−1
k
≤ x < i

k
. k is the number of

parameters provided in the form of ∗ = ǫ1, ǫ2, . . . , ǫk. As g∗ is a fixed function,
we can precompute the inverses and first derivatives needed for computing L∗.
Then we only have to find the value of the density function at the inverse
values as we compute each iteration of L∗; the remaining addition and division
computations are trivial operations.

2.1.1 Precomputation Using g∗

Upon selecting our parameters ∗, we can easily find the first derivative of g∗
using elementary differential calculus:

g′∗(x) = 2 + 2πǫi cos(2πx) if
i− 1

k
≤ x <

i

k

12

Likewise, we can approximate the two inverse values of g−1
∗ using the Newton-

Raphson Method. That is, we will minimize ||x − g∗(ŷ)||1 by iteratively com-
puting

ŷn+1 = ŷn −
g∗(ŷn)

g′∗(ŷn)

with initial values ŷ0 = 0.25 to determine g−1
∗;1(x) and ŷ0 = 0.75 to determine

g−1
∗;2(x). We set our threshold for the numerically converged stopping condition

at 10−9. Due to the limitations of computer memory, we cannot obtain these
precomputations for every x ∈ [0, 1] (memory is a countably finite resource).
Thus we will perform these computations at every x ∈ {0, 1

j
, 2
j
, . . . , j−1

j
, 1} for

some j ∈ N. While greater j require more memory and time for precomputation,
it makes the available interval more fine-grained which improves our accuracy.

2.1.2 Numerical Implementation Details for Finding ρ(x)

Due to the discrete nature of computers, we are limited to numerical methods
that only approximate each ρi(x). In particular, we are only able to compute
ρi(x) for a specific x if x is one of the selected points along the interval [0, 1]
used in computation. All input values between two consecutive selected points
must be approximated or “ignored.” This leads to questioning if {ρi(x)} ever
converges to φǫ(x) as it would in continuous space. If it does, we could follow
this with the question of whether or not the convergence would be quicker since
only a subset of points along the interval [0, 1] have to converge. Clearly such an
issue only applies to point-wise convergence since uniform convergence applies
to every point in the interval.

There is also the issue of determining which discrete representation we will
choose to use. Each one will yield a different value of ρi(x) for a given x. One
method uses just the selected points and rounds x to the nearest selected point
(endpoint method) and the other is to proportionally average the result with
respect to the two selected points between which x is found (interpolation
method). That is, the interpolation method approximates along the line seg-
ment ρi(x) ≈

x2−x
x2−x1

ρi−1(x1) +
x−x1

x2−x1
ρi−1(x2) where x1 ≤ x ≤ x2.

Regardless of our approximation method, we will often overestimate or un-
derestimate the values of ρi(x) which will prevent the density function from
satisfying its property of representing a distribution along [0, 1]. That is, it may
not be the case that

∫ 1

0

ρi(x)dx = 1

after using the endpoint or interpolation methods. However, the proportionality
amongst values still exists so that we may normalize the density function. Our
normalization constant will simply be the area under the density function along
the interval [0, 1]. Because we only have access to the discretized interval, we
will need to use a Riemann sum to approximate this interval as well. Due to its
greater accuracy, though, we will use Simpson’s Rule for approximation instead.

13

Thus we numerically compute the normalization constant as

Z =
1

3n

ρi (0) + 2

n
2
−1
∑

m=1

ρi

(

2m

n

)

+ 4

n
2
−1
∑

m=0

ρi

(

2m+ 1

n

)

+ ρi (1)

and then normalize ρi(x)
Z
→ ρi(x) where → is the assignment operator. [6]

2.2 Numerically Computing the SRB Entropy hµ∗(g∗)

Upon approximating the density function ρ(x) that is associated with the SRB
measure, we can numerically calculate the SRB entropy

hµ∗(g∗) =

∫ 1

0

(log(g′∗(x))) · ρ(x)dx

We still have the precomputed derivative described in Section 2.1.1, and most
modern programming languages contain an implementation of the logarithm
function in their mathematics package. The remaining multiplication between
the log of the derivative and the density is a trivial operation. To get the best
approximation of this integral, we again use Simpson’s Rule

1

3n

log (g′∗ (0)) · ρ (0) + 2

n
2
−1
∑

m=1

log

(

g′∗

(

2m

n

))

· ρ

(

2m

n

)

+

4

n
2
−1
∑

m=0

log

(

g′∗

(

2m+ 1

n

))

· ρ

(

2m+ 1

n

)

+ log (g′∗ (1)) · ρ (1)

[6] Like any discrete approximation over a continuous interval, we obtain a more
accurate estimate as our number of discrete components increases to make the
interval more fine-grained.

3 Discussion

3.1 Results and Conjectures

After implementing the pseudocode from Section 2.3 in the C/C++ program-
ming language, we were able to run the program with various choices for the
parameter list ∗. However, because each parameter is restricted to the interval
ǫi ∈ [− 1

2π ,
1
2π], we are able to plot the SRB entropy over the entire set of param-

eter lists in one and two dimensions. These plots may be viewed in Figures 5
and 6, respectively. We recall that the one-dimensional version of g∗ is equal to
the two-dimensional versions where ǫ1 = ǫ2. So Figure 5 can also be considered
a cross-section of Figure 6 taken through the ǫ1 = ǫ2 plane.

As expected from our example in Section 1.5.1, the entropy at ǫ1 = ǫ2 = 0 is
log(2) which is the entropy of f . We may also observe from the contour plots in

14

Figure 5: Plot of the SRB Entropy for gǫ(x) along the interval ǫ ∈ [− 1
2π ,

1
2π].

Figure 7 that the SRB entropy seems to strictly decrease as the parameters ap-
proach the endpoints of the intervals. Thus we present the following conjectures
regarding the entropy of these variations on the expanding map:

Conjecture 1 For all curves defined from ǫ1 = ǫ2 = 0 to either ǫ1 = − 1
2π , ǫ2 ∈

[− 1
2π ,

1
2π] or ǫ1 ∈ [− 1

2π ,
1
2π], ǫ2 = ± 1

2π , hµ(gǫ1,ǫ2) is monotonically decreas-
ing.

Conjecture 2

inf

{

hµ (gǫ1,ǫ2)

∣

∣

∣

∣

ǫ1, ǫ2 ∈

[

−
1

2π
,
1

2π

]}

= 0

We also found the equilibrium density functions ρ to have an interesting
form. It appears that as the values of the parameters decrease, ρ develops a
more extreme exponential shape where the values near either 0 or 1 are large
and the rest of the interval quickly decreases towards extrememly small values.
On the other hand, an increase in the values of the parameters leads to a more
polynomial or trigonometric-shaped curve for ρ. The curves are mostly asym-
metrical in form so that it is neither the case that ρ(x) = ρ(1 − x) nor that
ρ′(x) = −ρ′(1− x). Examples of these density functions may be seen in Figure
8.

15

Figure 6: Plot of the SRB Entropy for gǫ1,ǫ2(x) along the interval ǫ1, ǫ2 ∈
[− 1

2π ,
1
2π] from two perspectives.

16

Figure 7: Contour plot of the SRB Entropy for gǫ1,ǫ2(x) along the interval
ǫ1, ǫ2 ∈ [− 1

2π ,
1
2π].

Figure 8: Examples of the density function ρ with respect to specific gǫ1,ǫ2(x)
along the interval ǫ1, ǫ2 ∈ [− 1

2π ,
1
2π].

17

3.2 Future Research

As we only approximated the entropies of the perturbations of the expanding
map g∗ through numerical computations, we plan to use analytic techniques and
theory in order to study the validity of our conjectures above. Furthermore, we
hope to study the variation of the SRB Entropy of g∗ with more parameters. Due
to the risk of losing continuity with these additional parameters when applying
perturbation to f(x) = 2x mod 1, we would require that ∗ has at most k

parameters ǫ1, ǫ2, . . . , ǫk when g∗ corresponds to the perturbation of f(x) = kx

mod 1. That is, we will consider more parameters when we increase the rate of
expansion.

References

[1] Elaydi, Saber N. “Discrete Chaos Second Edition: With Applications in
Science and Engineering”, Taylor & Francis Group, 2008.

[2] Katok, Anatole and Hasselblat, Boris. “Introduction to the Modern
Theory of Dynamical Systems”, Cambridge University Press, 1995.

[3] Lasota A. and Mackey, M. C. “Chaos, Fractals, and Noise Second, Edi-
tion”, Springer-Verlag, New York, 1995.

[4] Llave, Rafael De La, Shub, Michael and Simó, Carles. Entropy
Estimates for a Family of Expanding Maps of the Circle, Discrete and Con-
tinuous Dynamical Systems, Vol. 10, pp 597-608, 2008.

[5] Ruelle, David. “Thermodynamic Formalism, Encyclopedia of Mathemat-
ics and Its Applications, Volume 5”, Addison-Wesley, London, 1978.

[6] Weisstein, Eric W. “Simpson’s Rule.” From MathWorld – A Wolfram
Resource. http://mathworld.wolfram.com/SimpsonsRule.html

4 Appendix A: List of Functions and Variables

Used

f(x) = kx mod 1 for any k ∈ N \ 1 (Expanding Map)

∗ is a list of k ∈ N parameters such that ǫ1, ǫ2, . . . , ǫk ∈ [− 1
2π ,

1
2π]

g∗(x) = (kx+ ǫi sin(2πx)) mod 1 if i−1
k
≤ x < i

k
for any k ∈ N \ 1

ρn(x) is a density function on [0, 1]

L∗(ρ(x)) =
ρ(g−1

∗,1(x))

g′

∗
(g−1

∗,1(x))
+

ρ(g−1

∗,2(x))

g′

∗
(g−1

∗,2(x))
where g−1

∗,1(x) ≤ g−1
∗,2(x) (Transfer Func-

tion)

18

ρ(x) is the equilibrium density function on [0, 1] such that L∗(ρ) = ρ

µ is a measure

T is a measure-preserving transformation in a given space

ξ is a measurable partition of a space

Hµ(ξ) = −
∑

α∈ξ µ(Cα) logµ(Cα) where 0 · log 0 = 0 (Entropy of a dynam-
ical system)

H = −
∑n

i=1 pi log(pi) where
∑n

i=1 pi = 1 (Shannon Entropy for infor-
mation loss)

ϕ is a potential function that applies weight along an interval

hµ(T) +
∫

ϕdµ is the weighted entropy

When ϕ(x) = − log(T ′(x)), the invariant measure µ∗ that yields the max-
imum weighted entropy is the SRB measure

hµ(T) =
∫ 1

0 log(T ′(x)) · ρ(x)dx (Pesin’s Theorem)

5 Appendix B: Pseudocode

Algorithm 1 Compute SRB Entropy hµ∗(g∗)

1: return
∫ 1

0
(log (g′∗(x)) · ρ(x)) · dx; ⊲ Simpson’s Rule

Algorithm 2 Approximate g−1
∗ (x) Using the Newton-Raphson Method

1: for i from 0 to k − 1 by 1 do ⊲ k = number of parameters in ∗
2: point← x+i

k
; ⊲ Initial point to test

3: difference← abs(g∗(point)− x);
4: while difference > CONV ERGENCETHRESHOLD do

5: point← point− g∗(point)−x

g′

∗
(point) ;

6: difference← abs(g∗(point)− x);
7: end while

8: inverses[i]← point; ⊲ Inverse point is found
9: end for

10: return inverses;

19

Algorithm 3 Compute Equilibrium Density Function ρ

1: ⊲ Precompute the values of g−1
∗ (x) and g′∗(g

−1
∗ (x)) for the transfer function

2: for i from 0 to 2 · TOTALPOINTS by 1 do

3: precompGInv[i]← g−1
∗ (i

2·TOTALPOINTS
); ⊲ Newton-Raphson Method

4: precompGPrm[i][1]← g′∗(precompGInv[i][1]);
5: precompGPrm[i][2]← g′∗(precompGInv[i][2]);
6: end for

7: while not converged(ρprevious, ρcurrent) do
8: for i from 0 to 2 · TOTALPOINTS by 1 do

9: ρprevious[i]← ρcurrent[i];

10: ρcurrent[i]←
ρcurrent[⌊precompGInv[i][1]·2·TOTALPOINTS⌋]

precompGPrm[i][1] +
ρcurrent[⌊precompGInv[i][2]·2·TOTALPOINTS⌋]

precompGPrm[i][2] ; ⊲ Transfer Function

11: end for

12: normalizeConstant←
∫ 1

0
ρcurrent(x) · dx; ⊲ Simpson’s Rule

13: for i from 0 to 2 · TOTALPOINTS by 1 do

14: ρcurrent[i]←
ρcurrent[i]

normalizeConstant
;

15: end for

16: end while

17: return ρcurrent; ⊲ Equilibrium density function ρ obtained

Algorithm 4 Approximate
∫ 1

0 f(x) · dx Using Simpson’s Rule

1: integratedV alue← f(0);
2: ∆← 1

2·TOTALPOINTS
;

3: for i from 1 to (2 · TOTALPOINTS)− 1 by 2 do ⊲ i is odd
4: integratedV alue← integratedV alue+ 4f(i ·∆) + 2f((i+ 1) ·∆);
5: end for

6: ⊲ Only want one copy of f(1) in the summation
7: integratedV alue← integratedV alue− f(1);
8: integratedV alue← integratedV alue ·∆ · 13 ;
9: return integratedV alue;

20

