
Parameterizing Behavior Trees

Alexander Shoulson, Francisco M. Garcia, Matthew Jones,
Robert Mead, and Norman I. Badler

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
{shoulson,fgarcia,majo,robmead,badler}@seas.upenn.edu

Abstract. This paper introduces and motivates the application of pa-
rameterization to behavior trees. As a framework, behavior trees are
becoming more commonly used for agent controllers in interactive game
environments. We describe a way by which behavior trees can be au-
thored for acting upon functions with arguments, as opposed to being
limited to nonparametric tasks. We expand upon this idea to provide a
method by which a subtree itself can be encapsulated with an exposed
parameter interface through a lookup node, which enables code reuse in
a manner already exploited by object oriented programming languages.
Parameterization also allows us to recast Smart Events (a mechanism
for co-opting agents to perform a desired activity) as behavior trees that
can act generically upon groups of typed agents. Finally, we introduce
a tool called Topiary, which enables the graphically-oriented authoring
of behavior trees with this functionality as part of a broader testbed for
agent simulation.

Keywords: Behavior Trees, Smart Events, Behavioral AI, Agents.

1 Introduction

While traditionally known for use in industrial and commercial environments
for describing large-scale projects [4], behavior trees are garnering attention in
the computer gaming industry for use in designing the artificial intelligence logic
for environmental agents. In particular, they have been applied in sophisticated,
popular games requiring intelligent teammates and adversaries such as Spore [2],
Halo 2 [5], and Halo 3 [6], among others. This formalism is a natural choice for
game AI, as behavior trees lend themselves well to behavior-oriented design for
complex systems [3]. The paradigm enables sophisticated sequences of actions
and contingencies to be represented as a concise graphical structure following a
set of very simple rules with equivalent representations as Communicating Se-
quential Processes (CSPs). The notation allows task requirements and specifica-
tions, normally conceptualized in natural language, to be captured and expressed
in an actionable format [12] that can be converted to code or data streams [7].

One of the most appealing aspects of behavior trees is their simplicity. As
part of this, we recognize that Millington and Funge [9, p. 361] insist, “We cer-
tainly don’t want to pass data into tasks as parameters to their run method”

J.M. Allbeck and P. Faloutsos (Eds.): MIG 2011, LNCS 7060, pp. 144–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parameterizing Behavior Trees 145

when a leaf node calls a subroutine. This follows a guideline of building behav-
ior trees that can invoke tasks solely as if they were functions with no explicit
parameters. However, lexicalized parameter sequences are a powerful feature of
object-oriented programming languages [8], and avoiding them results in opaque
and confusing data flow. Making each node aware of the parameters of its asso-
ciated agent member function is a simple task given a description of that agent,
and streamlines the way in which these functions are invoked. With the param-
eters of functions exposed to the nodes that use them, an author has the power
to directly modulate the way in which an agent performs a certain action using
just that node on the behavior tree itself.

For communication between nodes and with invoked functions, behavior trees
traditionally rely on a blackboard, which is a centralized, flat repository of data
to which all interested parties have access [9]. This approach does not lend itself
well to encapsulation and, as a result, frustrates subtree reuse. The behavior
tree structure itself can make it difficult to track what and where data is stored
where in the blackboard. For example, two encapsulated subtrees may both use
the same fields of the blackboard several layers down in their hierarchy, and
could overwrite each other in a manner difficult to trace.

We also would like to allow external parameterization, such as a subtree where
an agent sleeps for N hours. This is possible with a blackboard; one could first
write N somewhere on the blackboard and then build the subtree to read that
field. However, this paradigm is clumsy and unintuitive – there is no explicitly
visualized causality in the tree between setting a value for N and executing
the “sleep” subtree, especially if that sleep subtree is buried under layers of
hierarchy. This approach is also made difficult by the common “parallel” node
construct for cooperative multithreading in trees, where each subtree is executed
in an interwoven fashion. If two independent subtrees read and write the same
parameter fields on the blackboard, race conditions can occur, and so we would
require decorators to lock nodes all for the sake of parameterizing subtrees. All
of this machinery directly contradicts the simplicity that makes behavior trees
desirable.

To help alleviate this problem, we propose a system designed to intuitively re-
duce behavior tree reliance on blackboard fields. We not only expose the parame-
ters of the functions invoked by tree leaves, but parameterize subtrees themselves
– encapsulating them as nodes with their own allocated parameter scope that
is exposed to the parent tree as an interface. Parameters are now given to these
wrapped subtree nodes without a blackboard, and can be clearly represented in
the tree. We draw this idea from Parameterized Action Representations (PARs)
[1], but generalize it further into any behavior tree that provides a parameter
interface at its topmost level.

Introducting the notion of parameterization to the structure of behavior trees
enables new opportunities for code flexibility. We gain the ability to parameterize
not only the way in which tasks are executed, but also which agents are exe-
cuting the tasks, which also allows us to revisit the Smart Event [11] formalism
from a behavior tree perspective. In the remainder of this paper we discuss the

146 A. Shoulson et al.

various methods we employ to recast PARs and Smart Events within a behavior
tree framework that exploits a new, reasoned approach to subtree encapsulation
and parameterization. We also describe a tool currently in development, called
Topiary, that enables the graphical construction of parameterized behavior trees
and behavior tree-based Smart Events for use in the Agent Development and
Prototyping Testbed (ADAPT), a simulation platform built on the Unity game
engine.

2 Parameterizing Subtrees

2.1 The Agent Model

Before building a behavior tree for an agent, we must have some description of that
agent with respect to the data it stores and the actions it can perform. We refer
to these two sets of qualities as traits and capabilities. In an object-oriented envi-
ronment, we define an agent as an object class, where traits are specially tagged
member variables, and capabilities are similarly tagged member functions. We
use a tagging system to differentiate them from internal data and helper func-
tions that we do not wish to expose to the behavior tree. Traits comprise the key
components of an agent’s state – any information that may be necessary for the
agent to make a decision about its next action in a behavior tree. Capabilities
contain all of the mechanics needed to perform the atomic tasks with which they
are associated. An agent may have a “yawn” capability, which plays an animation
and a sound. A capability may act on data, either that of its parameters or that
stored in or perceived by the agent. For instance, the “yawn” capability may take
a parameter for the volume of the played sound, which would be specified upon
invocation of the capability function. The “yawn” capability may also consider a
“rudeness” quality inherent to the agent, to determine whether or not to display
the agent covering its mouth according to social norms.

Traits and capabilities have parallel representations as behavior tree leaf nodes.
Traits are manifested as assertion leaf nodes, which compare the given trait’s
value to another expression when ticked, and succeed if and only if the compari-
son evaluates to true. Capabilities are utilized by action nodes that, when started,
invoke the underlying capability function and return its status result (success,
failure, or still running) after each tick. Trees are built for an agent after the in-
terface of the agent model is defined, and so the lexicon of nodes available to the
behavior tree designer follows directly from reading that interface.

Assertions take parameters comprising the expression to which they are com-
pared, and actions take as many parameters as the underlying capability func-
tion in the agent model interface. The values for these parameters can come
from three sources. First, they can be hardcoded literals embedded in the tree
by the author. Second, parameters can be taken from the traits of the world or
agent itself, so the volume parameter to the example “yawn” capability could be
drawn from the time of day in the environment or the agent’s “tiredness” trait.
Finally, parameter values can be satisfied with what we call a PAR argument.

Parameterizing Behavior Trees 147

2.2 Subtrees with Arguments

PAR arguments serve as parameters to the scope of specific subtree. They can
be created as needed by the tree designer and can be reused in multiple places
for the parameters to multiple tree leaf nodes. For example, we can designate
an arg tiredness PAR argument, and pass that same argument with respect to
both the volume for a yawning sound, and the speed at which an agent should
walk for two distinct nodes in a single behavior tree.

The key value of PAR arguments arises when we revisit behavior tree ab-
straction and encapsulation. Recall that in behavior trees, distinct trees can be
designed and stored, and then used in other trees by means of a “lookup” node.
Wherever that “lookup” node appears in a tree, it is treated as if root of that
subtree stood in its place. When we design and store a behavior tree with PAR
arguments and then reference that tree in a larger tree by means of a lookup
node, the PAR arguments of that referenced tree are exposed as parameters to
the lookup node itself. These operates the same was as action nodes that take
parameters for agent capabilities.

PAR arguments can traverse nested layers of scope and change names in each.
That is, a behavior tree can invoke a subtree with parameters, for which it uses
another PAR argument as a value. If that parent tree is encapsulated in another
lookup node reference, the value of that top-level PAR argument is propagated
down to the internal lookup node’s parameter, which then populates the internal
subtree’s PAR argument. This is directly analogous to the way function calls can
be nested in the body of another function.

With this technique, we can build libraries of parameterized behavior trees (to
which we refer as PAR trees) that take various parameters and reuse their logic
in places throughout the larger tree without the need for storing and retrieving
parameter data from the blackboard. Because the entire parent-child message
passing system is encoded in the structure of the tree itself, it can be handled
programmatically without the use of an external data structure. This eases sub-
tree encapsulation (hierarchy-based abstraction already being a key benefit of
behavior trees) and exposes it to the designer of the tree in an intuitive fashion
that is already paradigmatically ubiquitious in familiar programming languages.

3 Smart Events as Behavior Trees

Smart Events provide an event-centric behavior authoring approach in which
desired or scheduled occurrences in the environment contain all of the informa-
tion the agent requires in order to participate [11]. This is especially useful for
behaviors requiring the simultaneous control of multiple agents. Rather than
designing agents to react to one another when, say, taking turns in a conversa-
tion, the entire interplay of the interaction can be placed in a single structure
dictating the actions of the appropriate agent at the appropriate position in the
sequence. Authoring behavior from the perspective of the entire event gives us
a clearer point of view than we are afforded when focusing individually on the
behavior of each individual participating agent out of context.

148 A. Shoulson et al.

Traditional Smart Events influence agents by use of a message board. Agents
in the environment regularly consult an appropriate message board to determine
which action they should perform at that moment based on the situation in which
they are involved. From the contents of that message board, agents retrieve
the appropriate action and follow the sequence of behaviors encoded within. In
introducing behavior trees as the underlying control structure, we must change
this process to some degree. In particular, externally changing which node is
active in a behavior tree, or otherwise affecting the node execution order can
yield undesired results (not unlike arbitratily jumping to or reordering lines
of code in a traditional programming language). Rather than attempting to
externally manipulate an active behavior tree, we find it easier to split behaviors
into multiple behavior trees that can be started, stopped, and replaced with one
another depending on desired activity outcome.

With this in mind, we say the following: the behavior contained within an
event is represented as a behavior tree that preempts any other behaviors that
the agents involved in that event would perform. In other words, agents outside
of events will traverse the environment and accomplish tasks based on their
own individualized behavior trees, but whenever that agent is involved in an
event, that internal agent tree is stopped, the agent is temporarily stripped of
all autonomy, and the tree contained in the event itself begins to act upon the
agent. When the event ends, the agent restarts its own internal behavior tree
and regains the autonomy to act according to it. Note that we do not resume the
original tree – any well-designed behavior tree should always find an appropriate
action to perform when started based on the agent’s context.

For events involving multiple agents at once, we build one centralized tree for
the event that can act upon participating agents by treating them as limbs of
the same entity. In trees for these multi-agent events, all assertion and action
nodes take an additional parameter identifying which agent will be performing
that node. The agent in the first role may be told to perform an action, and
then the agent in the second, and so on. Of course, in events with heterogenous
agents, certain types of assertion and action nodes are restricted only to the
agents with the appropriate traits and capabilities. In a sense, the participating
agents themselves become parameters of that event PAR tree. For example, a
conversation may be designed generically for any three agents to perform (in
three different roles), and then at runtime any three appropriate agents may be
selected to enact those roles in the event.

Event trees and agent-specific trees can leverage the same set of encapsulated
PAR trees, provided the subject is appropriate. When a PAR tree is designed
for one or more agents and stored as an encapsulated subtree, that subtree
description stores the agent type(s) for which that subtree was built. If we design
a subtree for a particular type of agent and wrap it as a PAR tree, it can be
invoked by the agent’s own internal tree, or by any event that has that agent
type in one of its roles and wishes to make that particular agent role perform
that PAR tree.

Events are also allocated their own variable scope, which can be instantiated
with data and modified at any time by both the event’s internal control PAR

Parameterizing Behavior Trees 149

tree and external components of the system interested in manipulating the pro-
gression of the event. Note that because of this unique scope, the top-level PAR
tree for an event cannot have PAR arguments. Instead, it can access the vari-
ables in the event scope in the same way it would access the traits of an agent,
using them to fill in parameters for nodes, or evaluating them using assertion
nodes. These three qualities of an event – the agents involved and their types,
the fields in the event’s scope, and the behavior tree dictating the actions those
agents perform are all authored by a designer as a cohesive structure to be later
instantiated and dispatched to groups of agents as appropriate.

4 Example

We will now present an example incorporating all of these techniques. Suppose
we wish to display two human agents haggling over a large flower pot on the
ground. Upon purchase, the seller will permit the buyer to pick the object up
and leave. First, we define a very simple human agent model as follows:

class HumanAgent {

[Traits]

name : String

strength : Int

tiredness : Int

[Capabilities]

function perform(act_name : String) {

// Perform the named animation and/or sound

...

return Success

}

function Grasp(item_reference : Item) {

// Reach out and grab the referenced item

...

return Success

}

function WalkTo(location_name : String) {

// Walk towards the named location in the environment

...

return Success

}

function Wander() {

// Wander around the environment

...

return Success

}

}

150 A. Shoulson et al.

Obviously, problems such as locomotion and hand positioning for grasping are
well beyond the scope of our discussion and would be handled in the capability
functions themselves.

We will continue by building behavior trees. Like any large system, we will
organize individual components, encapsulate them, and build them into the
larger structure. For instance, we encapsulate a ‘pick up’ PAR tree for bending
over and grabbing an item from the ground in Fig. 1. On the left, we create a

Fig. 1. An encapsulation of a parameterized subtree as a PAR tree with one argument

sequence node with four children. The leftmost child, an assertion, will succeed
if and only if the weight of the item (specified as a PAR argument) is less than
or equal to the strength of the agent. The next three nodes, all actions, will
invoke the agent’s capabilities to display the agent bending down, grasping the
item, and standing up. When we store this tree as a PAR tree, we can access
it later with a lookup node (on the right) called “PickUp”. This lookup node
takes one parameter, arg item of type Item, and because it uses traits and capa-
bilities from the HumanAgent agent model, it can only be invoked on agents of
type HumanAgent (as indicated at the bottom of the lookup node’s description).
Omitted from this tree are a number of other assertions, such as the agent being
close enough to the object to grasp it. We exclude these for simplicity, providing
a single assertion when in fact there would be several requirements to satisfy.
These preparatory specifications (as they are called in the original PAR knowl-
edge frame) are also expressed in the behavior tree. To ensure that the agent
is close enough to the object, we would use a selector node with two children:
an assertion that the agent is close, and a subtree navigating the agent closer
(executing only if the assertion fails).

For our simple example, we give the two agents small trees for their behavior
when they are not involved in any events. These are illustrated in Fig. 2. Observe
that though the two agents are of the same type, they can have two different
individualized trees. Both trees have an infinite loop decorator at their root,
so that they will continue to perform their behaviors unless interrupted. On the
left, the buyer wanders the environment until interrupted by the transaction. On
the right, the seller will randomly alternate between tapping his foot, checking
his watch, or idly waiting, as he does not want to walk away and leave the flower
pot unguarded (the φ-sequence node is a stochastic sequence, which performs
its children in random order). This is a distant analogue of CAROSA’s aleatoric
actions [10], though here simplified to triviality for the sake of illustration. Note

Parameterizing Behavior Trees 151

Fig. 2. The two agent trees for when each agent is not involved in an event

that the Wait(5.0s) function is not part of the agent model, but a global ca-
pability of the world itself. These trees start and receive ticks as soon as the
simulation begins, so that the agents are always active.

Finally, we design the event tree for the transaction itself, which is more
sophisticated, as shown in Fig. 3. The root of this tree is not a loop decorator,
which means that the event can end upon completion. The first child of the root
sequence node initializes a variable in the event variable scope, called price,
to be equal to seven. We use this for counting the progress of the haggling
transaction. We consider the goal of the buyer to reduce that value to four. The
next child instructs the buyer to perform its WalkTo capability to approach the
buying location, at which point the seller greets the buyer. We use a tag at the
top-left of a node to indicate the subject of that action or assertion, if there is one.
Next, we enter the haggling loop. The bottom sequence node, with five children,
displays the sequence of events in a successful pass of the haggling action from
the perspective. If the current agreed upon price is greater than four, the buyer
will perform a haggling animation, we will succeed on a random chance of 50%,
and then the seller will perform an agreement animation and the price will be
decreased. If any of these nodes fail (mainly the assertion or the random coin
toss), the failure will be propagated through that sequence node through the
loop decorator (terminating it), and then through the invert decorator, which
will convert the result into a success so that the root sequence node at the top
of the event tree can continue on to its next child.

After the haggling sequence terminates, the root sequence node advances to
its selector node child. The selector’s leftmost child checks to see if the haggling
loop managed to reduce the price below four. If the final price was indeed below
four, that assertion will fail and so the selector node will advance to its second
child, a sequence which will execute the PickUp lookup node we defined in Fig.
1 and a WalkTo command for the buyer. of the buyer. This subtree will instruct
the Buyer to perform that PickUp action, filling in its arg item parameter with
with a reference to the flower pot, and then walk towards the exit. If the agreed
upon price ended up being greater than or equal to 4, then the assertion will
succeed, so the selector will succeed and skip over its second child (i.e., the buyer
will not pick up the flower pot and leave). At this point, the event terminates. If

152 A. Shoulson et al.

Fig. 3. The PAR tree for the haggling event

the buyer has not left with the flower pot, it will restart its individualized tree
and continue wandering the environment.

Only the PickUp complex action was encapsulated as a PAR tree as a demon-
stration, but other subtrees within this event could have been abstracted. PAR
trees can be built to accommodate multiple agents, acting in a sense like sub-
events without their own variable scope. Note in our example that no external
process initialized or modified the event’s data, but some other structure could
have changed the event.price value at any time. Finally, while Fig. 3 explicitly
states “Buyer” and “Seller” as the subjects of the actions performed during the
event, these are roles local to the event, not global to the environment. Any
other pair of agents of type HumanAgent could be used as the Buyer or Seller,
or the original two agents could have had their positions reversed.

5 Topiary and ADAPT

Topiary is a tool, currently in development, for the graphical creation of behavior
trees with awareness of and support for the parameterization described in the
previous sections. It is designed to work with ADAPT, our platform wrapping
the components needed for agent simulation (like locomotion and pathfinding)
for use with the Unity engine. We follow a short pipeline for authoring agent
behavior. First, the agent model is created as a C# class, using code from Unity
and ADAPT for traits and capabilities, which are tagged with C# attributes.
That agent (along with any others) is then built into an agent DLL, which
is then both imported into Unity and read by Topiary. Topiary extracts the
tagged capabilities and attributes using C# reflection from each DLL, and uses
this information to populate a list of available action and assertion nodes for

Parameterizing Behavior Trees 153

that particular agent. In each PAR tree, Topiary allows the addition of one or
more agents from the available types, and facilitates the assembly of trees using
nodes specific to those agents (actions and assertions), along with global nodes
(waits, etc.), and structural nodes available to all behavior trees (sequences, se-
lectors, parallel nodes, etc.). Actions and assertions, gleaned from the tagged
function signatures and data types in the agent model class, can be parame-
terized accordingly (using hardcoded values, data from agents or the world, or

Fig. 4. Building a PAR tree in Topiary

PAR arguments), and PAR trees can be saved and used in other PAR trees, with
parameters, using lookup nodes. All of this is performed in a drag-and-drop de-
velopment environment designed to be familiar to users of tools like Microsoft
Visual Studio and Adobe Photoshop.

Once agent and event PAR trees are built, they will be able to be built into
C# scripts by Topiary, which can be imported into Unity for use in game objects.
The scripts are designed to call the requisite functions and access the appropriate
data in the agent models against which they have been built. Both the agent
model and the behavior tree are attached to the game object in Unity, the
former providing a wrapper for the functionality of that game object, and the
latter responsible for its decision logic. What results is an integrated development
environment for building PAR trees to control arbitrary agent models (as defined
by some author for the functionality of that agent). Figure 4 displays the current
Topiary interface. The center window is the canvas for arranging and connecting
nodes in the PAR tree. To the left, windows display the following:

– The library of generic nodes (decorators and control structures)
– The current files in the project, including the imported agents and already

authored PAR trees for both agents and events
– For the current active window, the agents that have been added to the PAR

being built, along with the action and assertion nodes available to them

154 A. Shoulson et al.

The Node Inspector sits at the right of the screenshot, which displays the selected
node (currently the “stand” action node of the MyHuman agent), the parameters
of that action (with fields to fill in their values), and space for setting comments
or renaming nodes.

The Topiary canvas can be dynamically sized to accommodate large trees, but
we ultimately bring into question the scalability of behavior tree design. A large,
sophisticated tree for complex agent behavior cannot be visualized in its entirety
without some degree of abstraction, no matter the representational system. After
a certain point, we simply lack the space in which to draw the entire tree. It
is far more reasonable to present compact trees that delegate to lookup nodes
for managing subtrees at a finer grain of detail, for which parameterization of
behavior trees is a valuable asset.

6 Conclusions

While behavior trees are already a powerful tool for authoring agent behav-
iors, the adding capability for encapsulated code reuse within a behavior tree
framework exploits an already prominent feature of behavior trees – hierarchical
abstraction. Already we can use decorators to modify the behavior of a subtree
at its root, say by looping that subtree or preventing its execution, but decora-
tors cannot penetrate that subtree to modify its behavior at any lower level in
great detail. Parameterization allows us to do just that. If a tree is built around
key parameters to modify its execution, the author of the tree gains the power to
tweak the nature of that tree without unwrapping its abstracted components and
modifying its integral structure. An entire subtree, for example, can be disabled
at a very low level in the tree using an assertion on a boolean parameter. In
code, it is difficult to visualize and manage this encapsulation in the context of
a behavior tree structure, but a highly visual tool such as Topiary simplifies the
process with its awareness of PAR tree parameterization and arguments. With-
out a tool like Topiary, one of the key advantages of Behavior Trees – intuitive
visualization – is entirely lost.

This method does not entirely eliminate the need for information to be stored
in a central location for trees to access. In particular, for passing information be-
tween distinct branches of a tree, parameterization will not help. However, this
data would already likely fall under the category of information associated with
the agent’s state, and would have space allocated for it in the agent model itself.

The application of Smart Events as a parameterized behavior tree greatly sim-
plifies the process of authoring events. Where agents were programmed to be
reactive to messages from a central message board, agents can now be entirely
co-opted by a smart event, which specifies all of the details (leveraging abstrac-
tion) of how to execute that event. This recasting of Smart Events also provides
the simplifying assumption of control. In particular, the knowledge that an au-
thor for an event has complete authority over that agent for its duration (un-
less preempted by an event of higher priority) mitigates the set of contingencies
and emergent misbehavior that arises when designing agents to participate in
group activities purely from a standpoint of reacting to stimuli. This cannot be

Parameterizing Behavior Trees 155

accomplished, however, in a behavior tree framework that does not accommodate
the parameterization of its subjects and objects. While intentionally simplified,
the merchant haggling example illustrates how idle agents in the environment can
be involved in an arbitrary event, perform the requisite actions, and then return
to plausible individual behavior all dictated by behavior trees. It is parameteriza-
tion on the layer of encapsulating entire trees with exposed interfaces that makes
this possible.

Acknowledgements. The research reported in this document/presentation
was performed in connection with Contract Number W911NF-10-2-0016 with
the U.S. Army Research Laboratory. The views and conclusions contained in this
document/presentation are those of the authors and should not be interpreted
as presenting the official policies or position, either expressed or implied, of the
U.S. Army Research Laboratory, or the U.S. Government unless so designated
by other authorized documents. Citation of manufacturers or trade names does
not constitute an official endorsement or approval of the use thereof. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation heron.

References

1. Badler, N.I., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., Palmer, M.:
Parameterized action representation for virtual human agents. In: Embodied Con-
versational Agents, pp. 256–284. MIT Press, Cambridge (2000)

2. Hecker, C., McHugh, L., Argenton, M., Dyckho, M.: Three approaches to Halo-style
behavior tree ai. In: Game Developers Conference (2007)

3. Colvin, R., Grunske, L., Winter, K.: Probabilistic Timed Behavior Trees. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 156–175. Springer,
Heidelberg (2007)

4. Colvin, R.J., Hayes, I.J.: A semantics for behavior trees using csp with specification
commands. Sci. Comput. Program. 76, 891–914 (2011)

5. Isla, D.: Handling complexity in the Halo 2 ai. In: Game Developers Conference
(2005)

6. Isla, D.: Halo 3 - building a better battle. In: Game Developers Conference (2008)
7. Knafla, B.: Data-oriented streams spring behavior trees (April 2011),

http://altdevblogaday.com/2011/04/24/

data-oriented-streams-spring-behavior-trees/
8. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Upper

Saddle River (1997)
9. Millington, I., Funge, J.: Artificial Intelligence for Games. Morgan Kaufmann,

Elsevier (2009)
10. Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual Crowds: Methods, Simulation,

and Control. In: Lectures on Computer Graphics and Animation. Morgan & Clay-
pool Publishers (2008)

11. Stocker, C., Sun, L., Huang, P., Qin, W., Allbeck, J.M., Badler, N.I.: Smart Events
and Primed Agents. In: Safonova, A. (ed.) IVA 2010. LNCS, vol. 6356, pp. 15–27.
Springer, Heidelberg (2010)

12. Winter, K.: Formalising Behaviour Trees with CSP. In: Boiten, E.A., Derrick, J.,
Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 148–167. Springer, Heidelberg
(2004)

http://altdevblogaday.com/2011/04/24/data-oriented-streams-spring-behavior-trees/
http://altdevblogaday.com/2011/04/24/data-oriented-streams-spring-behavior-trees/

	Parameterizing Behavior Trees
	Introduction
	Parameterizing Subtrees
	The Agent Model
	Subtrees with Arguments

	Smart Events as Behavior Trees
	Example
	Topiary and ADAPT
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

