
A Meta-MDP Approach to Exploration
for Lifelong Reinforcement Learning

Francisco M. Garcia and Philip S. Thomas
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA, USA

{fmgarcia,pthomas}@cs.umass.edu

Abstract

In this paper we consider the problem of how a reinforcement learning agent that
is tasked with solving a sequence of reinforcement learning problems (a sequence
of Markov decision processes) can use knowledge acquired early in its lifetime to
improve its ability to solve new problems. We argue that previous experience with
similar problems can provide an agent with information about how it should explore
when facing a new but related problem. We show that the search for an optimal
exploration strategy can be formulated as a reinforcement learning problem itself
and demonstrate that such strategy can leverage patterns found in the structure
of related problems. We conclude with experiments that show the benefits of
optimizing an exploration strategy using our proposed framework.

1 Introduction

One hallmark of human intelligence is our ability to leverage knowledge collected over our lifetimes
when we face a new problem. When dealing with a new problem related to one we already know how
to address, we leverage the experience obtained from solving the former problem. For example, upon
buying a new car, we do not re-learn from scratch how to drive a car, instead we use the experience
we had driving a previous car to quickly adapt to the new control and dynamics.

Standard reinforcement learning (RL) methods lack this ability. When faced with a new problem—a
new Markov decision process (MDP)—they typically start learning from scratch, initially making
uninformed decisions in order to explore and learn about the current problem they face. The problem
of creating agents that can leverage previous experiences to solve new problems is called lifelong
learning or continual learning, and is related to the problem of transfer learning.

Although the idea of how an agent can learn to learn has been explored for quite some time [14, 15],
in this paper we focus on one aspect of lifelong learning: when faced with a sequence of MDPs
sampled from a distribution over MDPs, how can a reinforcement learning agent learn an optimal
policy for exploration? Specifically, we do not consider the question of when an agent should explore
or how much an agent should explore, which is a well studied area of reinforcement learning research,
[20, 10, 1, 5, 18]. Instead, we study the question of, given that an agent decides to explore, which
action should it take? In this work we formally define the problem of searching for an optimal
exploration policy and show that this problem can itself be modeled as an MDP. This means that
the task of finding an optimal exploration strategy for a learning agent can be solved by another
reinforcement learning agent that is solving a new meta-MDP, which operates at a different timescale
from the RL agent solving a specific task—one episode of the meta-MDP corresponds to an entire
lifetime of the RL agent. This difference of timescales distinguishes our approach from previous
meta-MDP methods for optimizing components of reinforcement learning algorithms, [21, 9, 22, 8, 3].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

We contend that ignoring the experience an agent might have with related MDPs is a missed
opportunity for guiding exploration on novel but related problems. One such example is exploration
by random action selection (as is common when using Q-learning, [23], Sarsa, [19], and DQN, [11]).
To address this limitation, we propose separating the policies that define the agent’s behavior into an
exploration policy (which is trained across many related MDPs) and an exploitation policy (which is
trained for each specific MDP).

In this paper we make the following contributions: 1) we formally define the problem of searching
for an optimal exploration policy, 2) we prove that this problem can be modeled as a new MDP
and describe one algorithm for solving this meta-MDP, and 3) we present experimental results
that show the benefits of our approach. Although the search for an optimal exploration policy is
only one of the necessary components for lifelong learning (along with deciding when to explore,
how to represent data, how to transfer models, etc.), it provides one key step towards agents that
leverage prior knowledge to solve challenging problems. Code used for this paper can be found at
https://github.com/fmaxgarcia/Meta-MDP

2 Related Work
There is a large body of work discussing the problem of how an agent should behave during exploration
when faced with a single MDP. Simple strategies, such as ε-greedy with random action-selection,
Boltzmann action-selection or softmax action-selection, make sense when an agent has no prior
knowledge of the problem that is currently trying to solve. It is a well-known fact that the performance
of an agent exploring with unguided exploration techniques, such as random action-selection, reduces
drastically as the size of the state-space increases [24]; for example, the performance of Boltzmann or
softmax action-selection hinges on the accuracy of the action-value estimates. When these estimates
are poor (e.g., early during the learning process), it can have a drastic negative effect on the overall
learning ability of the agent. Given this limitation of unguided technique, when there is information
available to guide an agent’s exploration strategy, it should be exploited.

There exists more sophisticated methods for exploration; for example, it is possible to use state-
visitation counts to encourage the agent to explore states that have not been frequently visited [20, 10].
Recent research has also shown that adding an exploration “bonus” to the reward function can be an
effective way of improving exploration; VIME [6] takes a Bayesian approach by maintaining a model
of the dynamics of the environment, obtaining a posterior of the model after taking an action, and
using the KL divergence between these two models as a bonus. The intuition behind this approach
is that encouraging actions that make large updates to the model allows the agent to better explore
areas where the current model is inaccurate. [12] define a bonus in the reward function by adding an
intrinsic reward. They propose using a neural network to predict state transitions based on the action
taken and provide an intrinsic reward proportional to the prediction error. The agent is therefore
encouraged to make state transitions that are not modeled accurately.

Another relevant work in exploration was presented in [3], where the authors propose building a
library of policies from prior experience to explore the environment in new problems more efficiently.
These techniques can be efficient when an agent is dealing with a single MDP; however, when facing
a new problem they ignore potentially useful information the agent may have discovered from solving
a previous task. That is, they fail to leverage prior experience. We aim to address this limitation
by exploiting existing knowledge specifically for exploration. We do so by taking a meta-learning
approach, where a meta-agent learns a policy that is used to guide an RL agent whenever it decides to
explore, and contrast the performance of our method with Model Agnostic Meta-Learning (MAML),
a state-of-the-art general meta-learning method which was shown to be capable of speeding up
learning in RL tasks [4].

3 Background
A Markov decision process (MDP) is a tuple, M = (S,A, P,R, d0), where S is the set of possible
states of the environment, A is the set of possible actions that the agent can take, P (s, a, s′) is the
probability that the environment will transition to state s′ ∈ S if the agent takes action a ∈ A in
state s ∈ S , R(s, a, s′) is a function denoting the reward received after taking action a in state s and
transitioning to state s′, and d0 is the initial state distribution. We use t ∈ {0, 1, 2, . . . , T} to index
the time-step, and write St, At, and Rt to denote the state, action, and reward at time t. We also
consider the undiscounted episodic setting, wherein rewards are not discounted based on the time

2

https://github.com/fmaxgarcia/Meta-MDP

at which they occur. We assume that T , the maximum time step, is finite, and thus we restrict our
discussion to episodic MDPs. We use I to denote the total number of episodes the agent interacts with
an environment. A policy, π : S ×A → [0, 1], provides a conditional distribution over actions given
each possible state: π(s, a) = Pr(At = a|St = s). Furthermore, we assume that for all policies, π,
(and all tasks, c ∈ C, defined later) the expected returns are normalized to be in the interval [0, 1].

One of the key challenges within RL, and the one this work focuses on, is related to the exploration-
exploitation dilemma. To ensure that an agent is able to find a good policy, it should act with
the sole purpose of gathering information about the environment (exploration). However, once
enough information is gathered, it should behave according to what it believes to be the best policy
(exploitation). In this work, we separate the behavior of an RL agent into two distinct policies: an
exploration policy and an exploitation policy. We assume an ε-greedy exploration schedule, i.e., with
probability εi the agent explores and with probability 1− εi the agent exploits, where (εi)

I
i=1 is a

sequence of exploration rates where εi ∈ [0, 1] and i refers to the episode number in the current task.
We note that more sophisticated decisions on when to explore are certainly possible and could exploit
our proposed method. Assuming this exploration strategy the agent forgoes the ability to learn when
it should explore and we assume that the decision as to whether the agent explores or not is random.
That being said, ε-greedy is currently widely used (e.g.,SARSA [19], Q-learning [23], DQN [11])
and its popularity makes its study still relevant today.

Let C be the set of all tasks, c = (S,A, Pc, Rc, dc0). That is, all c ∈ C are MDPs sharing the same
state-set S and action set A, which may have different transition functions Pc, reward functions
Rc, and initial state distributions dc0. An agent is required to solve a set of tasks c ∈ C, where we
refer to the set C as the problem class. Given that each task is a separate MDP, the exploitation
policy might not directly apply to a novel task. In fact, doing this could hinder the agent’s ability to
learn an appropriate policy. This type of scenarios arise, for example, in control problems where the
policy learned for one specific agent will not work for another due to differences in the environment
dynamics and physical properties. As a concrete example, Intelligent Control Flight Systems (ICFS)
is an area of study that was born out of the necessity to address some of the limitations of PID
controllers; where RL has gained significant traction in recent years [26, 27]. One particular scenario
were our proposed problem would arise is in using RL to control autonomous vehicles [7], where a
single control policy would likely not work for a number of distinct vehicles and each policy would
need to be adapted to the specifics of each vehicle.

In our framework, the agent has a task-specific policy, π, that is updated by the agent’s own learning
algorithm. This policy defines the agent’s behavior during exploitation, and so we refer to it as the
exploitation policy. The behavior of the agent during exploration is determined by an advisor, which
maintains a policy, µ, tailored to the problem class (i.e., it is shared across all tasks in C). We refer to
this policy as an exploration policy. The agent is given K = IT time-steps of interactions with each
of the sampled tasks. Hereafter we use i to denote the index of the current episode on the current
task, t to denote the time step within that episode, and k to denote the number of time steps that have
passed on the current task, i.e., k = iT + t, and we refer to k as the advisor time step. At every
time-step, k, the advisor suggests an action, Uk, to the agent, where Uk is sampled according to µ.
If the agent decides to explore at this step, it takes action Uk, otherwise it takes action Ak sampled
according to the agent’s policy, π. We refer to an optimal policy for the agent solving a specific
task, c ∈ C, as an optimal exploitation policy, π∗c . More formally: π∗c ∈ argmax

π
E [G|π, c], where

G =
∑T
t=0Rt is referred to as the return. Thus, the agent solving a specific task is optimizing the

standard expected return objective. From now on we refer to the agent solving a specific task as the
agent (even though the advisor can also be viewed as an agent). We consider a process where a task
c ∈ C is sampled from some distribution, dC , over C. While the RL agent learns how to solve a few
of these tasks, the advisor also updates its policy to guide the agent during exploration. Whenever the
agent decides to explore, it uses an action provided by the advisor according to its policy, µ.

4 Problem Statement

We define the performance of the advisor’s policy, µ, for a specific task c ∈ C to be ρ(µ, c) =

E
[∑I

i=0

∑T
t=0R

i
t

∣∣∣µ, c] , where Rit is the reward at time step t during the ith episode. Let C be a
random variable that denotes a task sampled from dC . The goal of the advisor is to find an optimal

3

exploration policy, µ∗, which we define to be any policy that satisfies:

µ∗ ∈ argmax
µ

E [ρ(µ,C)] . (1)

In intuitive terms, this objective seeks to maximize the area under the learning curve of an agent.
Assuming a stable policy π whose performance improves with training (the performance of the policy
does not collapse), maximizing this objective implies that the agent is able to learn more quickly.
Because no single policy can solve every task, the meta-agent learns to help the agent obtain an
optimal policy but it does not learn a policy to solve any task in particular.

Unfortunately, we cannot directly optimize this objective because we do not know the transition and
reward functions of each MDP, and we can only sample tasks from dC . In the next section we show
that the search for an exploration policy can be formulated as an RL problem where the advisor is
itself an RL agent solving an MDP whose environment contains both the current task, c, and the
agent solving the current task.

5 A General Solution Framework

Figure 1: MDP view of interaction between the
advisor and agent. At each time-step, the advisor
selects an action U and the agent an actionA. With
probability ε the agent executes action U and with
probability 1− ε it executes action A. After each
action the agent and advisor receive a reward R,
the agent and advisor environment transitions to
states S and X , respectively.

Our framework can be viewed as a meta-MDP—
an MDP within an MDP. From the point of view
of the agent, the environment is the current task,
c (an MDP). However, from the point of view
of the advisor, the environment contains both
the task, c, and the agent. At every time-step,
the advisor selects an action U and the agent
an action A. The selected actions go through
a selection mechanism which executes action
A with probability 1 − εi and action U with
probability εi at episode i.

In our formulation, from the point of view of
the advisor action U is always executed and the
selection mechanism is simply another source of
uncertainty in the environment. Figure 1 depicts
the proposed framework with actionA (exploita-
tion) being selected. Even though one time step
for the agent corresponds to one time step for the
advisor, one episode for the advisor constitutes
a lifetime of the agent. From this perspective,
wherein the advisor is merely another reinforce-
ment learning algorithm, we can take advantage
of the existing body of work in RL to optimize
the exploration policy, µ.

We experimented training the advisor policy using two different RL algorithms: REINFORCE, [25],
and Proximal Policy Optimization (PPO), [17]. Using Montercarlo methods, such as REINFORCE,
results in a simpler implementation at the expense of a large computation time (each update of the
advisor would require to train the agent for an entire lifetime). On the other hand, using temporal
difference method, such as PPO, overcomes this computational bottleneck at the expense of larger
variance in the performance of the advisor. Pseudocode for the implementations used in our framework
using REINFORCE and PPO are shown in Appendix C.

5.1 Theoretical Results
Below, we formally define the meta-MDP faced by the advisor and show that an optimal policy
for the meta-MDP optimizes the objective in (1). Recall that Rc, Pc, and dc0 denote the reward
function, transition function, and initial state distribution of the MDP c ∈ C. To formally describe the
meta-MDP, we must capture the property that the agent can implement an arbitrary RL algorithm. To
do so, we assume the agent maintains some memory, Mk, that is updated by some learning rule l (an
RL algorithm) at each time step, and write πMk

to denote the agent’s policy given that its memory is
Mk. In other words, Mk provides all the information needed to determine πMk

and its update is of
the form Mk+1 = l(Mk, Sk, Ak, Rk, Sk+1) (this update rule can represent popular RL algorithms

4

like Q-Learning and actor-critics). We make no assumptions about which learning algorithm the
agent uses (e.g., it can use Sarsa, Q-learning, REINFORCE, and even batch methods like Fitted
Q-Iteration), and consider the learning rule to be unknown and a source of uncertainty.
Proposition 1. Consider an advisor policy, µ, and episodic tasks c ∈ C belonging to a problem class C. The
problem of learning µ can be formulated as an MDP, Mmeta = (X ,U , T, Y, d′0), where X is the state space, U
the action space, T the transition function, Y the reward function, and d′0 the initial state distribution.

Proof. See Appendix A

Given the formulated meta-MDP, Mmeta, we are able to show that the optimal policy for this new
MDP corresponds to an optimal exploration policy.
Theorem 1. An optimal policy for Mmeta is an optimal exploration policy, µ∗, as defined in (1). That is,
E [ρ(µ,C)] = E

[∑K
k=0 Yk

∣∣∣µ,].
Proof. See Appendix B.

Since Mmeta is an MDP for which an optimal exploration policy is an optimal policy, it follows that
the convergence properties of reinforcement learning algorithms apply to the search for an optimal
exploration policy. For example, in some experiments the advisor uses the REINFORCE algorithm
[25], the convergence properties of which have been well-studied [13].

Although conceptually simple, the framework presented thus far may require to solve a large number
of tasks (episodes of the meta-MDP), each one potentially being an expensive procedure. To address
this issue, we sampled a small number of tasks c1, . . . , cn, where each ci ∼ dC and train many
episodes on each task in parallel. By taking this approach, every update to the advisor is influenced by
several simultaneous tasks and results in an scalable approach to obtain a general exploration policy.
In more difficult tasks, which might require the agent to train a long time, using TD techniques allows
the advisor to improve its policy while the agent is still training.

6 Empirical Results
In this section we present experiments for discrete and continuous control tasks. Figures 8a and
8b depicts task variations for Animat for the case of discrete action set. Figures 11a and 11b show
task variations for Ant problem for the case of continuous action set. Implementations used for the
discrete case pole-balancing and all continuous control problems, where taken from OpenAI Gym,
Roboschool benchmarks [2]. For the driving task experiments we used a simulator implemented in
Unity by Tawn Kramer from the “Donkey Car” community 1. We demonstrate that: 1) in practice the
meta-MDP, Mmeta, can be solved using existing reinforcement learning methods, 2) the exploration
policy learned by the advisor improves performance on existing RL methods, on average, and 3) the
exploration policy learned by the advisor differs from the optimal exploitation policy for any task
c ∈ C, i.e., the exploration policy learned by the advisor is not necessarily a good exploitation policy.
Intuitively, our method works well when there is a common pattern across tasks of what actions
should not to be taken at a given state. For example, in a simple grid-world our method would not be
able to learn a good exploration policy, but in the case of Animat (shown in figures 8a, and 8b) the
meta-agent is able to learn that certain action patterns never lead to an optimal policy.

(a) Animat task 1. (b) Animat task 2. (c) Ant task 1. (d) Ant task 2.

Figure 2: Example of task variations. The problem classes correspond to Animat (left) with discrete
action space, and ant (right) with continuous action space.

1The Unity simulator for the self-driving task can be found at https://github.com/tawnkramer/
sdsandbox

5

https://github.com/tawnkramer/sdsandbox
https://github.com/tawnkramer/sdsandbox

To show that our algorithm behave as desired, we will first study the behavior of our method in two
simple problem classes with discrete action-spaces: pole-balancing [19] and Animat [21], and a more
realistic application of control tuning in self-driving vehicles. As a baseline meta-learning method, to
which we contrast our framework, we chose Model Agnostic Meta Learning (MAML), [4], a general
meta learning method for adapting previously trained neural networks to novel but related tasks. It is
worth noting that, although the method was not specifically designed for RL, the authors describe
some promising results in adapting behavior learned from previous tasks to novel ones.

6.1 Empirical Evaluation of Proposed Framework
We begin our evaluation by assessing the behavior of our algorithm in two different problems with
discrete action spaces: Pole-balancing and Animat. We chose these problems because they present
structural patterns that are intuitive to understand and can be exploited by the agent.

Pole-balancing: the agent is tasked with applying force to a cart to prevent a pole balancing on
it from falling. The distinct tasks were constructed by modifying the length and mass of the pole
mass, mass of the cart and force magnitude. States are represented by 4-D vectors describing the
position and velocity of the cart, and angle and angular velocity of the pendulum, i.e., s = [x, v, θ, θ̇].
The agent has 2 actions at its disposal; apply a force in the positive or negative x direction. Figure
3a, contrasts the cumulative return of an agent using the advisor against random exploration during
training over 6 tasks, shown in blue and red respectively. Both policies, π and µ, were trained using
REINFORCE: π for I = 1,000 episodes and µ for 500 iterations. In the figure, the horizontal axis
corresponds to episodes for the advisor. The horizontal red line denotes an estimate (with standard
error bar) of the expected cumulative reward over an agent’s lifetime if it samples actions uniformly
when exploring. Notice that this is not a function of the training iteration, as the random exploration
is not updated. The blue curve (with standard error bars from 15 trials) shows how the expected
cumulative reward the agent obtains during its lifetime changes as the advisor improves its policy.
After the advisor is trained, the agent is obtaining roughly 30% more reward during its lifetime than
it was when using a random exploration. To visualize this difference, Figure 3b shows the mean
learning curves (episodes of an agent’s lifetime on the horizontal axis and average return for each
episode on the vertical axis) during the first and last 50 iterations.

(a) Performance curves during training comparing
advisor policy (blue) and random exploration policy
(red).

(b) Average learning curves on training tasks over the
first 50 advisor episodes (blue) and the last 50 advisor
episodes (orange).

Animat: in these environments, the agent is a circular creature that lives in a continuous state space.
It has 8 independent actuators, angled around it in increments of 45 degrees. Each actuator can be
either on or off at each time step, so the action set is {0, 1}8, for a total of 256 actions. When an
actuator is on, it produces a small force in the direction that it is pointing. The resulting action moves
the agent in the direction that results from the some of all those forces and is perturbed by 0-mean
unit variance Gaussian noise. The agent is tasked with moving to a goal location; it receives a reward
of −1 at each time-step and a reward of +100 at the goal state. The different variations of the tasks
correspond to randomized start and goal positions in different environments. Figure 4a shows a clear
performance improvement on average as the advisor improves its policy over 50 training iterations.
The curve show the average curve obtained over the first and last 10 iteration of training the advisor,
shown in blue and orange respectively. Each individual task was trained for I = 800 episodes.

An interesting pattern that is shared across all variations of this problem class is that there are actuator
combinations that are not useful for reaching the goal. For example, activating actuators at opposite

6

angles would leave the agent in the same position it was before (ignoring the effect of the noise). The
presence of these poor performing actions provide some common patterns that can be leveraged. To
test our intuition that an exploration policy would exploit the presence of poor-performing actions, we
recorded the frequency with which they were executed on unseen testing tasks when using the learned
exploration policy after training and when using a random exploration strategy, over 5 different tasks.
Figure 4b helps explain the improvement in performance. It depicts in the y-axis, the percentage of
times these poor-performing actions were selected at a given episode, and in the x-axis the agent
episode number in the current task. The agent using the advisor policy (blue) is encouraged to reduce
the selection of known poor-performing actions, compared to a random action-selection exploration
strategy (red).

(a) Animat Results: Average learning curves on train-
ing tasks over the first 10 iterations (blue) and last 10
iterations (orange).

(b) Animat Results: Frequency of poor-performing
actions in an agent’s lifetime with learned (blue) and
random (red) exploration.

Vehicle Control: a more pragmatic application of our framework is for quickly adapting control
policy from one system to another. For this experiment, we tested the advisor on a control problem
using a self-driving car simulator implemented in Unity. We assume that the agent has a constant
acceleration (up to some maximum velocity) and the actions consist on 15 possible steering angles
between angles θmin < 0 and θmax > 0. The state is represented as a stack of the last 4 80 × 80
images sensed by a front-facing camera, and the tasks vary in the body mass, m, of the car and values
of θmin and θmax. We tested the ability of the advisor to improve fine-tuning controls to specific
cars. We first learned a well-performing policy for one car and used the policy as a starting point to
fine-tune policies for 8 different cars.

Figure 5: Number of episodes needed to achieve
threshold performance (lower is better).

The experiment, depicted in Figure 5, compares
an agent who is able to use an advisor during
exploration for fine-tuning (blue) vs. an agent
who does not have access to an advisor (red).
The figure shows the number of episodes of
fine-tuning needed to reach a pre-defined per-
formance threshold (1, 000 time-steps without
leaving the correct lane). The first and second
groups in the figure show the average number
of episodes needed to fine-tune in the first and
second half of tasks, respectively. In the first
half of tasks (left), the advisor seems to make
fine-tuning more difficult since it has not been
trained to deal with this specific problem. Using
the advisor took an average of 42 episodes to
fine-tune, while it took on average 12 episodes
to fine-tune without it. The benefit, however, can be seen in the second half of training tasks. Once
the advisor had been trained, it took on average 5 episodes to fine-tune while not using the advisor
needed an average of 18 episodes to reach the required performance threshold. When the number of
tasks is large enough and each episode is a time-consuming or costly process, our framework could
result in important time and cost savings.

6.2 Is an Exploration Policy Simply a General Exploitation Policy?
One might be tempted to think that the learned policy for exploration might simply be a policy that
works well in general. How do we know that the advisor is learning a policy for exploration and not
simply a policy for exploitation? To answer this question, we generated three distinct unseen tasks

7

for pole-balancing and Animat problem classes and compared the performance of using only the
learned exploration policy with the performance obtained by an exploitation policy trained to solve
each specific task. Figure 6 shows two bar charts contrasting the performance of the exploration
policy (blue) and the exploitation policy (green) on each task variation. In both charts, the first three
groups of bars on the left correspond to the performance on each task and the last one to an average
over all tasks. Figure 6a corresponds to the mean performance on pole-balancing and the error bars
to the standard deviation; the y-axis denotes the return obtained. We can see that, as expected, the
exploration policy by itself fails to achieve a comparable performance to a task-specific policy. The
same occurs with the Animat problem class, shown in Figure 6b. In this case, the y-axis refers to the
number of steps needed to reach the goal (smaller bars are better). In all cases, a task-specific policy
performs significantly better than the learned exploration policy, indicating that the exploration policy
is not a general exploitation policy.

(a) Average returns obtained on test tasks when us-
ing the advisor’s exploration policy (blue) and a task-
specific exploitation (green)

(b) Number of steps needed to complete test tasks with
advisor policy (blue) and exploitation (green).

Figure 6: Performance comparison of exploration and exploitation policies.

6.3 Performance Evaluation on Novel Tasks

We examine the performance of our framework on novel tasks when learning from scratch, and
contrast our method to MAML trained using PPO. In the case of discrete action sets, we trained each
task for 500 episodes and compare the performance of an agent trained with REINFORCE (R) and
PPO, with and without an advisor. In the case of continuous tasks, we restrict our experiments to an
agent using PPO after training for 500 episodes. In our experiments we set the initial value of ε to
0.8, and decreased by a factor of 0.995 every episode. The results shown in table 1 were obtained
by training 5 times in 5 novel tasks and recording the average performance and standard deviations.
The table displays the mean of those averages and the mean of the standard deviations recorded.
The problem classes “pole-balance (d)” and “animat” correspond to discrete actions spaces, while
“pole-balance (c)”, “hopper”, and “ant” are continuous.

Problem Class R R+Advisor PPO PPO+Advisor MAML
Pole-balance (d) 20.32± 3.15 28.52± 7.6 27.87± 6.17 46.29± 6.30 39.29± 5.74

Animat −779.62± 110.28 −387.27± 162.33 −751.40± 68.73 −631.97± 155.5 −669.93± 92.32
Pole-balance (c) — — 29.95± 7.90 438.13± 35.54 267.76± 163.05

Hopper — — 13.82± 10.53 164.43± 48.54 39.41± 7.95
Ant — — −42.75± 24.35 83.76± 20.41 113.33± 64.48

Table 1: Average performance (and standard deviations) over all unseen tasks trials on discrete and
continuous control on the last 50 episodes.

7 Conclusion
In this work we developed a framework for leveraging experience to guide an agent’s exploration in
novel tasks, where the advisor learns the exploration policy used by the agent solving a task. We
showed that a few sample tasks can be used to learn an exploration policy that the agent can use
to improve the speed of learning on novel tasks. A takeaway from this work is that oftentimes an
agent solving a new task may have had experience with similar problems, and that experience can be
leveraged. One way to do that is to learn a better approach for exploring in the face of uncertainty. A
natural future direction from this work use past experience to identify when exploration is needed
and not just what action to take when exploring.

8

References
[1] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for

reinforcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, pages 263–272, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[3] Fernando Fernandez and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’06, pages 720–727, New York, NY, USA, 2006. ACM.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR.

[5] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In Proceedings of the 22nd International Conference on Algorithmic Learning
Theory, ALT’11, pages 174–188, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Curiosity-driven exploration in deep reinforcement learning via bayesian neural networks.
CoRR, abs/1605.09674, 2016.

[7] William Koch, Renato Mancuso, Richard West, and Azer Bestavros. Reinforcement learning
for UAV attitude control. CoRR, abs/1804.04154, 2018.

[8] Romain Laroche, Mehdi Fatemi, Harm van Seijen, and Joshua Romoff. Multi-advisor reinforce-
ment learning. April 2017.

[9] Bingyao Liu, Satinder P. Singh, Richard L. Lewis, and Shiyin Qin. Optimal rewards in
multiagent teams. In 2012 IEEE International Conference on Development and Learning and
Epigenetic Robotics, ICDL-EPIROB 2012, San Diego, CA, USA, November 7-9, 2012, pages
1–8, 2012.

[10] Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based
exploration in feature space for reinforcement learning. CoRR, abs/1706.08090, 2017.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[12] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. CoRR, abs/1705.05363, 2017.

[13] V. V. Phansalkar and M. A. L. Thathachar. Local and global optimization algorithms for
generalized learning automata. Neural Comput., 7(5):950–973, September 1995.

[14] Jürgen Schmidhuber, Jieyu Zhao, and Nicol N. Schraudolph. Learning to learn. chapter
Reinforcement Learning with Self-modifying Policies, pages 293–309. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[15] Jürgen Schmidhuber. On learning how to learn learning strategies. Technical report, 1995.

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

9

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[18] Alexander L. Strehl. Probably approximately correct (pac) exploration in reinforcement learning.
In ISAIM, 2008.

[19] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[20] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. CoRR, abs/1611.04717, 2016.

[21] Philip S. Thomas and Andrew G. Barto. Conjugate markov decision processes. In Proceedings
of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington,
USA, June 28 - July 2, 2011, pages 137–144, 2011.

[22] Harm van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. June 2017.

[23] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages
279–292, 1992.

[24] Steven D. Whitehead. Complexity and cooperation in q-learning. In Proceedings of the Eighth
International Workshop (ML91), Northwestern University, Evanston, Illinois, USA, pages
363–367, 1991.

[25] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Machine Learning, pages 229–256, 1992.

[26] Q. Yang and S. Jagannathan. Reinforcement learning controller design for affine nonlinear
discrete-time systems using online approximators. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(2):377–390, April 2012.

[27] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search. CoRR, abs/1509.06791,
2015.

10

8 Appendix A - Proof of Proposition 1

Proposition 1. Consider an advisor policy, µ, and episodic tasks c ∈ C belonging to a problem class
C. The problem of learning µ can be formulated as an MDP, Mmeta = (X ,U , T, Y, d′0), where X
is the state space, U the action space, T the transition function, Y the reward function, and d′0 the
initial state distribution.

Proof. To show that Mmeta is a valid MDP it is sufficient to characterize the MDP’s state set, X ,
action set, U , transition function, T , reward function, Y , and initial state distribution d′0. We assume
that when facing a new task, the agent memory, M , is initialized to some fixed memory M0 (defining
a default initial policy and/or value function). The following definitions fully characterize the
meta-MDP the advisor faces:

• X = S × I × C × M. That is, the state set X is a set defined such that each state,
x = (s, i, c,M) contains the current task, c, the current state, s, in the current task, the
current episode number, i, and the current memory, M , of the agent.

• U = A. That is, the action set is the same as the action set of the problem class, C.

• T is the transition function, and is defined such that T (x, u, x′) is the probability of tran-
sitioning from state x ∈ X to state x′ ∈ X upon taking action u ∈ U . Assuming the
underlying RL agent decides to explore with probability εi and to exploit with probability
1− εi at episode i, then T is defined as follows:

T (x, u, x′) =



dc
0(s
′)1c′=c,i′=i+1,M′=l(M,s,a,r,s′) if s is terminal and i 6= I − 1

dC(c′)dc
′

0 (s′)1i′=0,M′=M0
if s is terminal and i = I − 1(

εiPc(s, u, s
′)

+(1− εi)
∑

a∈Ac
πM (s, a)Pc(s, a, s

′)

)
×1c′=c,i′=i,M′=l(M,s,a,r,s′) otherwise.

(2)

• Y is the reward function, and defines the reward obtained after taking action u ∈ U in
state x ∈ X and transitioning to state x′ ∈ X . Notice that from the point of view of the
meta-MDP, the reward function if a probability distribution and taking an action u effectively
samples from this distribution. Let R be a random variable denoting the reward received by
the meta agent, then Y is given by:

Y (x, u, x′) =

{
Pr(R = Rc(s, u, s

′)) = εi + (1− εi)πM (u, s)

Pr(R = Rc(s, a, s
′)) = (1− εi) πMk(a, s),∀a ∈ A/{u}

(3)

Also, notice that E [Y (x, u, x′)] = εiRc(s, u, s
′) + (1− εi)

∑
a∈A πM (a, s)Rc(s, a, s

′)

• d′0 is the initial state distribution and is defined by: d′0(x) = dC(c)d
c
0(s)1i=0.

9 Appendix B - Proof of Theorem 1

Proof. We can show that an optimal policy of Mmeta is an optimal exploration policy as defined in
Eq. (1). To do so, it is sufficient to show that maximizing the return in the meta-MDP is equivalent to
maximizing the expected performance. That is, E [ρ(µ,C)] = E

[∑K
k=0 Yk

∣∣∣µ,].
E [ρ(µ,C)] =

∑
c∈C

Pr(C = c) E

[
I∑
i=0

T∑
t=0

Rit

∣∣∣∣∣µ,C = c

]

11

=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

E
[
Rit
∣∣µ,C = c

]
=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

∑
s∈S

Pr(SiT+t = s|C = c, µ) E
[
Rit
∣∣µ,C = c, SiT+t = s

]
=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

Pr(SiT+t = s|C = c, µ)

× Pr(AiT+t = a|SiT+t, µ) E
[
Rit
∣∣µ,C = c, SiT+t = s,AiT+t = a

]
=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

× Pr(SiT+t+1 = s′|SiT+t = s,AiT+t = a, µ)

×E
[
Rit
∣∣µ,C = c, SiT+t = s,AiT+t = a, SiT+t+1 = s′

]
=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

×

(
εiPc(s, a, s

′) + (1− εi)
∑
a′∈A

πMiT+t
(a′, s)Pc(s, a

′, s′)

)

×

(
εiRc(s, a, s

′) + (1− εi)
∑
a′∈A

πMiT+t
(a′, s)Rc(s, a

′, s′)

)

=
∑
c∈C

Pr(C = c)

I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

× T (x = (s, i, c,MiT+t), a, x = (s′, i, c,MiT+t))

×E [Y (x = (s, i, c,MiT+t), a, x = (s′, i, c,MiT+t))]

=
∑
c∈C

Pr(C = c)

K∑
k=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(Sk = s|C = c, µ) Pr(Ak = a|Sk = s, µ)

× T (x = (s, i, c,Mk), a, x
′ = (s′, i, c,Mk))

×E [Y (x = (s, i, c,Mk), a, x
′ = (s′, i, c,Mk)|µ,C = c, Sk = s,Ak = a, Sk+1 = s′)]

=
K∑
k=0

∑
x∈X

∑
a∈A

∑
x′∈X

Pr(Xk = x|µ)

× Pr(Uk = a|Xk = x)T (x, u, x′) E [Yk|Xk = s, Uk = a,Xk+1 = x′, µ]

=

K∑
k=0

∑
x∈X

∑
a∈A

∑
x′∈X

Pr(Xk = x|µ)

× Pr(Uk = a|Xk = x) Pr(Xk+1 = x′|Uk = a,Xk = x)

×E [Yk|Xk = s, Uk = a,Xk+1 = x′, µ]

=

K∑
k=0

∑
x∈X

∑
a∈A

Pr(Xk = x|µ) Pr(Uk = a|Xk = x) E [Yk|Xk = x, Uk = a, µ]

=

K∑
k=0

∑
x∈X

Pr(Xk = x|µ) E [Yk|Xk = x, µ]

=

K∑
k=0

E [Yk|µ]

12

=E

[
K∑
k=0

Yk|µ

]

10 Appendix C - Pseudocode

This section presents pseudocode for the REINFORCE and PPO implementation of the meta-MDP
framework that were omitted from the paper for space considerations.

10.1 REINFORCE

Algorithm 1 presents pseudocode for an implementation of our method training the advisor using
REINFORCE. The algorithm runs for Imeta episodes for the advisor and I episodes of the agent per
advisor episode. At the end of each agent episode, the agent’s policy π parameterized by θ is updated
via REINFORCE with step size α, lines [10-12]. At the end of each advisor episode, every trajectory
recorded by every agent episode is used to update the exploration policy µ parameterized by φ with
REINFORCE using step size β, lines [13-15].

Algorithm 1 Agent + Advisor - REINFORCE

Initialize advisor policy µ randomly
for imeta = 0, 1, . . . , Imeta do

Sample task c from dc
for i = 0, 1, . . . , I do

Initialize π to π0
st ∼ dc0
for t = 0, 1, . . . , T do

at ∼
{
µ with probability εi
π with probability (1− εi)

take action at, observe st, rt
for t = 0, 1, . . . , T − 1 do

G =
∑T
k=t+1Rk

θ = θ + α G ∇ log π(at, st)

for t = 0, 1, . . . , T I − 1 do
G =

∑TI
k=t+1Rk

φ = φ+ β G ∇ logµ(at, st)

13

10.2 Proximal Policy Optimization (PPO)

Pseudocode for a PPO implementation of both agent and advisor is given in Algorithm 2. PPO
maintains two parameterized policies for an agent, π and πold. The algorithm runs πold for l
time-steps and computes the generalized advantage estimates (GAE), [16], Âs1 , . . . , Âsl , where
Âst = δst + (γλ)δst+1

+ · · ·+ (γλ)l−t+1δsl−1
and δst = rt + γV (st+1)− V (st).

The objective function seeks to maximize the following objective for time-step t:

J = Et

[
min(rtÂt, clip(rt, 1− α, 1 + α)Ât)

]
− (Rt + γ V̂ (st+1)− V̂ (st))

2
(4)

where rt =
π(at|st)
πold(at|st) , and V̂ (s) is an estimate of the value for state s. The updates are done in

mini-batches that are stored in a buffer of collected samples.

To train the agent and advisor with PPO we defined two separate sets of policies: µ and µold for the
advisor, and π and πold for the agent. The agent collects samples of trajectories of length l to update
its policy, while the advisor collects trajectories of length n, where l < n. So, J (the objective of
the agent) is computed with l samples while Jmeta (the objective of the advisor) is computed with n
samples. In our experiments, setting n ≥ 2l seemed to give the best results.

Notice that the presence of a buffer to store samples, means that the advisor will be storing samples
obtained from many different tasks, which prevents it from over-fitting to one particular problem.

Algorithm 2 Agent + Advisor - PPO

1: Initialize advisor policy µ, µold randomly
2: for imeta = 0, 1, . . . , Imeta do
3: Sample task c from dc
4: for i = 0, 1, . . . , I do
5: Initialize π and πold
6: st ∼ dc0
7: xt = (st, i, c)
8: for t = 0, 1, . . . , T do

9: at ∼
{
µold with probability εi
πold with probability (1− εi)

10: take action at, observe st, rt
11: if t % l = 0 then
12: compute Âs1 , . . . , Âsl
13: optimize J w.r.t π
14: πold = π
15: if t % n = 0 then
16: compute Âx1

, . . . , Âxn

17: optimize Jmeta w.r.t µ
18: µold = µ

14

11 Appendix D - Task Variations

This section shows variations of each problem used for experiments.

Pole-balancing: Task variations in this problem class were obtained by changing the mass of the
cart, the mass and the length of the pole.

(a) Pole-balancing task 1. (b) Pole-balancing task 2.

Figure 7: Experiments 1 of task variations with discrete action space.

Animat: Task variations in this problem class were obtained by randomly sampling new environments,
and changing the start and goal location of the Animat.

(a) Animat task 1. (b) Animat task 2.

Figure 8: Experiments 2 of task variations with discrete action space.

Driving Task: Task variations in this problem class were obtained by changing the mass of the car
and turning radius. A decrease in body mass and increase in turning radius causes the car to drift
more and become more unstable when taking sharp turns.

15

(a) Driving task 1. (b) Driving task 2.

Figure 9: Experiments 3 of task variations with discrete action space.

Hopper: Task variations for Hopper consisted in changing the length of the limbs, causing policies
learned for other hopper tasks to behave erratically.

(a) Hopper task 1. (b) Hopper task 2.

Figure 10: Experiments 1 of task variations with continuous action space.

Ant: Tasks variation for Ant consisted in changing the length of the limbs in the ant and the size of
the body.

(a) Ant task 1. (b) Ant task 2.

Figure 11: Experiments 2 of task variations with continuous action space.

16

	Introduction
	Related Work
	Background
	Problem Statement
	A General Solution Framework
	Theoretical Results

	Empirical Results
	Empirical Evaluation of Proposed Framework
	Is an Exploration Policy Simply a General Exploitation Policy?
	Performance Evaluation on Novel Tasks

	Conclusion
	Appendix A - Proof of Proposition 1
	Appendix B - Proof of Theorem 1
	Appendix C - Pseudocode
	REINFORCE
	Proximal Policy Optimization (PPO)

	Appendix D - Task Variations

