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ABSTRACT
In this paper we consider the problem of how a reinforcement learn-

ing agent that is tasked with solving a sequence of reinforcement

learning problems (a sequence of Markov decision processes) can

use knowledge acquired early in its lifetime to improve its ability

to solve new problems. Specifically, we focus on the question of

how the agent should explore when faced with a new environment.

We show that the search for an optimal exploration strategy can be

formulated as a reinforcement learning problem itself, albeit with a

different timescale. We conclude with experiments that show the

benefits of optimizing an exploration strategy using our proposed

approach.
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1 INTRODUCTION
One hallmark of human intelligence is our ability to leverage knowl-

edge collected over our lifetimes when we face a new problem.

When we first drive a new car, we do not re-learn from scratch

how to drive a car. Instead, we leverage our experience driving

to quickly adapt to the new car (its handling, control placement,

etc.). Standard reinforcement learning (RL) methods lack this ability.

When faced with a new problem—a new Markov decision process
(MDP)—they typically start from scratch, initially making decisions

randomly to explore and learn about the current problem they face.

The problem of creating agents that can leverage previous expe-

riences to solve new problems is called lifelong learning or continual
learning, and is related to the problem of transfer learning. One could
also argue that there is a relation to the problem curriculum learning,
where the agent learns to solve a few simple tasks to allow him to

solve more complex ones. In this paper, however, we focus on one

aspect of lifelong learning: when faced with a sequence of MDPs

sampled from a distribution over MDPs, how can a reinforcement

learning agent learn an optimal policy for exploration? Specifically,

we do not consider the question of when an agent should explore

or how much an agent should explore, which is a well studied area

of reinforcement learning research, [2, 6, 13, 20, 22]. Instead, we

study the question of, given that an agent is going to explore, which

action should it take?
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After formally defining the problem of searching for an opti-
mal exploration policy, we show that this problem can itself be

modeled as an MDP. This means that the task of finding an op-

timal exploration strategy for a learning agent can be solved by

another reinforcement learning agent that is solving a new meta-
MDP. This meta-MDP operates at a different timescale from the

RL agent solving specific MDPs—one time step of the meta-MDP

corresponds to an entire lifetime of the RL agent. This difference

of timescales distinguishes our approach from previous meta-MDP

methods for optimizing components of reinforcement learning al-

gorithms, [4, 9, 10, 23, 24].

We contend that using random action selection during explo-

ration (as is common when using Q-learning, [25], Sarsa, [21], and

DQN, [15]) ignores useful information from the agent’s experience

with previous similar MDPs that could be leveraged to direct ex-

ploration. We separate the policies that define the agent’s behavior

into an exploration policy (which governs behavior when the agent

is exploring) and an exploitation policy (which governs behavior

when the agent is exploiting).

In this paperwemake the following contributions: 1)we formally

define the problem of searching for an optimal exploration policy,

2) we prove that this problem can be modeled as a new MDP,

and describe one algorithm for solving this meta-MDP, and 3) we
present experimental results that show the benefits of our approach.

Although the search for an optimal exploration policy is only one of

the necessary components for lifelong learning (alongwith deciding

when to explore, how to represent data, how to transfer models,

etc.), it provides one key step towards agents that leverage prior

knowledge to solve challenging problems.

2 RELATEDWORK
There is a large body of work discussing the problem of how an

agent should behave during exploration when faced with a sin-
gle MDP. Simple strategies, such as ϵ-greedy with random action-

selection, Boltzmann action-selection or softmax action-selection,
make sense when an agent has no prior knowledge of the prob-

lem that it is facing. The performance of an agent exploring with

random action-selection reduces drastically as the size of the state-

space increases [26]. The performance of Boltzmann or softmax

action-selection hinges on the accuracy of the action-value esti-

mates. When these estimates are poor (e.g., early during the learn-

ing process), it can have a drastic negative effect on the overall

performance of the agent. More sophisticated methods search for

subgoal states to define temporally-extended actions, called op-
tions, that explore the state-space more efficiently, [7, 14], use state-

visitation counts to encourage the agent to explore states that have
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not been frequently visited, [13, 22], or use approximations of a

state-transition graph to exploit structural patterns, [11, 12].

Recent research concerning exploration has also taken the ap-

proach of adding an exploration “bonus” to the reward function.

VIME [8] takes a Bayesian approach by maintaining a model of the

dynamics of the environment, obtaining a posterior of the model

after taking an action, and using the KL divergence between these

two models as a bonus. The intuition behind this approach is that

encouraging actions that make large updates to the model allows

the agent to better explore areas where the current model is inac-

curate. Pathak et al. [16] define a bonus in the reward function by

adding an intrinsic reward. They propose using a neural network to

predict state transitions based on the action taken and provide an

intrinsic reward proportional to the prediction error. The agent is

therefore encouraged to make state transitions that are not modeled

accurately. Another relevant work in exploration was presented by

Fernandez and Veloso [4], where the authors propose building a

library of policies from prior experience to explore the environment

in new problems more efficiently. These techniques are useful when

an agent is dealing with a single MDP or class of MDPs with the

same state-transition graph, however they do not provide a means

to guide an agent to explore intelligently when faced with a novel

task with different dynamics.

The idea of meta-learning, or learning to learn, has also been a

recent area of focus. Andrychowicz et al. [1] proposed learning an

update rule for a class of optimization problems. Given an objective

function f and parameters θ , the authors proposed learning amodel,

дϕ , such that the update to parameters θk , at iteration k are given

according to θk+1 = θk + дϕ (∇f (θk )). RL has also been used in

meta-learning to learn efficient neural network architectures [18].

However, even though one can draw a connection to our work

through meta-learning, these methods are not concerned with the

problem of exploration.

In the context of RL, a similar idea can be applied by defining a

meta-MDP, i.e., considering the agent as part of the environment

in a larger MDP. In multi-agent systems, Liu et al. [10] considered

other agents as part of the environment from the perspective of

each individual agent. Thomas and Barto [23] proposed the conju-

gate MDP framework, in which agents solving meta-MDPs (called

CoMDPs) can search for the state representation, action represen-

tation, or options that maximize the expected return when used by

an RL agent solving a single MDP.

Despite existing meta-MDP approaches, to the best of our knowl-

edge, ours is the first to use the meta-MDP approach to specifically

optimize exploration for a set of related tasks.

3 BACKGROUND
A Markov decision process (MDP) is a tuple, M = (S,A, P ,R,d0),
where S is the set of possible states of the environment, A is

the set of possible actions that the agent can take, P(s,a, s ′) is the
probability that the environment will transition to state s ′ ∈ S if

the agent takes action a ∈ A in state s ∈ S, R(s,a, s ′) is a function
denoting the reward received after taking action a in state s and
transitioning to state s ′, and d0 is the initial state distribution. We

use t ∈ {0, 1, 2, . . . ,T } to index the time-step, and write St , At ,
and Rt to denote the state, action, and reward at time t . We also

consider the undiscounted episodic setting, wherein rewards are not

discounted based on the time at which they occur.We assume thatT ,
the maximum time step, is finite, and thus we restrict our discussion

to episodicMDPs; that is, afterT time-steps the agent resets to some

initial state. We use I to denote the total number of episodes the

agent interacts with an environment. A policy, π : S × A → [0, 1],

provides a conditional distribution over actions given each possible

state: π (s,a) = Pr(At = a |St = s). Furthermore, we assume that

for all policies, π , (and all tasks, c ∈ C, defined later) the expected

returns are normalized to be in the interval [0, 1].

One of the key challenges within RL, and the one this work

focuses on, is related to the exploration-exploitation dilemma. To
ensure that an agent is able to find a good policy, it needs to take

actions with the sole purpose of gathering information about the

environment (exploration). However, once enough information is

gathered, it should behave according to what it believes to be the

best policy (exploitation). In this work, we separate the behavior of

an RL agent into two distinct policies: an exploration policy and an

exploitation policy. We assume an ϵ-greedy exploration schedule,

i.e., with probability ϵi the agent explores and with probability 1−ϵi
the agent exploits, where (ϵi )

I
i=1 is a sequence of exploration rates

where ϵi ∈ [0, 1] and i refers to the episode number in the current

task.

Let C be the set of all tasks, c = (S,A, Pc ,Rc ,d
c
0
). That is, all

c ∈ C are MDPs sharing the same state-set S and action-set A,

which may have different transition functions Pc , reward functions
Rc , and initial state distributions dc

0
. An agent is required to solve

a set of tasks or levels c ∈ C, where we refer to the set C as the

problem class. For example, if C refers to learning to balance a

pole, each task c ∈ C could refer to balancing a pole with a given

height and weight, determining different degree of difficulty. The

agent has a task-specific policy, π , that is updated by the agent’s

own learning algorithm. This policy defines the agent’s behavior

during exploitation, and so we refer to it as the exploitation policy.
The behavior of the agent during exploration is determined by

an advisor, which maintains a policy tailored to the problem class

(i.e., it is shared across all tasks in C). We refer to this policy as an

exploration policy, µ : S × A → [0, 1].

The agent will have K = IT time-steps of interactions with

each of the sampled tasks. Hereafter we use i to denote the index

of the current episode on the current task, t to denote the time

step within that episode, and k to denote the number of time steps

that have passed on the current task, i.e., k = iT + t , and we refer

to k as the advisor time step. At every time-step, k , the advisor

suggests an action,Uk , to the agent, whereUk is sampled according

to µ. If the agent decides to explore at this step, it takes actionUk ,
otherwise it takes actionAk sampled according to the agent’s policy,

π . We refer to an optimal policy for the agent solving a specific

task, c ∈ C, as an optimal exploitation policy, π∗
c . More formally:

π∗
c ∈ argmax

π
E [G |π , c], where G =

∑T
t=0 Rt is referred to as the

return. Thus, the agent solving a specific task is optimizing the

standard expected return objective. From now on we refer to the

agent solving a specific task as the agent (even though the advisor

can also be viewed as an agent).

Intuitively, we consider a process that proceeds as follows. First,

a task, c ∈ C is sampled from some distribution, dC , over C. Next,
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the agent uses some pre-specified reinforcement learning algorithm

(e.g., Q-learning or Sarsa) to approximate an optimal policy on the

sampled task, c . Whenever the agent decides to explore, it uses an

action provided by the advisor according to its policy, µ. After the
agent completes I episodes on the current task, the next task is

sampled from C and the agent’s policy is reset to an initial policy.

Notice that the goals of the advisor and agent solving a specific task

are different: the agent solving a specific task tries to optimize the

expected return on the task at hand, while the advisor searches for

an exploration policy that causes the agent to learn quickly across

all tasks. As such, the advisor may learn to suggest bad actions if

that is what the agent needs to see to learn quickly.

4 PROBLEM STATEMENT
We define the performance of the advisor’s policy, µ, for a specific

task c ∈ C to be ρ(µ, c) = E
[∑I

i=0
∑T
t=0 R

i
t
��µ, c] , where Rit is the

reward at time step t during the ith episode.

LetC be a random variable that denotes a task sampled from dC .
The goal of the advisor is to find an optimal exploration policy, µ∗,
which we define to be any policy that satisfies:

µ∗ ∈ argmax

µ
E [ρ(µ,C)] .

(1)

We cannot directly optimize this objective because we do not

know the transition and reward functions of each MDP, and we

can only sample tasks from dC . In the next section we show that

the search for an exploration advisor policy can be formulated as

an RL problem where the advisor is itself an RL agent solving an

MDP whose environment contains both the current task, c , and the
agent solving the current task.

5 A GENERAL SOLUTION FRAMEWORK
Our framework can be viewed as a meta-MDP—an MDP within an

MDP. From the point of view of the agent, the environment is the

current task, c (an MDP). However, from the point of view of the

advisor, the environment contains both the task, c , and the agent.

At every time-step, the advisor selects an actionU and the agent an

action A. The selected actions go through a selection mechanism

which executes action A with probability 1 − ϵi and action U with

probability ϵi at episode i . Figure 1 depicts the proposed framework

with action A (exploitation) being selected. Even though one time

step for the agent corresponds to one time step for the advisor, one

episode for the advisor constitutes a lifetime of the agent (all of its

interactions with a sampled task). From this perspective, wherein

the advisor is merely another reinforcement learning algorithm, we

can take advantage of the existing body of work in RL to optimize

the exploration policy, µ.
In this work, we experimented training the advisor policy using

two different RL algorithms: REINFORCE, [27], and Proximal Policy

Optimization (PPO), [19]. Pseudocode for an implementation of our

framework using REINFORCE, where the meta-MDP is trained for

Imeta episodes, is described in Algorithm 1.

Figure 1: MDP view of interaction between the advisor and
agent. At each time-step, the advisor selects an actionU
and the agent an action A. With probability ϵ the agent
executes actionU and with probability 1 − ϵ it executes

action A. After each action the agent and advisor receive a
reward R, the agent and advisor environment transitions to

states S and X , respectively.

Algorithm 1 Agent + Advisor - REINFORCE

1: Initialize advisor policy µ randomly

2: for imeta = 0, 1, . . . , Imeta do
3: Sample task c from dc
4: for i = 0, 1, . . . , I do
5: Initialize π to π0
6: st ∼ dc

0

7: for t = 0, 1, . . . ,T do

8: at ∼

{
µ with probability ϵi
π with probability (1 − ϵi )

9: take action at , observe st , rt
10: for t = 0, 1, . . . ,T do
11: update policy π using REINFORCE with st ,at , rt

12: for k = 0, 1, . . . , IT do
13: update policy µ using REINFORCE with sk ,ak , rk

5.1 Theoretical Results
Below, we formally define the meta-MDP faced by the advisor and

show that an optimal policy for the meta-MDP optimizes the objec-

tive in (1). Recall that Rc , Pc , and d
c
0
denote the reward function,

transition function, and initial state distribution of the MDP c ∈ C.

To formally describe the meta-MDP, we must capture the prop-

erty that the agent can implement an arbitrary RL algorithm. To

do so, we assume the agent maintains some memory, Mk , that is

updated by some learning rule l (an RL algorithm) at each time

step, and write πMk to denote the agent’s policy given that its

memory is Mk . In other words, Mk provides all the information

needed to determine πMk and its update is of the form Mk+1 =

l(Mk , Sk ,Ak ,Rk , Sk+1) (this update rule can represent popular RL

algorithms like Q-Learning and actor-critics). We make no assump-

tions about which learning algorithm the agent uses (e.g., it can

use Sarsa, Q-learning, REINFORCE, and even batch methods like

Fitted Q-Iteration), and consider the learning rule to be unknown

and a source of uncertainty.
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Proposition 1. Consider an advisor policy, µ, and episodic tasks

c ∈ C belonging to a problem class C. The problem of learning µ
can be formulated as an MDP, Mmeta = (X,U,T ,Y ,d ′

0
), where X

is the state space,U the action space, T the transition function, Y
the reward function, and d ′

0
the initial state distribution.

Proof. To show thatMmeta is a valid MDP we need to charac-

terize the MDP’s state set, X , action set,U , transition function, T ,
reward function, Y , and initial state distribution d ′

0
. We assume that

when facing a new task, the agent memory,M , is initialized to some

fixed memory M0 (defining a default initial policy and/or value

function). The following definitions capture the intuition provided

previously:

• X = S × I × C ×M. That is, the state set X is a set defined

such that each state, x = (s, i, c,M) contains the current task,

c , the current state, s , in the current task, the current episode

number, i , and the current memory,M , of the agent.

• U = A. That is, the action-set is the same as the action-set

of the problem class, C.

• T is the transition function, and is defined such thatT (x ,u,x ′)
is the probability of transitioning from state x ∈ X to state

x ′ ∈ X upon taking action u ∈ U. Assuming the under-

lying RL agent decides to explore with probability ϵi and
to exploit with probability 1 − ϵi at episode i , then T is as

follows. If s is terminal and i , I − 1, then T (x ,u,x ′) =
dc
0
(s ′)1c ′=c,i′=i+1,M ′=l (M,s,a,r,s ′). If s is terminal and i =

I −1, thenT (x ,u,x ′) = dC(c
′)dc

′

0
(s ′)1i′=0,M ′=M0

. Otherwise,

T (x ,u,x ′) =
(
ϵiPc (s,u, s

′) + (1 − ϵi )
∑
a∈Ac πM (s,a)Pc (s,a, s

′)
)

× 1c ′=c,i′=i,M ′=l (M,s,a,r,s ′)
• Y is the reward function, and defines the reward obtained

after taking action u ∈ U in state x ∈ X and transitioning

to state x ′ ∈ X Y (x ,u,x ′) =
ϵiPc (s,u,s ′)Rc (s,u,s ′)+(1−ϵi )

∑
a∈A πM (a,s)Pc (s,a,s ′)Rc (s,a,s ′)

ϵiPc (s,u,s ′)+(1−ϵi )
∑
a∈A πM (a,s)Pc (s,a,s ′)

.

• d ′
0
is the initial state distribution and is defined by: d ′

0
(x) =

dC(c)d
c
0
(s)1i=0.

□

To show that an optimal policy ofMmeta is an optimal exploration

policy, we will first establish the following lemma to help us in our

derivation.

Lemma 1.

∑
s ∈S

∑
a∈A

∑
s ′∈S

(ϵiP(Ak = a |Sk = s, µ)

+ (1 − ϵi )P(Ak = a |Sk = s,π ))Pc (s,a, s
′)Rc (s,a, s

′)

=
∑
x ∈X

∑
u ∈A

∑
x ′∈X

P(Uk = u |Xk = x)T (x ,u,x ′)Y (x ,u,x ′)

Proof.

∑
s ∈S

∑
a∈A

∑
s ′∈S

(ϵiP(Ak = a |Sk = s, µ)

+ (1 − ϵi )P(Ak = a |Sk = s,π ))Pc (s,a, s
′)Rc (s,a, s

′)

=
∑
s ∈S

∑
a∈A

∑
s ′∈S

(ϵiP(Ak = a |Sk = s, µ)

× Pc (s,a, s
′) + (1 − ϵi )P(Ak = a |Sk = s,π )

× Pc (s,a, s
′))Rc (s,a, s

′)

=
∑
s ∈S

∑
a∈A

∑
s ′∈S

(ϵiP(Ak = a |Sk = s, µ)

× Pc (s,a, s
′)Rc (s,a, s

′)

+ (1 − ϵi )P(Ak = a |Sk = s,π )

× Pc (s,a, s
′)Rc (s,a, s

′))

=
∑
s ∈S

∑
s ′∈S

(
∑
u ∈A

ϵiP(Ak = u |Sk = s, µ)

× Pc (s,u, s
′)Rc (s,u, s

′)

+ (1 − ϵi )
∑
a∈A

P(Ak = a |Sk = s,π )

× Pc (s,a, s
′)Rc (s,a, s

′))

=
∑
s ∈S

∑
s ′∈S

(
∑
u ∈A

ϵiP(Ak = u |Sk = s, µ)

× Pc (s,u, s
′)Rc (s,u, s

′)

+
∑
u ∈A

P(Ak = u |Sk = s, µ)

× (1 − ϵi )
∑
a∈A

P(Ak = a |Sk = s,π )

× Pc (s,a, s
′)Rc (s,a, s

′))

=
∑
s ∈S

∑
s ′∈S

∑
u ∈A

P(Ak = u |Sk = s, µ)

(ϵiPc (s,u, s
′)Rc (s,u, s

′)

+ (1 − ϵi )
∑
a∈A

P(Ak = a |Sk = s,π )

× Pc (s,a, s
′)Rc (s,a, s

′))

Recall that given task c , episode i , advisor time-step k , the agent
state sk corresponds to the state of the advisor xk = (s, i, c,Mk ).

Continuing with our derivation.

∑
s ∈S

∑
s ′∈S

∑
u ∈A

P(Ak = u |Sk = s, µ)

(ϵiPc (s,u, s
′)Rc (s,u, s

′)

+ (1 − ϵi )
∑
a∈A

P(Ak = a |Sk = s,π )

× Pc (s,a, s
′)Rc (s,a, s

′))
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=
∑
s ∈S

∑
s ′∈S

∑
u ∈A

P(Ak = u |Sk = s, µ)

(ϵiPc (s,u, s
′)

+ (1 − ϵi )
∑
a

P(Ak = a |Sk = s,π )

× Pc (s,a, s
′))

× Y (x = (s, i, c,Mk ),u,x
′ = (s ′, i, c,Mk+1)) (by definition of Y )

=
∑
s ∈S

∑
s ′∈S

∑
u ∈A

P(Uk = u |Xk = (s, i, c,Mk ), µ)

×T (x = (s, i, c,Mk ),u,x
′ = (s ′, i, c,Mk+1)

× Y (x = (s, i, c,Mk ),u,x
′ = (s ′, i, c,Mk+1))

=
∑
x ∈X

∑
x ′∈X

∑
u ∈A

P(Uk = u |Xk = x , µ)

×T (x ,u,x ′)Y (x ,u,x ′)

□

Theorem 5.1. An optimal policy for Mmeta is an optimal explo-
ration policy, µ∗, as defined in (1).

Proof. To show that an optimal policy ofMmeta is an optimal ex-

ploration policy as defined in this paper, it is sufficient to show that

maximizing the return in themeta-MDP is equivalent tomaximizing

the expected performance. That is, E [ρ(µ,C)] = E
[∑K

k=0 Yk

���µ, ] .
E [ρ(µ,C)] =

∑
c ∈C

Pr(C = c) E

[ I∑
i=0

T∑
t=0

Rit

�����µ,C = c
]

=
∑
c ∈C

Pr(C = c)
I∑
i=0

T∑
t=0

E
[
Rit

��µ,C = c]
=

∑
c ∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s ∈S

Pr(SiT+t = s |C = c, µ)

× E
[
Rit

��µ,C = c, SiT+t = s]
=

∑
c ∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s ∈S

Pr(SiT+t = s |C = c, µ)

×
∑
a∈A

Pr(AiT+t = a |SiT+t ) E
[
Rit

��µ,C = c, SiT+t = s,AiT+t = a
]

=
∑
c ∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s ∈S

Pr(SiT+t = s |C = c, µ)

×
∑
a∈A

Pr(AiT+t = a |SiT+t = s)

×
∑
s ′∈S

Pr(SiT+t+1 = s
′ |SiT+t = s,AiT+t = a)R(s,a, s ′)

=
∑
c ∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s ∈S

Pr(SiT+t = s |C = c, µ)

×
∑
a∈A

Pr(AiT+t = a |SiT+t ) E
[
Rit

��µ,C = c, SiT+t = s,AiT+t = a
]

=
∑
c ∈C

I∑
i=0

T∑
t=0

∑
s ∈S

∑
a∈A

∑
s ′∈S

Pr(C = c) Pr(SiT+t = s |C = c, µ)

× Pr(AiT+t = a |SiT+t = s)

× Pr(SiT+t+1 = s
′ |SiT+t = s,AiT+t = a)R(s,a, s ′)

=
∑
c ∈C

K∑
k=0

∑
s ∈S

∑
a∈A

∑
s ′∈S

Pr(C = c) Pr(Sk = s |C = c, µ)

× Pr(Ak = a |Sk = s)

× Pr(Sk+1 = s
′ |Sk = s,Ak = a)R(s,a, s ′)

=
∑
c ∈C

K∑
k=0

∑
x ∈X

∑
a∈A

∑
x ′∈X

Pr(C = c) Pr(Xk = x |C = c, µ)

× Pr(Uk = a |Xk = x)

× Pr(Xk+1 = s
′ |Xk = s,Uk = a)R(x ,u,x ′)

=
∑
c ∈C

K∑
k=0

∑
x ∈X

∑
a∈A

∑
x ′∈X

Pr(C = c) Pr(Xk = x |C = c, µ)

× Pr(Uk = a |Xk = x)T (x ,u,x ′)Y (x ,u,x ′) (by Lemma 1)

=

K∑
k=0

∑
x ∈X

∑
a∈A

∑
x ′∈X

Pr(Xk = x |µ)

× Pr(Uk = a |Xk = x)T (x ,u,x ′)

× E
[
Yk |Xk = s,Uk = a,Xk+1 = x ′, µ

]
=

K∑
k=0

∑
x ∈X

∑
a∈A

Pr(Xk = x |µ)

× Pr(Uk = a |Xk = x)

× E [Yk |Xk = x ,Uk = a, µ]

=

K∑
k=0

∑
x ∈X

Pr(Xk = x |µ)

× E [Yk |Xk = x , µ]

=

K∑
k=0

E [Yk |µ]

= E

[ K∑
k=0

Yk |µ

]
□

SinceMmeta is an MDP for which an optimal exploration policy

is an optimal policy, it follows that the convergence properties of re-

inforcement learning algorithms apply to the search for an optimal

exploration policy. For example, in some experiments the advisor

uses the REINFORCE algorithm [27], the convergence properties

of which have been well-studied [17].
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Although the framework presented thus far is intuitive and re-

sults in nice theoretical properties (e.g., methods that guarantee

convergence to at least locally optimal exploration policies), each

episode corresponds to a new task c ∈ C being sampled. This means

that training the advisor may require to solve a large number of

tasks (episodes of the meta-MDP), each one potentially being an

expensive procedure. To address this issue, we sampled a small

number of tasks c1, . . . , cn , where each ci ∼ dC and train many

episodes on each task in parallel. By taking this approach, every

update to the advisor is influenced by several simultaneous tasks

and results in an scalable approach to obtain a general exploration

policy.

6 EMPIRICAL RESULTS
In this section we present experiments for discrete and continu-

ous control tasks in the following problem classes: Pole-balancing,

Animat, Hopper, and Ant, depicted in Figure 2. The implementa-

tions used for the discrete case pole-balancing and all continuous

control problems, where taken from OpenAI Gym and Roboschool

benchmarks, [3]. We demonstrate that: 1) in practice the meta-

MDP,Mmeta, can be solved using existing reinforcement learning

methods, 2) the exploration policy learned by the advisor improves

performance on existing RL methods, on average, and 3) the ex-
ploration policy learned by the advisor differs from the optimal

exploitation policy for any task c ∈ C, i.e., the exploration policy

learned by the advisor is not necessarily a good exploitation policy.

To that end, we will first study the behavior of our method in

two problem classes with discrete action-spaces: pole-balancing

[21] and animat [23]. Figure 2a and 2b represent two variations of

the pole-balancing problem class, where the height and mass of the

pole differ significantly. Figure 2c and 2d represent two variations

for animat, where the environment layout and goal locations can

differ arbitrarily.

We chose these problems because there are easy-to-interpret

behaviors in an optimal policy that are shared for any variation of

the tasks. In pole-balancing, if a pole is about to fall to the right,

taking an action thatmoves the pole further to the rightwill increase

the odds of dropping the pole. In the animat problem class, there

are actions that are not helpful for reaching any goal location. To

meet our original criterion that returns are normalized between 0

and 1, we normalize the returns using estimates of the minimum

and maximum possible expected returns for each task.

As a baseline meta-learning method, to which we contrast our

framework, we chose the recently proposed technique called Model

Agnostic Meta Learning (MAML), [5]. MAML was proposed as

a general meta learning method for adapting previously trained

neural networks to novel but related tasks. It is worth noting that

the method was not specifically designed for RL, nonetheless, in

their paper, the authors describe some promising results in adapting

behavior learned from previous tasks to novel ones.

In the case of RL, MAML samples a batch of related tasks and

maintains a global parameter for the meta-learner and a task-

specific parameter for each task. The agent samples trajectories

from each task, and each task parameter is updated according to

its own specific objective. The global parameters are updated by

following the sum of the gradients obtained from all tasks. In this

manner, the global parameters are updated according to all training

tasks in the batch. After training, when the agent faces a new task,

it simply initializes its policy to that given by the global parameters.

There are few key differences between MAML and our method.

Given that the global parameter are used to initialize the agents

policy on novel tasks, it imposes a constraint that the policy of

the meta-learner should have the same form as that of the agent.

In contrast, we allow for different learning algorithms to be used

for the advisor (the meta-learner) and the agent. Furthermore, the

global policy learned by MAML is only used for initialization and

it is updated thereafter. Since we focus in the RL setting, we specif-

ically learn a policy suited for the problem class that the agent can

call at any time.

6.1 Pole Balancing Problem Class
In our first experiments on discrete action sets, we used variants of

the standard pole-balancing (cart-pole) problem class. The agent is

tasked with applying force to a cart to prevent a pole balancing on

it from falling. The distinct tasks were constructed by modifying

4 variables: pole mass,mp , pole length, l , cart mass,mc , and force

magnitude, f . States are represented by 4-D vectors describing the

position and velocity of the cart, and angle and angular velocity

of the pendulum, i.e., s = [x ,v,θ , Ûθ ]. The agent has 2 actions at its
disposal: apply a force f in the positive or negative x direction.

Figure 3a, contrasts the cumulative return of an agent using

the advisor for exploration (in blue) with the cumulative return

obtained by an agent using ϵ-greedy random exploration (in red)

during training over 6 training tasks. The exploitation policy, π ,
was trained using REINFORCE for I = 1,000 episodes and the explo-

ration policy, µ, was trained using REINFORCE for 500 iterations. In

the figure, the horizontal axis corresponds to iterations—episodes

for the adviser. The horizontal red line denotes an estimate (with

standard error bar) of the expected cumulative reward that an agent

will obtain during its lifetime if it samples actions uniformly when

exploring. Notice that this is not a function of the training iteration,

as the random exploration is not updated. The blue curve (with

standard error bars from 15 trials) shows how the expected cumu-

lative reward that the agent will obtain during its lifetime changes

as the advisor learns to improve its policy. Here the horizontal axis

shows the number of training iterations—the number of episodes

of the meta-MDP. By the end of the plot, the agent is obtaining

roughly 30% more reward during its lifetime than it was when using

a random exploration. To better visualize this difference, Figure

3b shows the mean learning curves (episodes of an agent’s lifetime

on the horizontal axis and average return for each episode on the

vertical axis) during the first and last 50 iterations. The mean cu-

mulative reward were 25,283 and 30,552 respectively. Notice that,

although the final performance obtained is similar, using a trained

advisor allows the agent to reach this level of performance faster;

thus achieving a larger cumulative return.

6.2 Animat Problem Class
The following set of experiments were conducted in the animat
problem class. In these environments, the agent is a circular creature

that lives in a continuous state space. It has 8 independent actuators,

angled around it in increments of 45 degrees. Each actuator can be



A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning AAMAS’19, May 2019, Montreal, Canada

(a) Pole-balancing example
task 1.

(b) Pole-balancing example
task 2.

(c) Animat example task 1. (d) Animat example task 2.

(e) Hopper example task 1. (f) Hopper example task 2. (g) Ant example task 1. (h) Ant example task 2.

Figure 2: Example of task variations used in our experiments. The problem classes correspond to pole-balancing (top left),
animat (top right), hopper (bottom left), and ant (bottom right)

(a) Performance curves during
training comparing advisor
policy (blue) and random
exploration policy (red).

(b) Average learning curves on
training tasks over the first 50
advisor episodes (blue) and the
last 50 advisor episodes (orange).

Figure 3: Advisor results on pole-balancing problem class.

either on or off at each time step, so the action set is {0, 1}8, for a

total of 256 actions. When an actuator is on, it produces a small

force in the direction that it is pointing. The agent is tasked with

moving to a goal location; it receives a reward of −1 at each time-

step and a reward of +100 at the goal state. The different variations

of the tasks correspond to randomized start and goal positions in

different environments. The agent moves according to the following

mechanics: let (xt ,yt ) define the state of the agent at time t and d
be the total displacement given by actuator β with angle θβ . The
displacement of the agent for a set of active actuators, B, is given

by, (∆x ,∆y ) =
∑
β ∈B(d cos(θβ ),d sin(θβ )). After taking an action,

the new state is perturbed by 0-mean unit variance Gaussian noise.

An interesting pattern that is shared across all variations of this

problem class is that there are actuator combinations that are not

useful for reaching the goal. For example, activating actuators at

θ = 0
◦
and θ = 180

◦
would leave the agent in the same position

it was before (ignoring the effect of the noise). Even though the

environment itself might not provide enough structure for the

advisor to leverage previous experiences, the presence of these

poor performing actions provide some common patterns that can

be leveraged.

(a) Average learning curves for
animat on training tasks over the
first 10 iterations (blue) and last

10 iterations (orange).

(b) Frequency of
poor-performing actions in an
agent’s lifetime with learned

(blue) and random (red)
exploration.

Figure 4: Advisor results in the animat problem class.

Figure 4a shows the mean learning curves averaged over all

training tasks, where the advisor was trained for 50 iterations.

The curve in blue is the average curve obtained from the first 10

iterations of training the advisor and the curve in orange is the

average obtained from the last 10 training iterations of the advisor.

Each individual task was trained for I = 800 episodes. The figure

shows a clear performance improvement on average as the advisor

improves its policy.

To test our intuition that an exploration policy would exploit the

presence of poor-performing actions, we recorded the frequency

with which they were executed on unseen testing tasks when using

the learned exploration policy after training and when using a

random exploration strategy, over 5 different learned exploration

policies. Figure 4b helps explain the difference in performance seen

in Figure 4a. It depicts in the y-axis, the percentage of times these

poor-performing actions were selected at a given episode, and in

the x-axis the agent episode number in the current task. This shows

that the agent using the advisor policy (blue) is encouraged to

reduce the selection of known poor-performing actions, compared

to a random action-selection exploration strategy (red).
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Problem Class R R+Advisor PPO PPO+Advisor MAML

Pole-balance (d) 20.32 ± 3.15 28.52 ± 7.6 27.87 ± 6.17 46.29 ± 6.30 39.29 ± 5.74

Animat −779.62 ± 110.28 −387.27 ± 162.33 −751.40 ± 68.73 −631.97 ± 155.5 −669.93 ± 92.32

Pole-balance (c) — — 29.95 ± 7.90 438.13 ± 35.54 267.76 ± 163.05

Hopper — — 13.82 ± 10.53 164.43 ± 48.54 39.41 ± 7.95

Ant — — −42.75 ± 24.35 83.76 ± 20.41 113.33 ± 64.48

Table 1: Average performance on discrete and continuous control unseen tasks over the last 50 episodes. In the cases where
advisor performs best, the results are statistically significant. For the Ant domain, MAML appears to be better, although the
high variance in returns makes this result not statistically significant

(a) Average returns obtained on
test tasks when using the

advisor’s exploration policy
(blue) and a task-specific

exploitation (green)

(b) Number of steps needed to
complete test tasks with advisor
policy (blue) and exploitation

(green).

Figure 5: Performance comparison of exploration and
exploitation policies.

6.3 Is an Exploration Policy Simply a General
Exploitation Policy?

One might be tempted to think that the learned policy for explo-

ration might simply be a policy that works well in general. So how

do we know that the advisor is learning a policy that is useful for

exploration and not simply a policy for exploitation? To answer

this question, we generated three distinct unseen tasks for both

pole-balancing and animat problem classes and compare the per-

formance of using only the learned exploration policy with the

performance obtained by an exploitation policy trained to solve

each specific task.

Figure 5 shows two bar charts contrasting the performance of

the exploration policy (blue) and the exploitation policy (green) on

each task variation. In both charts, the first three groups of bars

on the x-axis correspond to the performance each test task and

the last one to an average over all tasks. Figure 5a corresponds

to the mean performance on pole-balancing and the error bars to

the standard deviation; the y-axis denotes the return obtained. We

can see that, as expected, the exploration policy by itself fails to

achieve a comparable performance to a task-specific policy. The

same occurs with the animat problem class, depicted in Figure 5b.

In this case, the y-axis refers to the number of steps needed to reach

the goal (smaller bars are better). In all cases, a task-specific policy

performs significantly better than the learned exploration policy,

indicating that the learned policy is useful for exploration, and not
a general exploitation policy.

6.4 Performance Evaluation on Novel Tasks
In this section we examine the performance of our framework

on novel tasks, and contrast our method to MAML trained using

PPO. In the case of discrete action-sets, we trained each task for

500 episodes and compare the performance of an agent trained

with REINFORCE (R) and PPO, with and without an advisor. In

the case of continuous tasks, we restrict our experiments to an

agent trained using PPO (since it was shown to perform well in

continuous control problems), with and without an advisor after

training for 500 episodes. In our experiments we set the initial

value of ϵ to ϵ0 = 0.8, and defined the update after each agent

episode to be ϵi+1 = max(0.1, 0.995ϵi ). The results shown in table 1

were obtained as follows. Each novel task was trained 5 times, and

the average and standard deviation of those performances were

recorded. The table displays the mean of those averages and the

mean of the standard deviations recorded. In both the discrete and

continuous case, therewere 5 novel tasks. The problem classes “pole-

balance (d)” and “animat” correspond to discrete actions spaces,

while “pole-balance (c)”, “hopper”, and “ant” are continuous.

In the discrete case, we can see that for both pole-balancing

and Animat, MAML showed a clear improvement over starting

from a random initial policy. However, using the advisor with PPO

resulted in a clear improvement in pole-balancing and, in the case

of animat, training the advisor with REINFORCE led to an almost

50% improvement over MAML. In the case of continuous control,

the first test corresponds to a continuous version of pole-balancing,

where the different variations were obtained by modifying the

length and mass of the pole, and the mass of the cart. The second

and third set of tasks correspond to the “Hopper” and “Ant” problem

classes, where the task variations were obtained by modifying the

length and size of the limbs and body. In all continuous control tasks,

both using the advisor andMAML led to an significant improvement

in performance in the alloted time. In the case of pole-balancing

using the advisor led the agent to accumulate almost twice as much

reward as MAML, and in the case of Hopper, the advisor led to

accumulating 4 times the reward. On the other had, MAML led

to an higher average return than the advisor in the Ant problem

class, but showing very high variance. An important takeaway from

these results is that in all cases, using the advisor resulted in a clear

improvement in performance over a limited number of episodes.

This does not necessarily mean that the agent can reach a better

policy over an arbitrarily long period of time, but rather that it is

able to reach a certain performance level much quicker.
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7 CONCLUSION
In this work we developed a framework for leveraging experience

to guide an agent’s exploration in novel tasks, where the advisor
learns the exploration policy used by the agent solving a task. We

showed that a few sample tasks can be used to learn an exploration

policy that the agent can use improve the speed of learning on

novel tasks.
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