arXiv:2001.01577v1 [cs.Al] 6 Jan 2020

Learning Reusable Options for Multi-Task Reinforcement Learning

Francisco M. Garcia'?>, Chris Nota? and Philip S. Thomas?

~ 'Amazon Alexa
ZUniversity of Massachusetts Amherst

{fmgarcia,cnota,psthomas } @cs.umass.edu

Abstract

Reinforcement learning (RL) has become an in-
creasingly active area of research in recent years.
Although there are many algorithms that allow an
agent to solve tasks efficiently, they often ignore
the possibility that prior experience related to the
task at hand might be available. For many practi-
cal applications, it might be unfeasible for an agent
to learn how to solve a task from scratch, given
that it is generally a computationally expensive pro-
cess; however, prior experience could be leveraged
to make these problems tractable in practice. In this
paper, we propose a framework for exploiting ex-
isting experience by learning reusable options. We
show that after an agent learns policies for solving
a small number of problems, we are able to use the
trajectories generated from those policies to learn
reusable options that allow an agent to quickly learn
how to solve novel and related problems.

1 Introduction

Reinforcement learning (RL) techniques have experienced
much of their success in simulated environments, such as
video games [Mnih er al., 2015] or board games [Silver et
al., 2016; Tesauro, 1995]. One of the main reasons why RL
has worked so well in these applications is that we are able
simulate millions of interactions with the environment in a
relatively short period of time, allowing the agent to experi-
ence a large number of different situations in the environment
and learn the consequences of its actions.

In many real world applications, however, where the agent
interacts with the physical world, it might not be easy to gen-
erate such a large number of interactions. The time and cost
associated with training such systems could render RL an un-
feasible approach for training in large scale.

As a concrete example, consider training a large number of
humanoid robots (agents) to move quickly, as in the Robocup
competition [Farchy er al., 2013]. Although the agents have
similar dynamics, subtle variations mean that a single policy
shared across all agents would not be an effective solution.
Furthermore, learning a policy from scratch for each agent is
too data-inefficient to be practical. As shown by Farchy et

al. (2013), this type of problem can be addressed by leverag-
ing the experience obtained from solving a related task (e.g.,
walking) to quickly learn a policy for each individual agent
that is tailored to a new task (e.g., running).

The situation where agents might need to solve many re-
lated, but unique, tasks also occurs in industry; an example
would be robots (agents) tasked with sorting items in fulfill-
ment centers. A simple approach, like using PD controllers,
would fail to adapt to the forces generated from picking up
objects with different weight distributions, causing the agent
to drop the objects. RL is able to mitigate this problem by
learning a policy for each agent that is able to make correc-
tions quickly, which is tailored to the robot’s dynamics. How-
ever, training a new policy for each agent would be far too
costly to be a practical solution.

In these scenarios, it is possible to use a small number of
policies learned by a subset of the agents, and then leverage
the experience obtained from learning those policies to al-
low the remaining agents to quickly learn their correspond-
ing policies. This approach can turn problems that are pro-
hibitively expensive to solve into relatively simple problems.

To make use of prior experience and improve learning on
new related problems in RL, several lines of work, which are
complementary to each other, have been proposed and are ac-
tively being studied. Transfer learning, [Taylor and Stone,
2009] refers to the problem of adapting information acquired
while solving one task to another. One might consider learn-
ing a mapping function that allows for a policy learned in one
task to be used in a different task, [Ammar et al., 2015], or
simply learn a mapping of the value function learned in one
task to another, [Taylor et al., 2007]. These techniques can be
quite effective, but are also limited in that they consider map-
ping information from a source task to a target task; that is,
they do not learn a general transfer strategy for many related
tasks.

Another approach to reusing prior knowledge is through
meta learning or learning to learn [Schmidhuber, 1995;
Schmidhuber et al., 1998]. In the context of RL, the goal
under this framework is usually for an agent to be exposed to
a number of tasks where it can learn some general behavior
that generalizes to new tasks. For example, Finn et al. (2017),
showed that an agent who learns how to walk forward is able
to find a general policy that can quickly be adapted to learn to
walk backwards [Finn et al., 2017].

One last technique to leverage prior experience, and the
one this paper focuses on, is through temporally extended ac-
tions or temporal abstractions [McGovern and Sutton, 1998;
Sutton et al., 1999]. While in the standard RL framework
the agent has access to a set of primitive actions (i.e., actions
that last for one time step), temporally extended actions allow
an agent to execute actions that last for several time-steps.
They introduce a bias in the behavior of the agent which, if
appropriate for the problem at hand, results in dramatic im-
provements in how quickly the agent learns to solve a new
task compared to only using primitive actions [McGovern and
Sutton, 1998].

A popular representation for temporally extended actions is
the options framework (formally introduced in the next sec-
tion), which is the focus of this work. It has been shown that
options learned in a specific task or set of tasks, can be reused
to improve learning on new tasks [Machado et al., 2017;
Bacon et al., 2017]; however, this often requires knowledge
from the user about which options or how many options are
appropriate for the type of problems the agent will face.

In this paper, we propose learning reusable options for a
set of related tasks with minimal information provided by the
user. We consider the scenario where the agent must solve
a large numbers of tasks and show that after learning a well-
performing policy for a small number of problems, we can
learn an appropriate number of options that facilitates learn-
ing in a remaining set of tasks. Ideally the trajectories used
to learn options would be obtained from optimal policies, but
for many learning algorithms it cannot be guaranteed that the
learned policies are actually optimal. We propose learning a
set of options that minimize the expected number of decisions
needed to represent trajectories generated from the policies
learned by the agent for a small number of problems, while
also maximizing the probability of generating those trajecto-
ries. Our experiments show that after learning to solve a small
number of tasks, the learned options allow the agent to much
more quickly solve the remaining tasks.

2 Background and Notation

A Markov decision process (MDP) is a tuple, M =
(S, A, P,R,~,dy), where S is the set of possible states of the
environment, A is the set of possible actions that the agent can
take, P(s,a,s’) is the probability that the environment will
transition to state s’ € S if the agent executes action a € A
in state s € S, R(s,a, s") is the expected reward received af-
ter taking action a in state s and transitioning to state s’, dg is
the initial state distribution, and v € [0, 1] is a discount factor
for rewards received in the future. We use ¢ to index the time-
step and write Sy, A;, and R; to denote the state, action, and
reward at time ¢. A policy, 7 : Sx.A — [0, 1], provides a con-
ditional distribution over actions given each possible state:
m(s,a) = Pr(A; = a|S; = s). We denote a trajectory of
length t as ht = (S(), ag, Ty -+« 3y St—1,0t—-1,T¢t—1, St), that iS,
h; is defined as a sequence of states, actions and rewards ob-
served after following some policy for ¢ time-steps.

This work focuses on learning temporally extended
actions—actions lasting for multiple time-steps—that can be
used for a set of related tasks. We consider the setting where

an agent must solve a set of related tasks, where each task
is an MDP, M = (S, A, Py, Ry, 7y, d)); that is, each task
is an MDP with its own transition function, reward function
and initial state distribution, with shared state and action sets.
Specifically, our work focuses on learning reusable options
[Sutton and Precup, 1998; Sutton er al., 1999] for a set of
related tasks.

An option, 0 = (Z,, o, Bo), is a tuple in which Z, C S
is the set of states in which option o can be executed (the ini-
tiation set), i, is a policy that governs the behavior of the
agent while executing o, and 8, : S — [0,1] is a termina-
tion function that determines the probability that o terminates
in a given state. We assume that Z, = S for all options o;
that is, the options are available at every state. The options
framework does not dictate how an agent should choose be-
tween available options or how options should be discovered.
A common approach to selecting between options is to a learn
a policy over options, which is defined by the probability of
choosing an option in a particular state. Two recent popular
approaches to option discovery are eigenoptions [Machado
et al., 2017] and the option-critic architecture [Bacon ef al.,
20171.

The eigenoptions [Machado et al., 2017] of an MDP are
the optimal policies for a set of implicitly defined reward
functions called eigenpurposes. Eigenpurposes are defined
in terms of proto-value functions [Mahadevan, 2005], which
are in turn derived from the eigenvectors of a modified ad-
jacency matrix over states for the MDP. The intuition is that
no matter the true reward function, the eigenoptions allow
an agent to quickly traverse the transition graph, resulting in
better exploration of the state space and faster learning. How-
ever, there are two major downsides: 1) the adjacency matrix
is often not known a priori, and may be difficult or impossi-
ble to construct for large MDPs, and 2) for each eigenpurpose,
constructing the corresponding eigenoption requires solving
anew MDP.

The option-critic architecture [Bacon ez al., 2017] is a more
direct approach that learns options and a policy over options
simultaneously. The option policies and their termination
functions are trained using policy gradient methods, while the
policy over options may be trained using any technique. One
issue that often arises within this framework is that the ter-
mination functions of the learned options tend to collapse to
“always terminate”. In a later publication, the authors built on
this work to consider the case where there is a cost associated
with switching options [Harb et al., 2018]. This method re-
sulted in the agent learning to use a single option while it was
appropriate and terminate when an option switch was needed,
allowing it to discover improved policies for a particular task.
The authors argue that minimizing the use of the policy over
options may be desirable, as the cost of choosing an option
may be greater than the cost of choosing a primitive action
when using an option—e.g., when a planner is used to select
an option. Work recently presented by Harutyunyan et al.
(2019) approaches the aforementioned termination problem
by explicitly optimizing the termination function of options
to focus on small regions of the state space. However, while
all of these methods can be effective in learning a policy for
the task at hand, they do not explicitly take into consideration

that the agent might face related, but different, tasks in the fu-
ture. In contrast, our method discovers options that are useful
for a variety tasks.

We build on the idea that minimizing the number of deci-
sions an agent must make will lead to the discovery of gener-
ally useful temporal abstractions, and propose an offline tech-
nique where options are learned after solving a small number
of tasks. The options can then be leveraged to quickly solve
new related problems the agent will face in the future. We use
the trajectories generated by the agent when learning policies
for a small number of problems, and learn an appropriate set
of options by directly minimizing the expected number of de-
cisions the agent makes while simultaneously maximizing the
probability of generating the observed trajectories.

3 Learning Reusable Options from
Experience

In this section, we formally introduce the objective we use
to learn a set of options that are reusable for a set of related
tasks. Our algorithm introduces one option at a time until
introducing a new option does not improve the objective fur-
ther. This procedure results in a natural way of learning an
adequate number of options without having to pre-define it; a
new option is included only if it is able to improve the prob-
ability of generating optimal behavior while minimizing the
number of decisions made by the agent.

3.1 Problem Formulation

In the options framework, at each time-step, ¢, the agent
chooses an action, A;, based on the current option, O;. Let
T; be a Bernoulli random variable, where T; = 1 if the pre-
vious option, O;_1, terminated at time ¢, and 7; = 0 other-
wise. If T} = 1, O, is chosen using the policy over options,
w. If T; = 0, then the previous option continues, that is,
Oy = Oy_1. To ensure that we can represent any trajectory,
we consider primitive actions to be options which always se-
lect one specific action and then terminate; that is, for an op-
tion, o, corresponding to a primitive, a, for all s € S, the
termination function would be given by ,(s) = 1, and the
policy by u(s,a’) = 1if ' = a and 0 otherwise.

Let O = O4 U Op denote a set of options, {o1,...,0,},
where O 4 refers to the set of options corresponding to prim-
itive actions and Op to the set of options corresponding to
temporal abstractions. Furthermore, let H be a random vari-
able denoting a trajectory of length | H| generated by a well-
performing policy, and let H; be a random variable denoting
the sub-trajectory of H up to the state encountered at time-
step t. We seek to find a set, O* = {of, ..., 0} }, that maxi-
mizes the following objective:

|H]|
J(m,0) =E[)_Pr(T: = 0, Hi|r, 0) + Mg(H,00)], (D

t=1

where g(h,Op) is a regularizer that encourages a diverse
set of options, and A; is a scalar hyper-parameter. If we
are also free to learn the parameters of 7, then O* €
arg max max J(mw, O).

(@) T

One choice for g is the average KL divergence on a

given trajectory over the set of m options being learned:
_ 2 |h|—1
g(h’a OO) - m ZO,O’EOO t=0

Note that this term is only defined when we consider two or
more options. When that is not the case we set this term to 0.
Intuitively, we seek to find options that terminate as in-
frequently as possible while still generating well-performing
trajectories with high probability. Notice that minimizing the
number of terminations is the same as minimizing the number
of decisions made by the policy over options, as each termina-
tion requires the policy to subsequently choose a new option.
Given a set of options, a policy over options, and a sample
trajectory, we can calculate the joint probability for a trajec-
tory exactly. Therefore, we can obtain an accurate estimate
of Equation 1 by averaging over a set of sample trajectories.
In the next section, we present a slight modification to our
objective that results in a practical optimization problem.

3.2 Optimization Objective for Learning Options

Given that the agent must learn the corresponding policy for
a set of tasks, we can use the experienced gathered from solv-
ing a subset of tasks to obtain trajectories demonstrating the
optimal behavior learned for these problems. Given a set, H,
of trajectories generated from an initial subset of tasks, we
can now estimate the expectation in (1) to learn options that
can be leveraged in the remaining problems.

Because the probability of generating any trajectory ap-
proaches 0 as the length of the trajectory increases, we make
a slight modification to the original objective that leads to bet-
ter numerical stability. We explain these modifications after

introducing the objective .JJ, which we optimize in practice:

J(r, 0. H) :% ™ (Yo Pr(H = him, 0)

heH

probability of generating h
|h] _ _
=1 E [Tt = I‘Hf = ht771', O]
])
expected number of terminations

+ Alg(h7 OO))
—_——

encourage diverse options

The objective in (2) is derived from J with the following
modifications: 1) the sum of the two first terms replaces a
product of two terms obtained from computing the joint prob-
ability Pr(7; = 0, H) in J, 2) the summation over termi-
nations for a trajectory (second term) is normalized by the
length of the trajectory, and 3) we introduce a scalar weight
A2 to balance the contribution of each term to .J. Although
this is not an unbiased estimator of J, we derived J from
J with the introduction of some modifications for numerical
stability. A more detailed discussion on how we arrived to
this objective is provided in Appendix A.

We can express (2) entirely in terms of the policy over op-
tions 7, options @ = {o1,...,0,} and the transition func-
tion, P. When the transition function is not known, we can
estimate it from data by assuming a family of distributions

Dxr, (fro(56)|] pror (8¢))-

and fitting the parameters. The following theorems show how
to calculate the first two terms in (2) from known quantities,
allowing us to efficiently maximize the proposed objective.

Theorem 1. Given a set of options, O, and a policy, w, over
options, the expected number of terminations for a trajectory
h is given by:

[||

;E{Tt = 1‘Ht = hm,o} =373 Bo(se)

t=1 o0€O (3)

where we use (o) as a shorthand notation for
to(8t,at) Pr(Oy = o|Hy = hy,w, 0),

Pr(O; = o|Hy = hy,m,0) = |:<7T(St, o)ﬁo(st))
NP

x az—1(0)(1 — 50(8:51)))})
and Pr(Og = o|Hy = hg, 7, O) = 7(sp, 0).
Proof. See Appendix B. O

Theorem 2. Given a set of options O and a policy © over
options, the probability of generating a trajectory h of length
|h| is given by:

Pr(Hp, = hypylm, 0) =do(s0)[> w(s0,0)

0€O

X /’LO(SO7 ao)f(h\hbov 1)]
|h]—1

X H P(Sk,ak,5k+1)7
k=0

where f is a recursive function defined as:
1, ifi =t
(85 S co 1,0

Xpor (Si+1, @it1) f(he, o'y + 1)>

f(ht7 o, Z) =
+ ((1 — Bo(8:))pho(Sit1, @it1)
X f(ht, 0,1+ 1)>] otherwise
Proof. See Appendix C. O

Given a parametric representation of the option policies
and termination functions for each o € O and for the policy
7 over options, we use Theorems 1 and 2 to differentiate the
objective in (2) with respect to their parameters and optimize
with any standard optimization technique.

3.3 Learning Options Incrementally

One common issue in option discovery is identifying how
many options are needed for a given problem. Oftentimes
this number is predefined by the user based on intuition. In
such a scenario, one could learn options by simply randomly
initializing the parameters of a number of options and opti-
mizing the proposed objective in (2). Instead, we propose not
only learning options, but also the number of options needed,
by the procedure shown in Algorithm 1. This algorithm intro-
duces one option at a time and optimizes the objective J with
respect to the policy over options 7y, with parameters 6, and
the newly introduced option, o' = (w7, B;,), with parameters
¢ and v, for N epochs. Optimizing both o’ and 74 allows us
to estimate how much we can improve J given that we keep
any previously introduced option fixed.

After the new option is trained, we measure how much J
has improved; if it fails to improve above some threshold,
A, the procedure terminates. This results in a natural way of
obtaining an appropriate number of options, as options stop
being added once a new option no longer improves the ability
to represent the demonstrated behavior.

Algorithm 1 Option Learning Framework - Pseudocode

1: Collect set of trajectories H

2: Initialize option set O with primitive options
3: done = false
4: Jprey = —00
5: while done == false do
6: Initialize new option o' = (uj, 3;,), initializing pa-
rameters for ¢ and 1.
7. O'=0Ud
8: Initialize parameters 6 of policy my
9: fork=1,... Ndo
10: Ji = J(me, O, H)
11 0 =0+ a%;
12: ¢=¢+a5k
13: =1+ a%—{p’“
14: end for
15: if Iy — Jprev < A then
16: done = true
17: else
18: 0=0"
19: Jprev = JN
20: endif

21: end while
22: Return new option set O

4 Experimental Results

This section describes experiments used to evaluate the pro-
posed offline option learning approach. We show results in
the “four rooms” domain to allow us to visualize and un-
derstand the options produced by the approach, and to show
empirically that these options produce a clear improvement
in learning. We compare against options generated by the

Training Progression in Four Room Environment

5
B
F
E
H}
H
B
B
B
o
&
4
5
E
E

0 25 50 75 190 125 150 7s 200
. TrainingEpochs

10ption 2 Options 3 Options 40ptions

(a) Visualization of loss for sampled trajectories over 200 training

Average Performance on Four-Room Testing Tasks

o --- Primitives
Option Initial
-~ Option Learned: "
= Oplane,:vﬁéhKL
1000 --- Option Efitic -
-~ Eigen Opticrs "
o

J
-

Ay
P
RS

-2000

Return

W
e
g A
~3000 i — prarn, SN T
o o Y
¢
:"m""'“""‘"\‘-«"“*"‘““"Vwk»"""""’""“"af"‘"“"‘ ‘~./v\.,‘,n.,.,,v.,'..\,u._\(,x"
-4000

0 50 500 750 1000 1250 1500 1750
Episades

(b) Performance Comparison on four rooms domain. Six tasks were

epochs. Every 50 training epochs a new option is introduced. For used for training and 24 different tasks for testing. The plot shows

a given set of sampled trajectories, the decreasing average num-
ber of decisions made by 7 is shown in blue and the increasing

the average return (and standard error) on the y-axis as a function of
the episode number on the test tasks. For our proposed method we set

probability of generating the observed trajectories is shown in red. A2 = 100.0 and A1 = 0.001 when using KL regularization.

Figure 1: Results on four-room environment showing the improvement of the training loss (left), and learning curves on test problems (right).

option-critic architecture [Bacon et al., 2017] and eigenop-
tions [Machado er al., 2017]. We then extend our experi-
ments to assess the performance of the technique in a few
selected problems from the Atari 2600 emulator provided by
OpenAl Gym [Brockman ef al., 2016]. These experiments
demonstrate that when an agent faces a large number of re-
lated tasks, by using the trajectories obtained from solving a
small subset of tasks, our approach is able to discover options
that significantly improve the learning ability of the agent in
the tasks it has yet to solve.

4.1 Experiments on Four Rooms Environment

We tested our approach in the four rooms domain: a grid-
world of size 40 x 40, in which the agent is placed in a ran-
domly selected start state and needs to reach a randomly se-
lected goal state. At each time-step, the agent executes one of
four available actions: moving left, right, up or down, and re-
ceives a reward of —1. After taking a particular action, the
agent moves in the intended direction with probability 0.9
and in any other direction with probability 0.1. Upon reach-
ing the goal state, the agent receives a reward of +10. We
generated 30 different task variations (by changing the goal
and start location) and collected six sample trajectories from
optimal policies, learned using Q-learning, from six different
start and goal configurations. We evaluated our method on
the remaining 24 tasks.

Each option was represented as a two-layer neural network,
with 32 neurons in each layer, and two output layers: a soft-
max output layer over the four possible actions representing
1, and a separate sigmoid layer representing 5. We used the
tabular form of Q-learning as the learning algorithm with e-
greedy exploration.

Figure 1a shows the change in the average expected num-
ber of terminations and average probability of generating the
observed trajectories while learning options, as new options
are introduced and adapted to the sampled trajectories. Op-
tions were learned over the six sampled optimal trajectories
and every 50 epochs a new option was introduced to the op-

tion set, for a total of 4 options. For every new option, the
change in probability of generating the observed trajectories
as well as the change in expected number of decisions reaches
a plateau after 30 or 40 training epochs. When a new option
is introduced, there is a large jump in the loss because a new
policy, 7, is initialized arbitrarily to account for the new op-
tion set being evaluated. However, after training the new can-
didate option, the overall loss improves beyond what it was
possible before introducing the new option.

In Figure 1b, we compare the performance of Q-learning
on 24 novel test tasks (randomly selected start and goal states)
using options discovered from offline option learning (with
and without regularization using KL divergence), eigenop-
tions, and option critic. We allowed each competing method
to learn options from the same six training tasks and, to en-
sure a fair comparison, we used the original code provided by
the authors. As baselines, we also compare against primitive
actions and randomly initialized options. It might seem sur-
prising that both eigenoptions and the option-critic failed to
reach an optimal policy when they were shown to work well
in this type of problem; for that we offer the following ex-
planation. Our implementation of four rooms is defined in a
much larger state space than the ones where these methods
were originally tested, making each individual room much
larger. Since the options identified by these methods tend to
lead the agent from room to room, it is possible that, once in
the correct room, the agent executes an option leading to a
different room before it had the opportunity to find the goal.
When testing our approach in the smaller version of the four
room problem, we found no clear difference to the perfor-
mance of the competing methods. In this setting, the options
learned by our method found an optimal policy in all testing
tasks in the allotted number of episodes. We set the threshold
A for introducing a new option to 10% of J at the previous
iteration and the hyper-parameter Ao = 100.0. When adding
KL regularization, we set A; = 0.001.

To understand the reason behind the improvement in per-
formance resulting from offline option learning, we turn the

New Task

w e

Option 1 Option 2

Solution Found

= O

© fujgeqoid © © Augeqoid © © Auligeqoid ©

o

Figure 2: Visualization of our framework for learning options in four rooms domain. A novel task is seen in the top left, where the agent (red)
has to navigate to a goal (green). On the top right, we show the solution found by the agent. The three rows below show how the options
were learned and exploited in the new task. The highlighted area in the top row show a sample trajectory and the color corresponds to the
probability that the option would take the demonstrated action. The middle row shows the probability of each option being executed at each
state, while the bottom row shows the corresponding probability of termination.

reader’s attention to Figure 2. The figure is a visualization of
the policy learned by the agent on a particular task: navigate
from a specific location in the bottom-left room to a location
in the top-right room in a small “four-room” domain of size
10 x 15. !

The new task to solve is shown in the top-left figure, while
the solution found is shown in the top-right figure. Each of
the remaining rows of images shows how each option was
learned and used in the new task. The first row show the
options learned after training; the highlighted path depicts
one of the sample trajectories used for training, the colors
correspond to the probability that the options would take the
demonstrated action, and the arrows indicate the most likely
action to be taken by the option.

The middle row depicts a heatmap indicating how each op-
tion was used to solve this specific task. It shows the prob-
ability that m would execute each option at any given state.
Finally, the last row depicts a heatmap indicating the proba-

"'We show a smaller domain than used in the experiments for ease
of visualization

bility of termination for each option given the state.

Looking at the learned options from these different per-
spectives provides some insight into how they are being ex-
ploited. For example, option 1 is generally useful to navigate
towards the top rooms and, since the goal in this task is in
the top-right room, the option is mainly called in the bottom
rooms. Also notice that the option is likely to terminate in
the top left and bottom right rooms in the states that would
lead the agent to get “trapped” against a wall. These options,
when used in combination in specific regions, allow the agent
to efficiently tackle problems it has not encountered before.

4.2 Experiments using Atari 2600 Games

We evaluated the quality of the options learned by our frame-
work in two different Atari 2600 games: Breakout and Ami-
dar. We trained the policy over options using A3C [Mnih
et al., 2016] with grayscale images as inputs. Options were
represented by a two layer convolutional neural network, and
were given the previous two frames as input. For each task
variation we randomly picked an integer between 1 and 20,
and let the agent act randomly for that number of time-steps

Learning Performance on Breakout

—== primitives
initial options
--- leamed options A1 = 0.0, A; = 5000 -

250 7
—--- leamed options A; = 0.01,A; = 5000 o

2gp M leamed options A7 = 0.1, A; = 5000 ’ -

300

30 60 90 120 150 180 210 240
Minutes

Figure 3: Average returns on Breakout comparing primitives (blue),
options before training (orange) and learned options for different
values of A\; and 2. The shaded region indicates the standard error.

before learning (changing the initial state distribution), we
sampled a number in the range (0, 10] and use it to scale the
reward the agent received (changing the reward function), and
allowed for a number of frames to be skipped after taking
each action (changing the transition function). For used three
different tasks for training for each game, and sampled 12
trajectories for training; we used five new tasks for testing.
Each trajectory lasted until a life was lost, not for the entire
duration of the episode. The options were represented by a
two-layer neural network, where the input was represented
by gray scale images of the last two frames. We ran 32 train-
ing agents in parallel on CPUs, the learning rate was set to
0.0001 and the discount factor v was set to 0.99.

Figures 3 and 4 show the performance of the agent as a
function of training time in Breakout and Amidar, respec-
tively. The plots show that given good choices of hyperpa-
rameters, the learned options led to a clear improvement in
performance during training. For both domains, we found
that A = 5,000 led to a reasonable trade-off between the
first two term in .J , and report results with three different val-
ues for the regularization term: A\; = 0.0 (no regularization),
A1 = 0.01 and Ay = 0.1. Note that our results do not nec-
essarily show that the options result in a better final policy,
but they improve exploration early in training and enable the
agent to learn more effectively.

Figure 5 depicts the behavior for one of the learned options
on Breakout. The option efficiently catches the ball after it
bounces off the left wall, and then terminates with high prob-
ability before the ball has to be caught again. Bear in mind
that the option remains active for many time-steps, signifi-
cantly reducing the number of decisions made by the policy
over options. However, it does not maintain control for so
long that the agent is unable to respond to changing circum-
stances. Note that the option is only useful in specific case;
for example, it was not helpful in returning a ball bounced off
the right wall. That is to say, the option specialized in a spe-
cific sub-task within the larger problem: a highly desirable
property for generally useful options.

Figure 6 shows the selection of two of the options learned
for Amidar when starting a new game. At the beginning of

Learning Performance on Amidar

250 —--— primitives
initial options ‘/" ‘\
--- leamed options Ay = 0.0, A; = 5000 /"’
200 --- |eamed options Ay = 0.01,A; = 5000 ‘,/' -----------
= >
—-— leamed options A; = 0.1, A, = 5000 '/' // —
< 150 ey Y
> | e - =y -
2 7 e J R
@ === = L
& o T T T T ik
e = 5
100 e e
__r’ 4 e
e y .
/," x"/ —“{:‘,/
50 e ",»:-’:_ T
gﬂ-’—‘ -
30 60 90 120 150 180 210 240

Figure 4: Average returns on Amidar comparing primitives (blue),
options before training (orange) and learned options for different
values of A\; and 2. The shaded region indicates the standard error.

Figure 5: Visualization of a learned option executed until termina-
tion on Breakout. The option learned to catch the ball bouncing
off the left wall and terminates with high probability before the ball
bounces a wall again (ball size increased for visualization).

the game, option 1 is selected, which takes the agent to a
specific intersection before terminating. The agent then se-
lects option 2, which chooses a direction at the intersection,
follows the resulting path, and terminates at the next intersec-
tion. Note that the agent does not need to repeatedly select
primitive actions in order to simply follow a previously cho-
sen path. Having access to these types of options enables an
agent to easily replicate known good behaviors, allowing for
faster and more meaningful exploration of the state space.

5 Conclusion and Future Work

In this work we presented an optimization objective for learn-
ing options from demonstrations obtained from learned poli-
cies on a set of tasks. Optimizing the objective results in a
set of options that allows an agent to reproduce the behavior
while minimizing the number of decisions made by the policy
over options, which are able to improve the learning ability of
the agent on new tasks.

There are some clear directions for future development.
While we have shown that our method is capable of discov-
ering powerful options, properly tuning the hyperparameters,
A1 and Ao, is necessary for learning appropriate options. In
complex environments, this is not an easy task. Future work
could study methods for finding the right balance between
hyperparameters automatically or, if possible, eliminate the
need for such hyperparameters altogether. Another possible
dimension of improvement is to study how to extend the pro-
posed ideas to the online setting; an agent may be able to
sample trajectories as it is learning a task and progressively
use them to continuously improve its option set.

L) \ J
Y ¥

Option 2

Option 1

Figure 6: Visualization of two learned options on Amidar. The agent
is shown in yellow and enemies in pink. Option 1 learned to move
up, at the beginning of the game, and turn left until getting close
to an intersection. Option 2 learned to turn in that intersection and
move up until reaching the next one.

We provided results showing how options adapt to the tra-
jectories provided and showed, through several experiments,
that the identified options are capable of significantly improv-
ing the learning ability of an agent. The resulting options en-
code meaningful abstractions that help the agent interact with
and learn from its environment more efficiently.

References

[Ammar et al., 2015] Haitham Bou Ammar, Eric Eaton, Paul
Ruvolo, and Matthew E. Taylor. Unsupervised cross-
domain transfer in policy gradient reinforcement learn-
ing via manifold alignment. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAT’15, pages 2504-2510. AAAI Press, 2015.

[Bacon et al., 2017] Pierre-Luc Bacon, Jean Harb, and
Doina Precup. The option-critic architecture. In AAAI,
2017.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, 2016.

[Farchy er al., 2013] Alon Farchy, Samuel Barrett, Patrick
MacAlpine, and Peter Stone. Humanoid robots learning to
walk faster: From the real world to simulation and back. In
Proc. of 12th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS), May 2013.

[Finn et al., 2017] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1126—1135, International
Convention Centre, Sydney, Australia, 06-11 Aug 2017.
PMLR.

[Harb et al., 2018] Jean Harb, Pierre-Luc Bacon, Martin
Klissarov, and Doina Precup. When waiting is not an op-
tion: Learning options with a deliberation cost. In AAAI,
2018.

[Machado et al., 2017] Marlos C. Machado, Marc G. Belle-
mare, and Michael Bowling. A Laplacian Framework
for Option Discovery in Reinforcement Learning. CoRR,
2017.

[Mahadevan, 2005] Sridhar Mahadevan. Proto-value func-
tions: Developmental reinforcement learning. In Proceed-

ings of the 22nd International Conference on Machine
Learning (ICML-2005), pages 553-560. ACM, 2005.

[McGovern and Sutton, 1998] A. McGovern and R. Sutton.
Macro actions in reinforcement learning: An empirical
analysis. Technical report, University of Massachusetts -
Ambherst, Massachusetts, USA, 1998.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, February 2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1928-1937, New York, New
York, USA, 20-22 Jun 2016. PMLR.

[Schmidhuber et al., 1998] Jiirgen Schmidhuber, Jieyu
Zhao, and Nicol N. Schraudolph. Learning to learn.
chapter Reinforcement Learning with Self-modifying
Policies, pages 293-309. Kluwer Academic Publishers,
Norwell, MA, USA, 1998.

[Schmidhuber, 1995] Jiirgen Schmidhuber. On learning how
to learn learning strategies. Technical report, 1995.

[Silver et al., 2016] David Silver, Aja Huang, Chris J. Mad-
dison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature,
529(7587):484-489, January 2016.

[Sutton and Precup, 1998] Richard S. Sutton and Doina Pre-
cup. Intra-option learning about temporally abstract ac-
tions. In In Proceedings of the 15th International Confer-
ence on Machine Learning (ICML-1998), 1998.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 1999.

[Taylor and Stone, 2009] Matthew E. Taylor and Peter
Stone. Transfer learning for reinforcement learning do-
mains: A survey. J. Mach. Learn. Res., 10:1633-1685,
December 2009.

[Taylor ef al., 2007] Matthew E. Taylor, Peter Stone, and
Yaxin Liu. Transfer learning via inter-task mappings

for temporal difference learning. J. Mach. Learn. Res.,
8:2125-2167, December 2007.

[Tesauro, 1995] Gerald Tesauro. Temporal difference learn-
ing and td-gammon. Commun. ACM, 38(3):58-68, March
1995.

A Appendix
The following list defines the notation used in all derivations:
1. A;: random variable denoting action taken at step .
S;: random variable denoting state at step ¢.
H;: random variable denoting history up to step t. H; = (So, Ao, S1, A1, ..., St).
T;: random variable denoting the event that the option used at step ¢ — 1 terminates at state S;.
m: policy over options.
P: transition function. P(s, a, s’) denotes the probability of transitioning to state s’ by taking action « in state s
O¢: random variable denoting the option selected for execution at state S;.

o: option defined as o = (10, 3,), Where 1, is the option policy for option and (3, is the termination function.

RSP RN I

Assume primitives are options that perform only 1 action and last for 1 time-step.

_
e

O: set of available options.
We can compute the probability of an option terminating at state s; and generating a trajectory h; as:
Pr(Ty = 1, Hy = hy|w, O) = Pr(Ty = 1|Hy = hy, 7, O) Pr(Hy = he|m, O) “4)

To compute the proposed objective J we need to find an expression for Pr(7; = 1|H; = hy,7,O) and
Pr(H; = hy|m, O) in terms of known quantities.

A.1 Appendix A - Derivation of .J
Recall J(m,O,H) = E [Zyﬂl Pr(T; = 0, H¢|w, O) |, ignoring the regularization term. Assuming access to a set H of sample

trajectories, we start by estimating .J from sample averages and derive the objective J as follows:

In|
J(m, O, H) ~ ZZPth_OHt_ht\ﬁ(’))

hGHt 1

In|
Z > (1= Pr(Ty = 1|H; = hy, m,0)) Pr(H; = hym, 0)
he?—lt 1

In|
Tl ZZ(E[T,|H, = by, , O])Pr(Ht:hthr,O)
heH t=1

It can easily be seen that to maximize the above expression E[Tt|Ht = Dy, m, (9} should be minimized while Pr(H =
h|m, ©) should be maximized. Given that for long trajectories the expected number of terminations increases while the proba-
bility of generating the trajectories goes to 0, we normalize the number of terminations by the lenght of the trajectory, |h|, and
adjust a hyperparameter, Ao, to prevent one term from dominating the other during optimization. Based on this observation we
propose optimizing the following objective:

|h‘ [Tt|Ht = ht77T O]
|h|

J(m, O, H) = H > X Pr(H =hr,0) -
h‘MG’H

This objective allow us to control a trade-off, through Ay, of how much we care about the options reproducing the demon-
strated trajectories vs. how much we want the agent to minimize the number of decisions.

A.2 Appendix B - Proof of Theorem 1

Theorem 1 Given a set of options O and a policy w over options, the expected number of terminations for a trajectory h of
length |h| is given by:

|| |k

Ko(8t—1,a1—1) Pr(Oy—1 = o|Hi—1 = hy—1,7m, O) >
E[T; =1|H; = hy, 7w, O] s
; ' | ' ' ;(;960 t Zoeouo (St 1, Qt— 1)Pr(0t 1—0/|Ht 1= hi_1,m, O)

where,

Pr(Oi—1 = o|Hy—1 = hy—1,m,0) = [(W(Stl»o)ﬁo(stl)) <P(5t21at275t1)No(st27at2)

X Pr(Ot—z = 0|Ht—2 = ht_o,, O)(l - 50(&—1)))} >

and PI“(OQ = O‘HO = hoﬂl’, O) = 7T(8070).

Proof. Notice that Elh‘ E[T: = 1|H; = hy, 7w, 0] = Z‘hl Pr(Ty = 1|H; = h,w,0) 1, so if we find an expression for
Pr(T; = 1|Hy = hy,m, O) we can calculate the expectation exactly We define Pr(Ty = 1|H; = hy,w, O) = 1 for ease of
derivation even though there is no option to terminate at 7.

PT(Tt = 1|Ht = ht,ﬂ', O) = Z PI‘(Tt = 1‘0,5,1 = 0, Ht = ht,ﬂ',0> PI’(Ot,1 = O|Ht = ht,7T7O)

oeO

=" Bo(st) Pr(Os—1 = o|Hy = hy, m, 0)
0eO

= Z Bo(st) Pr(th = 0|Ht71 =hi1, Ap—1 = ay—1, 5t = ¢, T, O)
0eO

_Zﬂs St—3t|Ht 1=h—1, A1 = a,1,0;-1 = 0,7, O)
ocO oNt (St = 5t|Ht—1 =h_1, A1 = at_l,w,O)

x Pr(O;— 1:0|Ht 1=hi—1, A1 = a1, 7, 0)
Pr(Sy = s¢|Hi—1 = hi—1, As—1 = a1, 7, 0)

_ (50)
O;Qﬂ YPr(S; = si|Hy—1 = hi—1,Ar1 = az_1,7,0)

X PI‘(Ot_l = O|Ht_1 = ht—hAt—l = Q¢—1,T, O)
=" Bo(s) Pr(Or—1 = 0| Hy_y = hy_y, Ay_y = a;_1,7,0)

0e®
_ZB s At 1= a¢— 1\Ht 1=hi—1,0— 1—07T0)P1"(Ot 1—0|Ht 1= hy 177TO)
=5 o(st) Pr(A;—1 = ay_1|Hi—1 = hy—1,m,0)

_Zﬂ ,uo S¢— hat 1) Pr(Oi—1 = o|Hy—1 = hy—1,7,0)

=0 Pr(Ai—1 = ar—1|Hi—1 = hy—1,m,0)

_Zﬂ 5 fo(st—1,a:-1) Pr(Oy—1 = o|Hy—1 = hy_1,m,0)
ofst) YoocoPr(Ai1 =a;1,0 1 = 0|Hy 1 = hy_q,7,0)

0eO
=Y Bols)tto(st-1,a1-1) Pr(Oy 1 = o|Hy 1 = hy_1,7,0)
0O
(Z Pr(Ai—1 = a;-1|0y—1 = 0',Hy—1 = hy_1,m,O)
o’'eO

X Pr(O4—1 = 0'|Hy—y = hy—1,, (9))71

_Zﬂ s Ho(St—1,a1-1) Pr(O4—1 = o|Hi—1 = hy—q,m, O)
° t ZO reo Mo’ (St 1, At— 1)Pr(0t 1:0/|Ht 1= hi_1,m, O)

0eO
We are left with finding an expression in terms of known probabilities for Pr(O;_1 = o|Hy—1 = hy—1, 7, O).

Pr(Oy_1 = olHy—1 = hy—1,m,0) =[Pr(Oy—1 = 0,Ty—1 = 1|H;—1 = hy_1,7,0)
+Pr(Oy—1 = 0,T1—1 = 0|H;—1 = hy_1,m,0)]

:[(PF(Ot1 =olHi—1 =h_1,Ti—1 = 1,7,0)

X Pr(Ty—1 = 1|Hy—1 = hy—1,7,0))
+ (Pr(otfl =olHi—1 =h—1,T;—1 =0,7,0)

X (1 — PI‘(Tt_l = 1|Ht—1 = ht—laﬂ—vo))):|

= |:(7T(St_1, 0) PI‘(Tt_l = 1|Ht_1 = ht—la ™, O))
+ (Pr(O4—1 = 0|Hy—1 = hy—1,Ty—1 = 0,7,0)

X (1 — PI‘(thl = 1|Ht71 = htlaﬂ—vo))):|

[((51-1,0)Bo(s50-1)) +

X (Pr(Op—1 = olHi—1 = hy—1,Ty—1 = 0,m,0)(1 — Bo(s¢-1)))

Given that by convention, Pr(Ty = 1|Hy = ho,m, O) = 1.0, we are now left with figuring out how to calculate Pr(O;_; =
0|Ht71 = ht717Tt71 = 077T7 O)

Pr(Os—1 =0o|Hi—1 = hi—1,T1—1 = 0,7,0) =Pr(O4—o = 0, At—2 = ay_2, 51 = $4—1|Hi—1 = hy_1,m,O)
=Pr(A;_2 =a4—2,5-1=5-1|0i—2 =0, H_1 = hy_1,7,O)
X Pr(Oy_o =o|H;—1 = hy_1,7,0)
=Pr(Si—1 = sp—1|Ar—2 = a4—2,0i—2 =0, H;_1 = hy_1,7,O)
X Pr(Ai—o = a;—2|0Ot—2 =0, Hy_1 = hy_1, 7, O)
X Pr(Oy—9 =0o|H;—1 = hy_1,m,O)
:P(8t72, a2, St71)uo(8t72, at72) Pr(0t72 = 0|Ht71 = hy_1,m, O)
:P(St—Q, a2, St—l)uo(st—z, at—z) Pr(Ot—z = 0|Ht—2 = hy_a,m, O)

where Pr(Og = o|Hy = ho, 7, O) = (s, 0)
Using the recursive function Pr(O;_1 = o'|H;—1 = hi—1, 7, ©), the expected number of terminations for a given trajectory

is given by:

1 |h|
St 1, Qt— 1)P1"(Ot 1—0\Ht 1=heo 1,7, O) >
E[T; = 1|H, = hy, 7, O] (s
2 BT =1]H, = I Z(Zﬁ S e O = s = he 70

t=1 “oeO

A.3 Appendix C - Proof of Theorem 2
Theorem 2

Given a set of options O and a policy T over options, the probability of generating a trajectory h of length |h| is given by:

Pr(Hp = hyplm, O) = do(so) [ZOEO W(so,o)uo(so,ao)f(hm,0,1)} Lh:‘gl P(sk, a, Sp+1), where f is a recursive
function defined as:

1, ifi=t
f(ht, o, z) — {50(81) Zo'eo 7T(5i+17 0/)Mo'(8i+1, ai+1)f(ht; 0/,i + 1)
+(1 = Bo(8i)) to(Si+1, ait1) f (hey 0,7 + 1)], otherwise

Proof. We define H; ; to be the history from time ¢ to time ¢, that is, H, ; = (S;, A, Sit1, Ait1, - -

., 5¢), where i < t. If i = t,
the history would contain a single state.

PI‘(Ht = ht|7r,(9) :PI‘(SQ = Solﬂ',O) PI‘(HLt = hlﬂg,Ao = ClolSo = 80,77,0)
=do(so) Pr(Hy s = h1t, Ao = ag|So = so,m, O)

=dy(so) Z Pr(Hi s = hiy, Ao = ap, 0, = 0|Sy = 59,7, 0)
0e®

:do(SQ) Z PI‘(OQ = 0|So = 80,7'(',(/)) PI‘(Hl,t = h17t,A0 = a0|5’0 = 80,00 = 0,7'(',0)
0eO

:do(S()) Z 7'('(80,0) PI‘(Hl)t = hl,t7A0 = a0|50 = SQ,OO = O,W,O)
ocO

:do(SO) Z 7T(80,0> PI"(AO = aO‘S() = 80,00 = O,W,O)
o€

X PI“(Hlt = h1t|SO = 50,00 = 0, Ao = agp, T, 0)

=do(s0) Y _ (50, 0)tho(0, o) Pr(H ¢ = h14|So = s0,00 = 0, Ag = ag, 7, 0).
o0

We now need to find an expression to calculate Pr(Hy ; = hq4|So = s0,O¢ = 0, Ay = ap, m, O). Consider the probability
of seeing history h; ; given the previous state, s, the previous option, o, and the previous action, a:

Pr(H; s = hit|Si—1 = 5,0i—1 =0,4,_1 =a)

=Pr(S; = 5|Si-1 =5,0,-1 =0,Ai_1 = a) Pr(Hiz14 = hig14, A = 0;]Si-1 = 5,0,21 = 0, Ai1 = a,S; = ;)
=P(s,a,8;) Pr(Hiy1,4 = hiya, t,A» =a;|Si-1 =5,0;-1=0,4;,_1 =a,5; = s;)
=P(s,a,8;) Pr(Hiy14 = hiv14, 4 = ;|01 = 0,Ai-1 = a,S; = 8;)
=P(s,a,s;) | Pr(T; = 1]0;_1 = o, A4 1=a,5;=s;)
X Pr(Hit14 = hit14,4i = a;|0i-1 =0, A1 = a,S; = s;,T; = 1)
+Pr(T; =0|0i—1 = 0,4;_1 =a,S; = ;)
X Pr(Hip1,4 = hit14, Ai = a;]0i-1 = 0,Ai-1 = a,8; = s;,T; = 0)]
:P(s,a,si)[ﬁo(si)
X Pr(Hit1¢ = hit1,4,4i = a;|0i-1 =0, A1 = a,S; = s, T; = 1)

+ (1= Bo(s:))
X Pr(Hip1s = hit14, Ai = a;]0im1 = 0, Ai_1 = a,5; = s;, T; = 0)].

Even though the equation above might seem complicated, there are only two cases we need to consider: either the current

option terminates and a new one must be selected (the first term), or the current option does not terminate (the second term).
Let’s consider each of them separately.

Case 1 - option terminates: If we terminate, we sum over new options:

Pr(HiJrl,t = hz+1 t7 P — azloz 1 =0, Az 1=a, S = 317 i =]-)
= Z PI‘(OZ‘ =0 ‘01;1 = 0, Ai,1 = a, Si = Si, P = 1)
o'eO
XPT(Hi+1t:hi+1t,A —aZ\Oz 1 =0, Az 1 =a, S = Si, 1—1 O —O)
_Z 5;, z+1t—hz+1t7 —alez l—OAz 1—&5—3“1—10—0)
o'e®
=Y w(si0 Hit1e = hisie, Ai = ai|S; = 54,0, = 0)
o'eO
= (8,0) Pr(A; = a;|S; = $i,0; = 0')Pr(Hij14 = hiy1.4]Si = 5,0; = o', A; = a;)
o'eO
= Z Sz, Mo 8“@1) Pr(Hi+1,t = hi+1,t\5¢ =5;,0; = OI,Az‘ = ai)~
o'eO

Note that the expanded probability has the same form as Pr(H,; s = h;+|Si—1 = 5,0;_1 = 0, A;_1 = a).
Case 2 - option does not terminate: This tells us that O; = o, so we may drop the dependency on the 7 — 1 terms:

Pr(Hip1t = hit14, 4 = a|Si—1 = 5,0,-1 = 0,41 =a,S; = s;,T; = 0)
=Pr(Hij1t = hiy14, Ai = ;]S = 5;,0; = 0)
=Pr(A; = a;|S; = 8,0, = 0)Pr(Hiy14 = hiy1.4]5: = 84,0, = 0, A; = a;)
Zﬂo(sz‘, ai) Pr(Hi+1,t = hi+1,t|Si =5,0;=04; = ai)~
Plugging these two cases back into our earlier equation yields:

Pr(H;s = hit|Si—1 = 5,0;_1 = 0,A;_1 = a)
=P(s,a,5:)[Bo(s:) Y m(si, 0" Vptor (siy0:) Pr(Hig1e = hig14|Si = 55, 0; = 0, A; = a;)
o’'eO
+ (1 - Bo(si))uo(si, a,;) Pr(HH—l,t = hi+1,t|Si = S5, Oi = 0, A7 = CL?)} .

Note that each term contains an expression of the same form, Pr(H;; = h;+|Si—1 = s5,0;,_1 = 0,A4;_1 = a). We can
therefore compute the probability recursively. Our recursion will terminate when we consider 7 = ¢, as H; ; contains a single
state, and we adopt the convention of its probability to be 1. Notice that for every recursive step, both inner terms will produce
a P(s,a,s;) term. Consider the result when we factor every recursive P(s,a, s;) term to the front of the equation. We define
the following recursive function:

1, ifi—t
F(he, 0,i) = Bo(8i) D grco T(Sit1,0") por (Siv1, aiv1) f(he, 0 i + 1)

+(1 = Bo(8i)) 1to(Six+1, air1) f(he, 0,1 + 1)], otherwise

Notice that this is the recursive probability described above, but with the P(s, a, s’) terms factored out. We now see that:

t—1
Pr(H;; = hi4|Si—1 = si—1,0;—1 = 0, Ai—1 = a;—1) = f(hs,0,1) H P(sk, s Skt1)-
ki1

Plugging this all the back into our original equation for Pr(H; = h|m, O) gives us the desired result:

Pr(Hp| = hypy|m, O) = do(s0) {Z (80, 0) 1o (505 @o) f (|5 0, 1)} H P(sg,ak, Sk+1)-

o€ k=0

A4 Appendix D - Empirical Validation of Derived Equations

To double check the derivation of the proposed objective and make sure the implementation was correct, we conducted a simple
empirical test to compared the calculated expected number of decisions in a trajectory and the probability of generating each
trajectory for a set of 10 trajectories on 10 MDPs. The MDPs are simple chains of 7 states with different transition functions. We
randomly initialized four options and a policy over options, and estimated the probability of generating each trajectory and the
expected number of terminations, for each sampled trajectory, by Montecarlo sampling 10, 000 trials. Table 1 presents results
for the 10 trajectories verifying empirically that the equations were correctly derived and implemented. The table compares
the empirical and true probability of generating a given trajectory, 15r(H |) and Pr(H|-), respectively, and the empirical and

true sum of expected number of decisions an agent has to make to generate those trajectories, Zgll E[T}]-] and lell E T3],

respectively.

H | Pr(H|r,0) | Pr(H|r,0) | SEVE [T H,, 7, 0] | SEVE(T H,, 7, 0]
hy 0.0932 0.0957 3.060 3.178
ho 0.0158 0.0173 4.139 4.154
hg 0.2149 0.2122 1.965 2.178
hy 0.0995 0.0957 2.979 3.178
hs 0.0962 0.0957 3.024 3.178
hg 0.1354 0.1384 2.9579 3.1596
hr 0.00040 0.00038 9.750 8.794
hg 0.1854 0.1881 2.820 3.072
hg 0.0379 0.0368 4.2612 4.4790
h1o 0.1864 0.1881 2.8404 3.0723

Table 1: Validation of equations and implementation.

Note that the cases with largest discrepancy between the estimated and calculated number of terminations occur when the
probability of generating a trajectory is low. This happens because, since the trajectory is unlikely to be generated, the Monte
Carlo sampling is not able to produce enough samples of the trajectory.

	1 Introduction
	2 Background and Notation
	3 Learning Reusable Options from Experience
	3.1 Problem Formulation
	3.2 Optimization Objective for Learning Options
	3.3 Learning Options Incrementally

	4 Experimental Results
	4.1 Experiments on Four Rooms Environment
	4.2 Experiments using Atari 2600 Games

	5 Conclusion and Future Work
	A Appendix
	A.1 Appendix A - Derivation of
	A.2 Appendix B - Proof of Theorem 1
	A.3 Appendix C - Proof of Theorem 2
	A.4 Appendix D - Empirical Validation of Derived Equations

