
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds (2014)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1622

SPECIAL ISSUE PAPER

Planning approaches to constraint-aware navigation in
dynamic environments
Kai Ninomiya1, Mubbasir Kapadia2�� , Alexander Shoulson1, Francisco Garcia2 and
Norman Badler1

1 Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
2 Computer Science, Rutgers University, New Brunswick, New Jersey

ABSTRACT

Path planning is a fundamental problem in many areas, ranging from robotics and artificial intelligence to computer graph-
ics and animation. Although there is extensive literature for computing optimal, collision-free paths, there is relatively
little work that explores the satisfaction of spatial constraints between objects and agents at the global navigation layer.
This paper presents a planning framework that satisfies multiple spatial constraints imposed on the path. The type of con-
straints specified can include staying behind a building, walking along walls, or avoiding the line of sight of patrolling
agents. We introduce two hybrid environment representations that balance computational efficiency and search space den-
sity to provide a minimal, yet sufficient, discretization of the search graph for constraint-aware navigation. An extended
anytime dynamic planner is used to compute constraint-aware paths, while efficiently repairing solutions to account for
varying dynamic constraints or an updating world model. We demonstrate the benefits of our method on challenging navi-
gation problems in complex environments for dynamic agents using combinations of hard and soft, attracting and repelling
constraints, defined by both static obstacles and moving obstacles. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

path planning; spatial constraints; navigation; anytime dynamic planning; potential fields

*Correspondence

Mubbasir Kapadia, Computer and Information Science, University of Pennsylvania, PA, USA.
E-mail: mubbasir.kapadia@gmail.com
�Mubbasir was at University of Pennsylvania while conducting this research.

1. INTRODUCTION

The efficient computation of free movement paths is a
fundamental requirement in many disciplines, including
robotics, artificial intelligence, computer animation, and
games. Robotic agents need to perceive and maintain
an internal model of their environment while comput-
ing collision-free paths that efficiently navigate them to
their destinations. Populating virtual environments with
autonomous agents is a key step in making them appear
more lifelike and feel more immersive. To contribute to this
goal, the autonomous agents themselves must be capable
of environment reasoning and pathfinding capabilities, a
cognitive ability that serves as the foundation for character
animation and behavior synthesis.

There exists a large body of work in path planning
research [1], with many proposed solutions that bal-
ance path optimality and computational efficiency. These
approaches produce trajectories that minimize total dis-
tance traveled and use reactive policies to account for

constraints (e.g., collision avoidance and inter-agent rela-
tionships). This produces locally correct results with no
guarantees on constraint satisfaction or global optimality.
In addition, it does not scale well to handle constraint com-
binations and generally can result in non-halting behaviors
and inability to solve many problems. Computing global
trajectories that account for spatial constraints with respect
to obstacles and other agents is still a challenging problem
[2] that is of value to the community.

This paper presents a planning approach for constraint-
aware navigation that enables autonomous agents to be
more aware of the semantics of objects in the environment
and thus interpret high-level navigation goals with dynamic
and meaningful spatial path constraints. At a personal
scale, such constraints may include the following: specific
location investigation (‘check behind the building’), imple-
mented as a goal state; dynamic agent evasion and stealth
(‘avoid being seen’) and organization (‘stay between these
two guys’), both implemented using dynamic constraints;
or instructions with path requirements for the mission

Copyright © 2014 John Wiley & Sons, Ltd.

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

(‘follow the road’), implemented using obstacles or a series
of goals. Our approach scales up to larger scenarios as
well, allowing constraints such as neighborhood aware-
ness (‘avoid this part of the map’) or time-of-day aware-
ness (‘stay on main roads at night’), implemented using
time-dependent constraint weights.

Our initial hybrid discretization of the environment com-
bines the computational benefits of triangulations with
a dense uniform grid, ensuring sufficient resolution to
account for dynamic constraints. Planning results using
this hybrid discretization is highly dependent upon the
quality of the environment triangulations. In order to
create a more reliable navigation graph, we devise an
‘adaptive highway’ constraint-dependent planning domain,
which has an increased branching factor (and there-
fore denser environment discretization) in areas affected
by constraints.

Hard constraints, which must be satisfied, effectively
prune invalid transitions in the search graph (using infi-
nite transition costs), whereas soft constraints (attractors or
repellers) have a multiplicative effect on the cost of choos-
ing a transition. Constraints are represented as continuous
potential-like fields, which can be easily superimposed
to calculate the cumulative effect of multiple constraints
in the same region and can be efficiently queried during
search exploration. An extended anytime dynamic planner
is used to compute constraint-aware paths while efficiently
repairing solutions to account for dynamic constraints
(e.g., other agents).

This paper makes the following contributions:
� Two alternative environment representations that bal-

ance computational efficiency and discretization fine-
ness to provide a minimal-yet-sufficient discretiza-
tion of the search graph for constraint-aware nav-
igation. (i) A ‘highway’-based hybrid graph com-
bines an existing sparse navigation mesh with a
runtime-generated dense graph to add resolution
where necessary. (ii) An ‘adaptive highway’ graph,
which uses knowledge of the constraint specifica-
tion in order to improve the accuracy near con-
straints by adaptively adjusting domain density via
branch pruning.

� A method of constraint specification using simple
prepositional phrases, which can be easily concate-
nated to specify complex custom sets of constraints.

� A quantitative description of qualitative motion con-
straint specifications that can be applied generally to
any cost-minimizing spatial pathfinding method.

� A real-time anytime dynamic planning framework
that computes trajectories adhering to spatial con-
straints on both static obstacles and dynamic agents
while efficiently repairing plans to accommodate
dynamic constraint changes.

To demonstrate the benefits of our method, we present
challenging navigation problems in complex environments

using combinations of constraints on static obstacles and
dynamic agents, including various combinations of hard,
soft, attracting, and repelling constraints.

2. RELATED WORK

Depending upon application requirements, a variety
of navigation approaches have been proposed [1] for
autonomous agents, some of which are described in the
succeeding text.
Potential fields. The approach of potential fields [3–7] gen-
erates a global field for the entire landscape where the
potential gradient is contingent upon the presence of obsta-
cles and distance to goal. These methods suffer from local
minima where the agents can get stuck and never reach the
goal. Because a change in target or environment requires
significant re-computation, these navigation methods are
generally confined to systems with non-changing goals and
static environments. Dynamic potential fields [8] have been
used to integrate global navigation with moving obstacles
and people, efficiently solving the motion of large crowds
without the need for explicit collision avoidance. The
work of Kapadia et al. [9,10] uses local variable-resolution
fields to mitigate the need for computing uniform global
fields for the whole environment and uses best-first search
techniques to avoid local minima.
Continuous weighted-region navigation. Various continu-
ous navigation methods in non-uniformly weighted space
have been developed. One continuous Dijkstra technique
finds the shortest paths using the principles of Snell’s law
[11]. Methods have been shown for finding exact solutions
to simpler weighted-region problems [12]. Suboptimal
solutions can be found using an efficient approximation
Algorithm [13].
Discrete graph-based search. Discrete search methods
such as A* [14–16] are robust and simple to implement,
with strict guarantees on optimality and completeness
of solution. Hence, they represent a popular and widely
used method for path planning in commercial systems
such as games. However, the performance and quality
of the obtained paths greatly depend on the resolution
of the discretization, with coarse resolutions producing
low-quality paths and fine resolution grids proving to
be computationally prohibitive for real-time applications.
Many triangulation-based navigation meshes have been
developed for portability and applicability [17] to allow
navigation of agents with arbitrary clearance [18], to
improve performance using suboptimal meshes [19,20], to
enable crowd animations in uneven terrain [21], and to
permit real-time dynamic modification of the mesh [22].
In addition, graphs can be generated or modified for opti-
mized suboptimal searches, for example, using highway
node routing [23] and contraction hierarchies [24].

Other more advanced A*-based search algorithms have
been developed. The D* Lite [25] graph search algorithm is
able to efficiently repair computed paths to accommodate
dynamic changes in the environment. ARA* [26] provides

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

anytime solution guarantees with strict bounds on subop-
timality. These two methods provide the basis for AD*
[27], which combines the properties of D* Lite and ARA*,
to provide an efficient real-time search technique that is
applicable in dynamic environments.
Local collision avoidance. There is an extensive work
[28] that relies on local goal-directed collision avoid-
ance for simulating large crowds. This includes rule-based
approaches [29], social forces [30,31], predictive methods
[32–34], local fields [9], and planning-based approaches
[35,36]. The work of Schuerman et al. [37] exter-
nalizes steering logic to enforce local constraints for
group formations.
Navigation with constraints. The work of Xu and Badler
[38] describes a list of representative prepositions for con-
straining motion trajectories in goal-directed navigation.
The work of André [39] analyzes the semantics of spatial
relations, including ‘along’ and ‘past’, to characterize the
path of moving objects. In addition, several search methods
based on homotopy classes have been proposed. Bhat-
tacharya et al. [40,41] explore the use of homotopy classes
of trajectories in graph-based search for path planning with
constraints. This method is extended by Bhattacharya et al.
[40] to handle 3D spaces. A homotopy class-based
approach to A*, called HA* [42], ensures optimality and
directs the search by exploring areas that satisfy a given
homotopy class. The work of Phillips et al. [43] demon-
strates constrained manipulation using experience graphs.
The works of Geraerts [44] and Kallman [18] embed
additional information in the underlying environment rep-
resentation to efficiently compute the shortest paths with
clearance constraints. Sturtevant [45] explores the integra-
tion of human relationships into path planning in games,
incorporating ‘relationship distance’ and line of sight as
positive and negative weights in the path planning problem.
Comparison to prior work. Our method provides a generic
way to specify spatial constraints, including constraints on
dynamic objects (such as other agents) modeled as local
artificial potential fields, which contribute to the cost of
a node in the search graph. In its implementation, our
constraint-handling method (weighted planning space) is
similar to that of Sturtevant [45] but more generalized.
We develop two environment representations: a ‘hybrid’
domain, which combines the benefits of triangulations and
a uniform grid and an ‘adaptive highway’ domain, which
controls graph expansion using its knowledge of the con-
straint system. In comparison with Xu and Badler [38],
we utilize an anytime dynamic planner that can efficiently
repair solutions to accommodate constraint changes. The
resulting trajectory does not depend on the shape of an
object but rather on the location and affecting area of the
constraints. Thus, we do not encounter the issues described
in the work of André et al. [39].
Extension. This invited journal submission extends our ear-
lier MIG2013 conference publication [46] as follows. We
introduce the new advanced ‘adaptive highway’ planning
domain that integrates knowledge of constraint specifi-
cations to improve computational performance and plan

quality. This includes performance results and comparison
with other domains. We have revamped our formulation
of the quantitative representation of our constraint spec-
ifications, replacing the original multiplier field formulas
with a more cleanly expressed definition that eliminates
several extraneous constant definitions. Finally, we have
applied our work to more accurate human relationship con-
straints (namely, personal distance and line of sight) and
to large-scale and spatiotemporal planning problems (e.g.,
map navigation and time-of-day-dependent constraints).

3. PROBLEM DEFINITION

The problem domain † D hS, Ai defines the set of all pos-
sible states S and the set of permissible transitions A. Every
problem instance P, for a particular domain †, is defined
as P D h†, sstart, sgoal,
Ci, where

�
sstart, sgoal

�
are the start and goal state, and

C is the set of active (hard and soft) constraints. A hard
constraint is used to prune transitions in A. For example,
consider a flower bed that must not be stepped upon. A
hard constraint could be specified for that area, pruning
every transition that could violate this restriction. A soft
constraint influences the costs of actions in the action space
and can tend the agent toward or away from a certain region
in space. A planner generates a plan,˘

�
sstart, sgoal

�
, which

is a sequence of states from sstart to sgoal that adheres to C.

4. ENVIRONMENT
REPRESENTATION

In this section, we describe the discretized environ-
ment representation that we use for constraint-aware
pathfinding. The challenge we encounter is as fol-
lows. A coarse-resolution representation, such as a mesh
triangulation-based approach, is often used to facilitate
efficient search. However, it cannot accommodate all con-
straints as it has insufficient resolution in regions of the
environment where constraints may be specified. Because
dynamic constraints are not known ahead of time, it is
impossible to simply increase triangulation density near
constraints. A sufficiently dense uniformly distributed
graph representation of the environment can account for all
constraints (including dynamic objects) but is not efficient
for large environments.

To avoid these limitations, we explore two alternative
methods of generating environment representations. First,
we experimented with a ‘hybrid’ search graph that has
sufficient resolution while still accelerating search compu-
tations by exploiting longer, coarser transitions to improve
suboptimal planning speed in certain situations. More effi-
cient results were seen with an ‘adaptive highway’ domain,
operating in the same state space as the dense environment
representation but with dynamically reduced branching
at states unaffected by constraint effects. This provides
bounded suboptimality: the reduced-branching graph is,

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

at worse, no more coarser than a lower resolution dense
uniform graph.

4.1. Triangulation

We define a simple triangulated representation of free
space in the environment represented by †tri D hStri, Atrii,
where elements of Stri are the midpoints of the edges
in the navigation mesh and elements of Atri are the six
directed transitions per triangle (two bi-directional edges
for each pair of states). This simple triangulation can be
easily replaced by other more advanced navigation meshes
[17]–[21] and produces a low-density representation of the
state and action space. Figure 1a illustrates †tri for a sim-
ple environment. The triangulation domain †tri provides a
coarse-resolution discretization of free space in the envi-
ronment, facilitating efficient pathfinding. However, the
resulting graph is too sparse to represent paths adhering to
constraints such as spatial relations to an object.

To offset this limitation, we can annotate objects in the
environment with additional geometry to describe relative
spatial relationships (e.g., Near,Left, and Between)

We use these annotations to generate additional triangles
in the mesh, which expand†tri to include states and transi-
tions that can represent these spatial relations. Annotations,
and the corresponding triangulation, are illustrated in
Figure 1(b). These annotations are useful for constraints
relative to static objects; however, †tri cannot account for
dynamic objects as the triangulation cannot be efficiently
recomputed on the fly. To handle dynamic constraints, we
utilize a dense, uniform graph representation described in
the succeeding text.

4.2. Dense Uniform Graph

To generate †dense D hSdense, Adensei, we densely sam-
ple points in the 3D environment, separated by a uniform
distance dgrid, which represents the graph discretization.
For each of these points, we add a state to Sdense if it is

close to the navigation mesh (within
p

3
2 dgrid of the nearest

point) and clamp it to that point (Figure 1(c)). This allows
the method to work well in environments with slopes,
stairs, and multiple levels. Although all of our environ-
ments are locally 2D, the method could be used directly

Figure 1. (a) Environment triangulation†tri. (b) Object annotations, with additional nodes added to†tri, to accommodate static spatial
constraints. (c) Dense uniform graph †dense for same environment. (d) A hybrid graph †hybrid of (a) †tri and (c) †dense; highways

(newly inserted transitions) are indicated in red.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

for 3D domains by testing against a volume rather than
a mesh surface. Examples are shown in a completely flat
2D for illustrative purposes. Because the graph is sampled
in 3D, each state in Sdense could have a maximum of 26
neighbors; however, in practice, each state has no more
than eight neighbors if the domain operates in a locally 2D
environment (such as navigation domains for humanoids or
ground vehicles). The dense domain†dense can be precom-
puted or generated on the fly, depending on environment
size and application requirements. Regardless of how it is
implemented, however, a dense domain greatly increases
the computational burden of the search due to the increased
number of nodes and transitions compared with a sparse
domain (Figure 1(a/c)). Expansion examples can be seen
in Figure 2(a/c).

4.3. Hybrid Graph

In the first two attempts to mitigate the performance prob-
lem of †dense, we combine †dense and †tri to generate a

hybrid domain †hybrid D hShybrid D Sdense, Ahybrid �

Adense [Atrii. First, we add all the states and transi-
tions in †dense to †hybrid. For each state in Stri, we find
the closest state in Sdense, creating a mapping between
the state sets, � : Stri ! Sdense. Then, for each transi-
tion .s, s0/ 2 Atri, we insert the corresponding transition
.�.s/,�.s0// in Adense (if it does not already exist). The
resulting hybrid domain †hybrid has the same states as
†dense with additional transitions (Figure 1(d)). These tran-
sitions are generally much longer than those in Adense,
creating a low-density network of highways through the
dense graph. This approach is similar in concept to those
of highway node routing [23] and contraction hierar-
chies [24], but we exploit information provided by the
navigation mesh.

In †hybrid, a pathfinding search can automatically
choose highways for long distances and use the dense
graph more heavily when the planner has additional time
to compute an exact plan. As before, the dense graph
allows the planner to find paths that adhere to constraints.

Figure 2. Graph expansion comparison between dense uniform and adaptive highway domains. (a) Dense uniform navigation domain
with constraints. (b) Adaptive highway navigation domain with constraints. (c) Dense uniform navigation domain, no constraints.
(d) Adaptive highway navigation domain, no constraints. Note in figures (c) and (d) that the resulting path is slightly different.
This is because that the adaptive highway domain represents the environment with slightly less accuracy. (a) †dense with con-
straints: 892 states; (b) †adaptive with constraints: 637 states; (c) †dense without constraints: 493 states; (d) †adaptive without

constraints: 367 states.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

When there is no strong influence of nearby constraints, the
planner can take highways to improve its performance. In
addition, with a planner such as AD* [27], we can inflate
the influence of the heuristic to very quickly produce sub-
optimal paths that favor highway selection then iteratively
improve the path quality by using dense transitions. This
method makes it possible to maintain interactive frame
rates. The performance benefits of †hybrid are described in
Section 7.1.

4.4. Adaptive Highway Graph

For practical reasons, we wish to avoid depending heav-
ily on both the quality of the triangulations in †tri and
the behavior of the anytime dynamic planner for subopti-
mal performance improvements. To this end, we introduce
a uniform search domain with constraint-adapting high-
ways. This graph maintains a high density of search nodes
near constraints while automatically pruning transitions
when additional accuracy is not needed. The results of this
pruning approach are shown and described in Figure 3.

The basis of this domain is a lazily evaluated form of
†dense. As an example, in a 2D navigation problem, a state

in †dense has eight neighbors and, therefore, eight poten-
tial transitions. However, because high graph resolution is
not necessary in obstacle-free, constraint-free areas, it is
possible to reduce the graph resolution in many parts of an
environment. That is, the resolution of the graph should be
dependent upon the absolute amount of constraint weight
in that area (the absolute value weight field).

In order to create this adaptive change in resolution, we
emulate the ‘highway’ transitions found in †hybrid; how-
ever, instead of adding long distance transitions, we can
take another approach. Because †adaptive is aware of the
expansion of the planner, it instead ‘skips’ through nodes
in a single direction. That is, from a given state (e.g., the
start state), the domain will expand in eight directions, but
in the absence of constraints, each of those expanded states
may have only one possible transition, which continues in
the same direction. The ‘skipping’ expansion is controlled
as follows.

� When a graph state is expanded, it stores a ‘remain-
ing number of skips’ value into each expanded state.
This keeps track of how many skips are left in a given

Figure 3. (a) Multiplier field incorporating a negative human relationship constraint [45] and a positive area constraint. (b) ‘Partial’ path
planning result before planner has completed execution. (c) and (d) Example plans showing the ‘adaptive highway’ planning domain

in this particular planning problem.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

highway, and we limit skipping expansion to (in our
examples) at most four transitions in one direction.

� In addition, as the expansion continues skipping
in one direction, the cumulative integral of the
absolute-value weight field is also tracked. When too
much absolute-value weight is encountered, we can-
cel skipping expansion early to ensure high graph
density near constraints.

To ensure correct behavior when states are invalidated,
†adaptive simply re-expands invalidated areas using the
newly computed weight field, discarding the old expan-
sion. The traits of the adaptive highway domain and
performance trade-offs are described in Section 7.2.

Observed limitations of the current †adaptive might be
the subject of future research and are as follows. First,
although the branching factor is correctly reduced in
unweighted areas, the increased state density persists after
the planner’s search passes beyond a constraint. This is
seen just past the positive constraint in Figure 3(c). A
potential fix would be to explicitly reduce the state den-
sity in this case. Second, the branch density is dependent
upon the amount of absolute constraint weight in an area.
Because of this, inside a very large, constant constraint,
the graph density will still be high; better results might be
achieved by adjusting branching factor based on the rate
of change of the weight field. In addition, in the absence
of constraints, navigation near edges of obstacles is inac-
curate because of the low state density. It may be possible
to remedy this by decreasing skip lengths near obstacles
and walls. Finally, in Figures 2(c/d), note that the resulting
paths are very different. This is because the adaptive high-
way domain represents the environment with less accuracy
in favor of performance improvements, sometimes giving
suboptimal results. However, because the skip count in
the adaptive highway domain is bounded, this provides a
bound on the suboptimality of this method: it will never be
less optimal than a domain that always takes the maximum
number of skips (i.e., a domain with lower density).

5. CONSTRAINTS

Constraints imposed on how an agent navigates to its
destination greatly influence the motion trajectories that
are produced and often result in global changes to the
paths that cannot be met using existing local solutions.
For example, if there is an agent who wishes to stay
behind a building or outside another agent’s line of
sight, our method may choose very circuitous paths in
order to satisfy these constraints. Our framework supports
hard constraints (obstacles), which must always be met;

attractors, which reduce nearby transition costs; and
repellers, which increase nearby transition costs.
Problem specification. A constraint-aware planning prob-
lem is represented by a start state sstart, a goal state sgoal,
and a set of constraints C D fcig. Each constraint is defined
as ci D ..InjNear/ Annotationi with weight wi/,
where the weight wi can be either positive (attracting) or
negative (repelling). Hence, a specification can be written
as a simple regular language

Move from sstart to sgoal ..InjNear/ Annotationi with weight wi/�

The terms used in this expression are defined in the
next subsection. Despite the simplicity of such a defini-
tion, it is important to note its flexibility: both goals and
constraints can encode very rich semantics for a wide vari-
ety of planning problems. In addition, multiple problem
specifications can be chained together to create more com-
plex commands, for example, ‘move to the street corner,
then patrol the alleyway’, where ‘patrol’ can be described
as a repeating series of commands going back and forth
between two points.

5.1. Constraint Definitions

Annotations. An annotation is simply a volume of space
that allows the user to define the area of influence of
a constraint. These volumes can be defined in real-time
and may be dynamically calculated from environment and
agent information. By attaching annotations to an object
in the environment, a user can provide useful positional
information. These annotations are used to semantically
construct customized prepositional constraints (for exam-
ple, ‘in the grass’, ‘near the wall’, or ‘west of the train
tracks’). Figure 1(b) illustrates some common annotations:
Back, Front, Left, and Right for a static object in the
environment. The relationships between multiple objects
can be similarly described by introducing annotations such
as Between shown in Figure 4(c).

Dynamic objects can also easily be given spatial
annotations. For example, we can denote an agent’s
LineOfSight; a simple approximation of this is shown
in Figure 3. Note that it is conceptually simple (and sup-
ported by our framework) to calculate ‘true’ line of sight
or other complex annotations, dynamically, as cost calcula-
tions can happen during path planner execution. In a world
model that supports ray casting, true line of sight can be
directly calculated in this way.

Annotations are defined independently from constraints
and are used in the definition of a constraint to delimit its
area of influence based on objects, agents, and the environ-
ment. As such, annotations may be created ahead of time
and freely reused by different constraint systems, which
may run independently, allowing for rapid authoring of
new constraint systems for new situations.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Figure 4. (a) An environment with annotations such as Front, Left, Between, and a simple LineOfSight. (b) Transitions in hybrid
domain †hybrid. (c) A specific problem instance with the following constraints: Not In Grass ^ Not Near LineOfSight (Agent)
^ Near Between (B, C). (d) Static optimal path, in absence of constraints. (e) Resulting path produced for problem instance (c).
(f).(g) Plan repair to accommodate moving LineOfSight constraint. The Between constraint is invalidated due to the LineOfSight
constraint, of higher priority. (h) Multiple characters simultaneously navigate under different constraint specifications, producing

different paths from the same start/goal configuration.

Hard constraints. A hard constraint comprises just one
field: an annotation. This annotation represents an area in
which states in † are pruned. Hard constraints can only
be Not constraints. In order to specify hard attracting con-
straints, we use a sequence of goals that the agent must
navigate to (e.g., go to the mailbox and then come back to
the door). Hard constraints prevent all included transitions
from being expanded during the search (by giving these
transitions an infinite weight), thus producing a plan that
always avoids the region. In addition, hard constraints can
be used to model dynamic obstacles (any annotation that
completely blocks off its contained states).
Soft constraints. A soft constraint specification consists
of three fields: (i) a preposition; (ii) an annotation; and
(iii) the constraint weight. As soft constraints are the gen-
eral case encompassing hard constraints (which are Not
In with w D �1), they are simply referred to as
‘constraints’ henceforth.
Preposition. We define two simple prepositions, Near and
In, which define the boundaries of the region of influ-
ence. For example, we might wish to navigate Near a
building (a fuzzily defined area of effect) while making
sure that we are not In the grass (a well-defined area
of effect). These two prepositions gain significant power
by leveraging annotations placed in meaningful parts of
the environment.
Weight. The weight defines the influence of a constraint
and can be positive or negative. For example, one con-
straint may be a weak preference (w D 1), whereas another
may be a very strong aversion (w D �5); a negative
weight indicates a repelling factor. Weights allow us to
define the influence of constraints relative to one another
(where one constraint may outweigh another), facilitating
the superposition of multiple constraints in the same area
with consistent results.

5.2. Multiplier Field

Constraints must modify the costs of transitions in the
search graph in order to have an effect on the resulting
path generated. To achieve this, it is important to maintain
several properties:

(1) The modified cost of a transition must never be neg-
ative to ensure that the search technique will be
complete. In our system, the cost of a transition will
always be greater than or equal to its unmodified
distance cost, even under the influence of attrac-
tor constraints. With A* and variants such as AD*,
this guarantees optimality (and can prevent infinite
loops and other instabilities) when the unmodified
distance cost is used as a heuristic cost estimate.

(2) We must be able to efficiently compute the cost of
a transition, influenced by several constraints. The
weighted influence of all constraints at a particular
state is simply summed together and added onto the
base weight, multiplying the cost.

(3) Constraints should only affect a limited region of
influence. In our system, soft constraints may have
a smooth gradient or a hard edge. We model con-
straints as artificial potential fields and define the
influence of a constraint at a particular position as
a function of its distance from the nearest point in
the annotation volume. A linear falloff ensures that
a constraint has influence only at short distances (A
hard constraint only affects states that are within its
annotation volume).

(4) The total cost along a path must be independent of
the number of states along that path. To maintain
this property, the cost calculation must be continu-
ous and modeled as a path integral (see following

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

Figure 5. 3D depictions of the additive weight fields Wc
�
Ex
�

for (a) attracting/positive and (b) repelling/negative constraints. These
demonstrate the falloff properties of soft Near constraints and provide an intuitive picture of how constraints are quantified.

text). The path integral will always have the same
value regardless of path subdivision.

Formulation. The influence of a constraint is defined using
a continuous multiplier field m

�
Ex
�
, where m

�
Ex
�

denotes
the multiplicative effect of the constraint at a particular
position Ex in the environment. It is important to note that,
because of its continuous nature, the multiplier field can be
easily translated to any pathfinding system; it is not specific
to graph search representations of pathfinding problems. A
previous version of this formulation is seen in our origi-
nal publication [46]. The reworked formulation is thought
to be superior because of its straightforwardness and more
cleanly expressed definition.

For a single constraint c, the cost multiplier field mc.Ex/
is defined as follows:

mc.Ex/ D 1.1�Wc.Ex/

where Wc
�
Ex
�

is the constraint weight field and constant
1.1 is chosen for convenience†. The constraint weight
field is defined as a position-dependent weight value for a
constraint. For In constraints, it has a discrete definition

Wc
�
Ex
�
D

(
w : Ex 2 annotationc

0 : otherwise

whereas for Near constraints, it provides a soft falloff with
a fixed radius of jwj outside of the annotation

Wc
�
Ex
�
D w �max

�
0,
jwj � rc.Ex/

jwj

�

where rc.Ex/ is the distance between the position Ex and the
nearest point in the volume of the annotation on constraint
c. Outside of the fixed radius jwj, a Near constraint has no
effect.

†It could be any value greater than 1; its value only affects the
range of useful w values.

This is especially important for dynamic constraints as
we must monitor all the states whose costs are updated
while performing plan repair. Explicitly defining the
boundary of a constraint limits the number of states that a
planner must consider for repair. Multiplier fields for Near
attractor and repeller are visualized in Figure 5.

Multiple constraints. For a set of constraints C, we
define the aggregate cost multiplier field

mC
�
Ex
�
Dmax

1, m0

Y
c2C

mc.Ex/

!
Dmax

�
1, 1.1W0�

P
c2CWc.Ex/

�

To accommodate attractor constraints, which reduce
cost, we define a ‘base’ multiplier m0 or base weight W0,
which is automatically calculated based on the weight val-
ues of the constraints in C. This multiplier affects costs
even in the absence of constraints, which allows attractors
to reduce the cost of a transition while remaining the afore-
mentioned original (Euclidean distance) cost. The resulting
cost multiplier is thus limited to be � 1, preserving
optimality guarantees of the planner.

Cost multiplier for a transition. The cost multiplier for a
transition .s! s0/, given a set of constraints C, is defined
as follows:

MC
�
s, s0

�
D

Z
s!s0

mC
�
Ex
�

dEx

We choose to define this as a path integral because it is
generalized to any path, not just a single discrete transition,
and because it perfectly preserves cost under any path sub-
division. For our graph representation, we estimate the path
integral using a four-part Riemann approximation by tak-
ing the value of the multiplier field at several points along
the transition.

6. PLANNING ALGORITHM

We use anytime dynamic A* [27] as our underlying plan-
ner, which combines the incremental planning properties of

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

D* Lite [25] and the anytime planning properties of ARA*
[26] to efficiently repair solutions after world changes
and agent movement. It quickly generates an initial sub-
optimal plan bounded by an initial inflation factor �0,
which focuses search efforts toward the goal. This initial
plan is then improved by lowering the weight of � grad-
ually (while planning) until � reaches 1.0, guaranteeing
optimality of the final solution. AD* allows an anytime,
dynamic approach to this weighted-region problem (pre-
viously solved using various other methods [11–13]). The
suboptimal solutions provided by the AD* inflation meth-
ods are used to find approximate solutions in real-time.

AD* can interleave planning with execution by allowing
the agent to move along the path, handling updates to the
start position by performing a backwards search (The plan-
ner, however, cannot handle dynamic changes in goal, so
in those circumstance, we can simply reset � to its default
value and plan from scratch.). Dynamic state changes are
efficiently handled by keeping track of states whose costs
are inconsistent, re-expanding them to repair the solution.
This avoids having to re-plan from scratch every time there
is a dynamic event in the environment. For more details on
AD*, we refer the readers to the work of Likhachev et al.
[27] and describe our changes to accommodate constraint
satisfaction. Appendix 1 provides the algorithmic details of
AD* for reference.

Cost computation. The modified cost of reaching a state
s from sstart, under the influence of constraints, is computed
as follows:

g.sstart, s/ D g.sstart, s0/CMC
�
s, s0

�
� c.s, s0/

where c.s, s0/ is the cost of a transition from s ! s0,
and MC

�
s, s0

�
is the aggregate influence of all constraint

multiplier fields, as described in the Section 5.2. This is
recursively expanded to produce

g.sstart, s/ D
X

.si,sj/2….sstart ,s/

MC
�
si, sj

�
� c.si, sj/

which utilizes the constraint-aware multiplier field to com-
pute the modified least cost path from sstart to s, under the
influence of active constraints C. Each state can keep track
of its set of influencing constraints to mitigate the need
to exhaustively evaluate every constraint repeatedly. When
the area of influence of a constraint changes, the states are
efficiently updated, as described in the following text.

Accommodating dynamic constraints. Over time, objects
associated with a constraint may change in location, affect-
ing the constraint multiplier field, influencing the search.
For example, an agent constrained by a LineOfSight
constraint may change position, requiring the planner to
update the plan to ensure that the constraint is satisfied.
Each constraint multiplier field Ex has a region of influence
region.mc, Ex/, which defines the finite set of states Sc that
is currently under its influence.

We take the following approach for moving annotation-
based constraints. When a constraint c moves from Exprev

to Exnext, the union of the states that were previously and
currently under its region of influence .Sprev

c [Snext
c / is

marked as inconsistent (their costs have changed) and they
must be updated. In addition, for states s 2 Snext

c , if c is
a hard constraint, its cost is g.s/ D 1. Algorithm 1 pro-
vides the pseudocode for ConstraintChangeUpdate. Note
that, in the more general case (with non-annotation-based
constraints such as ‘real’ line of sight), the inconsistent
region can be detected by changes in weights at every node
that may have changed (or other implementation-specific
methods).

Finally, if the navigation graph has changed, the rou-
tine UpdateState.s/ is used to recompute the costs of
states; see Appendix 1, which is modified slightly from
its original definition [27] to incorporate the multiplier
fields during cost calculation. Another possible approach
would be to periodically update the plan instead of detect-
ing when it is necessary. Our approach has an advantage in
more dynamic environments, where periodic re-planning
may be too infrequent. In our vehicle example (Figure 6),
less frequent updates would result in collisions with the
vehicle hazards.

In actual execution, we note that re-planning time can
sometimes be considerable. To maintain real-time perfor-
mance without continuing along the old, incorrect trajec-
tory, the system will report no known solution until a partial
or full plan is known (depending on the exact algorithm
conventions). As a result, a ‘stopping’/‘waiting’ behavior
is observed: an agent may pause its motion while recalcu-
lating to find the best way to continue. In most cases, this
stopping time will be short. With algorithms able to pro-
vide suboptimal paths (such as AD*), the agent may follow
these solutions while recalculating.

Algorithm 1 ConstraintChangeUpdate.c, Exprev, Exnext/

1: Sprev
c D region.mc, Exprev/

2: Snext
c D region.mc, Exnext/

3: for all s 2 Sprev
c [Snext

c do
4: if pred.s/

T
VISITED ¤ NULL then

5: UpdateStates

6: if s0 2 Snext
c ^ c 2 Ch then g.s0/ D1

7: if s0 2 CLOSED then
8: for all s00 2 succ.s0/ do
9: if s00 2 VISITED then

10: UpdateStates00

7. RESULTS

Our initial code base is implemented in C# and uses the
Unity game engine. The ADAPT platform [47] was used
for character animation where applicable. Our revised
code base is implemented as a stand-alone .NET library
in C# along with a layer for integrating with Unity. This
revised code includes implementations of the various plan-
ners (A*, ARA*, AD*, etc.) and the system for handling

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

Figure 6. Navigation under different constraint specifications: dynamic constraints used to avoid navigating in front of vehicles as a
proof of robustness.

stating and dynamic constraints. It is published at the fol-
lowing URL and is also available by request to the authors:
https://bitbucket.org/kainino/constraint-
aware-navigation.

Our framework meets strict time guarantees by pub-
lishing sub-optimal paths within time constraints (e.g.,
within the span of one frame) and iteratively refines the
plan in subsequent frames while interleaving path plan-
ning and plan execution. In practice, our framework is able
to converge to an optimal path within a few frames, and
additional planning time is only needed to handle dynamic
constraints and goal changes. For large changes that inval-
idate the current path, the AD* algorithm repairs the
solution efficiently by increasing the inflation factor (tem-
porarily trading optimality for computational efficiency)
and refining the plan as soon as time permits.

7.1. Evaluation of Hybrid Domain

The node expansion count (correlated with the cost depth
of the search) dominates the computational complexity of
the search. The use of highway transitions (transitions from
Atri) reduces the search depth, as the length of a utilized
transition from Atri is, on average, much longer than a tran-
sition in Adense (depending on the triangulation method
and the grid density, respectively, in our examples, around
2–6 times longer). Figure 7 compares the use of †hybrid
and †dense for the same problem instance. We observe that
there is a reduction from 145 to 90 nodes expanded for
just four highway nodes used in the plan for the small

problem instance in Figures 7(a,b). The problem instance
in Figure 7(c,d) is particularly challenging for the plan-
ner as the heuristic focuses the search in directions that
are ultimately blocked. This leads to a significantly greater
exploration of nodes in †dense before a solution can be
found and dilutes the benefits of highway selection. We see
a reduction from 545 to 527 nodes.

Based on our experiments, we observe that the number
of highway nodes nh used in the final plan reduces the
number of nodes expanded in the search by around 10nh

nodes in small environments. During suboptimal planning
(with an inflation factor greater than one), well-aligned
highway transitions can help guide the planner to a subopti-
mal solution. This varies depending upon the environment
configuration, the number and type of constraints used,
and where in the plan a highway node is chosen (The
earlier a highway node is chosen during plan computa-
tion, the more significant its impact on the reduction in
node expansion.).

Highway selection. The selection of highway nodes
depends on the quality of triangulation, and the relative
position of the start and goal, in comparison with where
these nodes are present in the environment. This could be
potentially mitigated by using navigation meshes with dif-
ferent qualities [17–22]. The inflation factor used in the
search also influences highway selection. For a high infla-
tion factor, the search is more prone to selecting highway
nodes because they accelerate and focus the search while
compromising optimality of solution.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Figure 7. Comparative evaluation of dense and hybrid domains. Blue indicates transitions in Adense, and red indicates highway tran-
sitions from Atri. Numbers shown are hnumber of nodes expanded, number of dense nodes chosen in path, and number of highway
nodes chosen in pathi (Some minor issues with the connectivity of the graph, due to nearby obstacles, cause some localized

suboptimality in the path.). (a) †dense h145,16,0i; (b) †hybrid h90,7,4h; (c) †dense h545,25,0h; and (d) †hybrid h527,12,4i.

7.2. Evaluation of Adaptive
Highway Domain

The adaptive highway domain works independently of any
triangulated representation or other highly subjective input,
instead lazily pruning transitions to reduce the number
of node expansions and improve computational efficiency.
This has advantages due to the close dependence of the
domain upon the constraint system, which allows more
intelligent expansion optimizations. In addition, it can even
be used in world models with no high-quality triangulation
available.

Even in a highly constrained planning problem
(Figure 2(a,b)), the state expansions are still significantly
reduced. Here, the planner expands 892 states in the dense
uniform domain but only 637 states when using the adap-
tive highway domain; this is a 30% improvement, even
in a very constraint-dense environment. In the absence of
all constraints (Figure 2(c,d)), state expansion is improved
from 493 states to 367 states, a 25% improvement, showing
that the performance improvement is not very dependent
upon the number of constraints. This is due to the adaptive
highway domain’s awareness of the constraint system: its
performance improvement is generally more significant in
the presence of constraints.

Figures 8, 9, and 10 show plots of planner results over
the amount of time spent planning. This is independent
of the amount of time given to the planner to plan each
frame.‡ Planning time measurements are summarized in
Table I.

This data show a significant performance improvement
when using the adaptive highway domain, despite a small
reduction in path optimality. Although the total planning
time for A* is better than AD*, note that the relative plan-
ning time for A* is much longer than AD*, so re-planning
with A* is still impractically slow, especially in larger
environments.

7.3. Constraint System Examples

Simple examples. Figure 4 illustrates a variety of navi-
gation examples for a simple environment. Static obsta-
cles and agents are annotated to add additional nodes
in the triangulation to accommodate spatial relationships

‡Depending on the importance of the plan results, more or
less time can be given to the planner to plan; for example, an
autonomous robotic agent might dedicate a full CPU core to
planning while a mobile game might try to minimize time spent
planning.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

Figure 8. Plan cost versus time plot for dense uniform domain. Planning is rather time intensive but very accurate. Partial solutions
are provided until (a) a suboptimal solution is found. (b) An optimal solution is found. (c) The constraints mutate, producing ‘invalid’

states. (d) A new optimal solution is found.

including Between, Front, Back, and Left. The
hybrid graph, illustrated in Figure 4(b), combines the tran-
sitions in †tri and †dense. A specific problem instance P,
illustrated in 4c, includes a start, goal configuration, and
a set of hard and/or soft constraints. In this example, the
agent is instructed to go Near Between B and C (a
soft attractor), Not Near LineOfSight of the agent (a
soft repeller), and Not In the grass (a well-defined area
with a soft repeller). Figure 4(e) illustrates the resulting
node expansion and path produced, which is drastically
different from the static optimal path without any con-
straints, shown in Figure 4(d). Figure 4(f,g) illustrates the
efficient plan repair to accommodate constraint changes,
where the plan must be refined to avoid the line of sight
of a moving agent. By changing the relative influence of
the constraints using constraint weights w, we can pro-
duce different results where one constraint gains priority
over another. In this example, the constraint to avoid line
of sight is stronger than the constraint to stay between
the two obstacles. Hence, we observe that if no valid path
exists that satisfies all constraints, a solution is produced
that accommodates as many constraints as possible, based

on weights. Figure 4(h) illustrates multiple agents planning
with different combinations of constraints.

Game environments. We also demonstrate our frame-
work on challenging game environments [48]. The method
of constraint specification using simple prepositional
phrases is extensible, and simple atomic constraints can be
easily combined to create more complex, composite con-
straints. Compound constraints such as staying along the
wall or alternating between the left and right of obstacles
to produce a zigzag path can be created by using com-
binations of multiple attractors and repellers, as shown
in Figure 11(a–c). Figure 11(d) illustrates multiple agents
conforming to a common set of constraints in their paths,
emulating a lane formation or single-file behavior (How-
ever, our method is not suitable to crowd simulation, as
there is a high computational and memory cost to run one
instance of the planner. It is intended for use with a small
number of agents which must navigate intelligently.).

Figure 6 shows the use of constraints in a road-crossing
scenario, where the agent avoids navigating in front of
moving vehicles. Although this demo does not show a
very practical use of constraint planning, it illustrates

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Figure 9. Plan cost versus time plot for adaptive highway domain. Total planning time is found to be much shorter than the dense
uniform domain at the cost of a small amount of plan accuracy. Partial solutions are provided until (a) a suboptimal solution is found.

(b) An optimal solution is found. (c) The constraints mutate, producing ‘invalid’ states. (d) A new optimal solution is found.

Figure 10. Plan cost versus time plot for A* in the adaptive
highway domain. The same scenario is shown, without dynamic
plan repairs. Instead, A* is run again from scratch after the

constraints are modified.

Table I. Planning time measurements (total sum of program
time spent planning) with various domains and planners.

Plan time/plan cost AD*, dense AD*, adaptive A*, adaptive
To suboptimal plan 0.84 s/76 0.22 s/83 —
To optimal plan 1.94 s/68 0.50 s/73 0.19 s
Plan repair 0.33 s/65 0.04 s/69 0.18 s

considerable robustness in such a rapidly changing envi-
ronment even without any awareness of obstacle trajectory
(Future work in this area is discussed under Future Work
in Section 8.).

Plan repair to avoid the line of sight of multiple moving
agents is shown in Figure 12. Here, the user interac-
tively selects agents associated with the constraints and
changes their position, thus invalidating the current plan.
The same problem configuration using attractor constraints
for LineOfSight produces a drastic change in the result-
ing path, as shown in Figure 13. Our framework effi-
ciently repairs the existing solution to accommodate the
constraint changes.

Human relationship constraints. The work of Sturte-
vant [45] incorporates human relationships (personal dis-

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

Figure 11. Navigation under different constraint specifications. (a) Attractor to go behind an obstacle and a repeller to avoid going
in front of an obstacle. (b) Combination of attractors to go along a wall. (c) Combination of attractors and repellers to alternate
going in front of and behind obstacles, producing a zigzag trajectory. (d) Emulating lane formation using multiple agents under the

same constraints.

Figure 12. Not In LineOfSight constraint. Utilizes multiple dynamic agents. A user interactively moves agents and the plan is
repaired to accommodate constraint change.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Figure 13. In LineOfSight constraint. Utilizes multiple dynamic agents. A user interactively moves agents and the plan is repaired
to accommodate constraint change.

Figure 14. Demonstration of our framework applied to a map navigation problem using examples in a city grid layout. (a) A sim-
ple no-constraint solution. (b) Addition of a Not Near NeighborhoodX constraint on the same map. For example, the negative
constraint might be used at night to avoid a dangerous neighborhood, but during the day, that constraint may be removed or

weight-reduced.

tance and line of sight) into path planning using a similar
approach to our framework. In our previous work [46],
we used a rough approximation of line of sight to demon-
strate dynamic constraints. In the updated framework, we
use a more robust human relationship constraint modeled
after Sturtevant’s human relationship constraints. Figure 3
shows a simple environment that uses this constraint.

Large-scale environments. Although most of our exam-
ples operate at human movement scales, our framework

can operate at other scales, such as map navigation. This
can be useful not only for autonomous agent planning but
also for automatic route planning. In Figure 14, a simple
neighborhood-avoidance problem is demonstrated, which
operates in a grid-based city layout.

Spatiotemporal constraint specification. Another type
of problem we have briefly explored, to illustrate sup-
port for other useful tactical behavior specifications, is
that of time-based and date-based constraints. Because the

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

framework allows for fully dynamic constraints, it is pos-
sible to create spatial constraints, which change weight
(or disappear) before or during execution, depending
on some varying input such as time of day or other
agent/environment status (e.g., ‘Are the guards alerted? If
so, avoid some regions’.). In Figure 14, we show a planning
problem with varying weight in order to avoid a certain
neighborhood at night.

7.4. Parameter Selection and Performance

For our experiments, � was initially set to a value of 2.5
to quickly produce a sub-optimal solution while meeting
time constraints, which could be iteratively refined over
subsequent plan iterations. tmax was set to 0.032 s and
the plan computations of multiple agents were distributed
over successive frames to ensure that the frame rate was
always greater than 30 Hz. The maximum allotted time can
be further calibrated to introduce limits on computational
resources or accommodate many characters at the expense
of plan quality. We observed that in general, the value of
� quickly converges to 1.0 to produce an optimal path and
requires only a few frames to repair solutions to accom-
modate dynamic events (Table I). For rapid changes in the
environment over many frames, the planner may be unable
to find a solution and the agent stops moving till a valid
path is computed for execution.

The AD* algorithm requires all visited nodes in the
search graph to be cached to facilitate efficient plan
repair, imposing a memory overhead for large environ-
ments. There exists a trade-off between computational
performance and memory requirements, where using a tra-
ditional A* search would require less nodes to be stored
at the expense of planning from scratch whenever the plan
is invalidated.

The choice of the base multiplier m0 impacts how con-
straints affect the resulting cost formulation, with higher
values diluting the influence of the distance cost and the
heuristic on the resulting search. We automatically pick the
lowest possible value of m0 to accommodate the maximum
value of attractor constraints while preserving optimality
guarantees. A cost model where the base multiplier has
no adverse effect on admissibility or the influence of the
heuristic is the subject of future work.

8. CONCLUSION

We present a goal-directed navigation system that satisfies
multiple spatial constraints imposed on the path. Con-
straints can be specified with respect to obstacles in the
environment, as well as other agents. For example, a path to
a target could be altered to stay behind buildings and walk
along walls while avoiding line of sight with patrolling
guards. An extended anytime dynamic planner is used to
compute constraint-aware paths while efficiently repairing
solutions to account for dynamic constraints.

Future work. The performance of the hybrid domain
is sensitive to the kind of triangulations produced for the
environment. For future work, we would like to explore
better automated triangulation solutions [17–22] and man-
ually annotated waypoint graphs to improve computational
performance. The performance improvements of the adap-
tive highway domain are contingent upon the constraint
weights and their area of influence, which need to be
addressed to provide an efficient discrete environment rep-
resentation that generalizes across different constraints.
In addition, we would like to explore solutions to the
limitations mentioned in Section 4.4. Static analysis of
the environment could potentially yield automatic annota-
tion generation (e.g., Between, Inside), which would
improve ease of creating spatial relationships and is a sub-
ject of future exploration. In addition, our ahead-of-time
planning could be extended to include trajectory extrap-
olation by using modified annotation positions based on
search depth; this could improve plans in environments
such as the road-crossing example. Finally, we have most
closely considered spatial constraints in this paper, but
our framework is general and extensible to other prob-
lem domains. We would like to expand upon other types
of planning problems. Although we briefly explored spa-
tiotemporal constraints, we see many possible ways to
expand this to more advanced problems.

To highlight the benefits of our method, all constraints
were accounted for at the global planning layer. How-
ever, in some cases where the constraint is constantly
changing, such as a moving vehicle, it may be signifi-
cantly more efficient to use a locally optimal strategy for
constraint satisfaction. A hybrid approach that combines
the benefits of both global planning and local collision
avoidance for constraint satisfaction is another subject of
future exploration.

ACKNOWLEDGEMENTS

The research reported in this document/presentation
was performed in connection with Contract Number
W911NF-10-2-0016 with the U.S. Army Research Lab-
oratory. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as presenting the official policies or position, either
expressed or implied, of the U.S. Army Research Labora-
tory, or the U.S. Government. Citation of manufacturers or
trade names does not constitute an official endorsement or
approval of the use thereof. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

APPENDIX A: ANYTIME
DYNAMIC PLANNER

EventHandler (Algorithm 3 [1–8]) monitors events in the
simulation and triggers appropriate routines. Compute-
OrImprovePath (Algorithm 2 [15–23]) is invoked each

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Algorithm 2 Anytime dynamic planner (Part 1)
1: function KEYs
2: if g.s/ > rhs.s/ then
3: return Œrhs.s/C � � h.s, sgoal/; rhs.s/�
4: elsereturn Œg.s/C �h.s, sgoal/; g.s/�

5: function UPDATESTATEs
6: if .s ¤ sstart/ then
7: s0 D args02pred.s/ min.c.s, s0/ � MC

�
s, s0

�
C

g.s0//
8: rhs.s/ D c.s, s0/ �MC

�
s, s0

�
C g.s0/

9: prev.s/ D s0

10: if .s 2 OPEN/ remove s from OPEN
11: if g.s/ ¤ rhs.s/ then
12: if .s … CLOSED/ insert s in OPEN with key(s)
13: else insert s in INCONS
14: Insert s in VISITED

15: function COMPUTEORIMPROVEPATH(tmax)
16: while .mins2OPEN.key.s/ < key.sgoal/ _

rhs.sgoal/ ¤ g.sgoal/ _˘.sstart, sgoal/ D NULL/ ^ t <
tmax do

17: s D args2OPEN min.key.s//
18: if (g.s/ > rhs.s/) then
19: g.s/ D rhs.s/
20: CLOSED D CLOSED [s
21: else
22: g.s/ D1
23: UpdateStates

time the planning task is executed. This function mon-
itors events and calls the appropriate event handlers for
changes in start, goal, and constraints. Given a maximum
amount to deliberate tmax, it refines the plan and publishes
the �-suboptimal solution using the AD* planning Algo-
rithm [27]. We briefly describe our implementation of the
AD* algorithm and how we handle changes in start, goal,
and constraint movement and refer the readers to the work
of Likhachev et al. [27] for more details.

AD* performs a backward search and maintains a least
cost path from the goal sgoal to the start sstart by stor-
ing the cost estimate g.s/ from s to sgoal. However, in
dynamic environments, edge costs in the search graph may
constantly change and expanded nodes may become incon-
sistent. Hence, a one-step look ahead cost estimate rhs.s/
is introduced [25] to determine node consistency.

The priority queue OPEN contains the states that need
to be expanded for every plan iteration, with the priority
defined using a lexicographic ordering of a two-tuple keys,
defined for each state. OPEN contains only the inconsistent
states (g.s/ ¤ rhs.s/) that need to be updated to become
consistent. Nodes are expanded in increasing priority until
there is no state with a key value less than the start state.
A heuristic function h.s, s0/ computes an estimate of the

optimal cost between two states and is used to focus the
search toward sstart.

Instead of processing all inconsistent nodes, only those
nodes whose costs may be inconsistent beyond a certain
bound, defined by the inflation factor � are expanded. It
performs an initial search with an inflation factor �0 and
is guaranteed to expand each state only once. An INCONS
list keeps track of the already expanded nodes that become
inconsistent because of cost changes in neighboring nodes.
Assuming no world changes, � is decreased iteratively
and plan quality is improved until an optimal solution is
reached (� D 1). Each time � is decreased, all states
made inconsistent because of change in � are moved from
INCONS to OPEN with keys based on the reduced infla-
tion factor, and CLOSED is made empty. This improves
efficiency because it only expands a state at most once in
a given search, and reconsidering the states from the pre-
vious search that were inconsistent allows much of the
previous search effort to be reused, requiring only a minor
amount of computation to refine the solution. Compute-
OrImprovePath (Algorithm 2 [15–23]) gives the routine
for computing or refining a path from sstart to sgoal.

When change in edge costs are detected, new inconsis-
tent nodes are placed into OPEN and node expansion is
repeated until a least cost solution is achieved within the
current �bounds. When the environment changes substan-
tially, it may not be feasible to repair the current solution
and it is better to increase � so that a less optimal solution
is reached more quickly.

An increase in edge cost may cause states to become
under-consistent (g.s/ < rhs.s/) where states need to be
inserted into OPEN with a key value reflecting the min-
imum of their old and new costs. In order to guarantee
that under-consistent states propagate their new costs to
their affected neighbors, their key values must use unin-
flated heuristic values. This means that different key values
must be computed for under-consistent and over-consistent
states, as shown in Algorithm 2 [1–4]. This key definition
allows AD* to efficiently handle changes in edge costs and
changes to inflation factor.

AD* uses a backward search to handle agent movement
along the plan by recalculating key values to automati-
cally focus the search repair near the updated agent state. It
can handle changes in edge costs due to obstacle and start
movement and needs to plan from scratch each time the
goal changes. The routines to handle start and goal changes
are described, whereas the routine to handle constraint
changes is described in Algorithm 1.

StartChangeUpdate. When the start moves along the
current plan, the key values of all states in OPEN are
recomputed to re-prioritize the nodes to be expanded. This
focuses processing toward the updated agent state allow-
ing the agent to improve and update its solution path
while it is being traversed. When the new start state devi-
ates substantially from the path, it is better to plan from
scratch. Algorithm 3 [9–16] provides the routine to handle
start movement.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

GoalChangeUpdate. Algorithm 3 [17–20] clears plan
data and resets � whenever the goal changes and plans from
scratch at the next step.

Algorithm 3 Anytime dynamic planner (Part 2)
1: function EVENTHANDLER

2: if START_CHANGED then
3: StartChangeUpdate.sc/

4: if GOAL_CHANGED then
5: GoalChangeUpdate.snew/

6: if CONSTRAINT_CHANGED then
7: for all constraint change c do
8: ConstraintChangeUpdate(c, Exprev,Exnext)

9: function STARTCHANGEUPDATE(/sc

10: if sc … ˘.sstart, sgoal/ then
11: ClearPlanData()
12: � = �0
13: else
14: sstart D sc

15: for all s 2 OPEN do
16: Update keys

17: function GOALCHANGEUPDATE(snew)
18: ClearPlanData()
19: � = �0
20: sgoal D snew

REFERENCES

1. Kapadia M, Badler NI. Navigation and steering for
autonomous virtual humans. Wiley Interdisciplinary
Reviews: Cognitive Science 2013; 4(3): 263–272.

2. Al Marzouqi M, Jarvis RA. Robotic covert path plan-
ning: A survey. In Proceedings of the 2011 IEEE Con-
ference on Robotics, Automation and Mechatronics
(RAM), Qingdao, China, 2011; 77–82.

3. Warren CW. Global path planning using artificial
potential fields. In Proceedings of the 1989 IEEE
International Conference on Robotics and Automation,
volume 1, Scottsdale, Arizona, USA, 1989; 316–321.

4. Warren CW. Multiple robot path coordination using
artificial potential fields. In Proceedings of the 1990
IEEE International Conference on Robotics and
Automation, volume 1, Cincinnati, Ohio, USA, 1990;
500–505.

5. Shimoda S, Kuroda Y, Iagnemma K. Potential field
navigation of high speed unmanned ground vehicles
on uneven terrain. In Proceedings of the 2005 IEEE

International Conference on Robotics and Automation,
Barcelona, Spain, 2005; 2828–2833.

6. Goldenstein S, Karavelas M, Metaxas D, Guibas L,
Aaron E, Goswami A. Scalable nonlinear dynamical
systems for agent steering and crowd simulation 2001;
25(6): 983–998.

7. Arkin RC. Motor schema based navigation for a mobile
robot: an approach to programming by behavior. In
Proceedings of the 1987 IEEE International Confer-
ence on Robotics and Automation, volume 4, Raleigh,
North Carolina, USA, March 1987; 264–271.

8. Treuille A, Cooper S, Popović Z. Continuum
crowds. ACM Transactions on Graphics 2006; 25(3):
1160–1168.

9. Kapadia M, Singh S, Hewlett W, Faloutsos P. Ego-
centric affordance fields in pedestrian steering. In Pro-
ceedings of the 2009 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D’09. ACM:
New York, NY, USA, 2009; 215–223.

10. Kapadia M, Singh S, Hewlett W, Reinman G, Falout-
sos P. Parallelized egocentric fields for autonomous
navigation. The Visual Computer 2012; 28: 1–19. DOI:
10.1007/s00371-011-0669-5.

11. Mitchell JSB, Papadimitriou CH. The weighted region
problem: finding shortest paths through a weighted pla-
nar subdivision. Journal of the ACM January 1991;
38(1): 18–73.

12. Narayanappa S. and University of Denver. Exact solu-
tions for simple weighted region problems. Univer-
sity of Denver, 2006. http://books.google.ch/books?
id=jAoJV750QcIC.

13. Reif JH, Sun Z. An efficient approximation algorithm
for weighted region shortest path problem. In Algo-
rithmic and Computational Robotics: New Directions,
Donald BR, Lynch KM, Rus D (eds). A.K. Peters:
Wellesley, MA, 2001; 191–203.

14. Hart PE, Nilsson NJ, Raphael B. A formal basis for
the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernet-
ics 1968; 4(2): 100–107.

15. Hart PE, Nilsson NJ, Raphael B. Correction to “A for-
mal basis for the heuristic determination of minimum
cost paths”. SIGART Bulletin 1972; 37: 28–29.

16. Dechter R, Pearl J. Generalized best-first search strate-
gies and the optimality of A*. Journal of the ACM
1985; 32(3): 505–536.

17. Mononen M. Recast: navigation-mesh construction
toolset for games, 2009. http://code.google.com/p/
recastnavigation/.

18. Kallmann M. Shortest paths with arbitrary clear-
ance from navigation meshes. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation. SCA’10. Eurhics

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

http://books.google.ch/books?id=jAoJV750QcIC
http://books.google.ch/books?id=jAoJV750QcIC

Constraint-aware navigation in dynamic environments K. Ninomiya et. al

Association: Aire-la-Ville, Switzerland, Switzerland;
159–168. http://dl.acm.org/citation.cfm?id=1921427.
1921451, 2010.

19. Oliva R, Pelechano N. Automatic generation of sub-
optimal navmeshes. In Proceedings of the 2011 Inter-
national Conference on Motion in Games (MIG).
MIG’11. Springer-Verlag: Berlin, Heidelberg, 2011;
328–339.

20. Oliva R, Pelechano N. NEOGEN: near optimal genera-
tor of navigation meshes for 3D multi-layered environ-
ments. Computers & Graphics 2013; 37(5): 403–412.

21. Pettré J, Laumond JP, Thalmann D. A navigation graph
for real-time crowd animation on multilayered and
uneven terrain. First International Workshop on Crowd
Simulation 2005; 43(44): 194.

22. van Toll WG, Cook AF, Geraerts R. A navigation mesh
for dynamic environments. Computer Animation and
Virtual Worlds November 2012; 23(6): 535–546.

23. Schultes D. Route Planning in Road Networks. VDM
Verlag: Saarbrücken, Germany, Germany, 2008.

24. Geisberger R, Sanders P, Schultes D, Delling D. Con-
traction hierarchies: faster and simpler hierarchical
routing in road networks. In Proceedings of the 7th
International Conference on Experimental Algorithms.
WEA’08. Springer-Verlag: Berlin, Heidelberg, 2008;
319–333.

25. Koenig S, Likhachev M. D* Lite. In Proceedings of the
2002 National Conference on Artificial Intelligence.
AAAI: Menlo Park, CA, USA, 2002; 476–483.

26. Likhachev M, Gordon GJ, Thrun S. Ara*: anytime
A* with provable bounds on sub-optimality. In Pro-
ceedings of the 2003 Conference on Advances in Neu-
ral Information Processing Systems, Vancouver, B.C.,
2003, Vol. 16, 767–774.

27. Likhachev M, Ferguson DI, Gordon GJ, Stentz A,
Thrun S. Anytime dynamic A*: an anytime, replanning
algorithm. In Proceedings of the 2005 International
Conference on Automated Planning and Scheduling,
Monterey, California, USA, 2005; 262–271.

28. Pelechano N, Allbeck JM, Badler NI. Virtual Crowds:
Methods, Simulation, and Control, Synthesis Lectures
on Computer Graphics and Animation. Morgan &
Claypool Publishers: San Rafael, California, 2008.

29. Reynolds C. Steering behaviors for autonomous char-
acters. In Proceedings of the 1999 Game Developers
Conference, San Jose, California, 1999; 763–782.

30. Helbing D, Molnár P. Social force model for pedes-
trian dynamics. Physical Review E May 1995; 51(5):
4282–4286.

31. Pelechano N, Allbeck JM, Badler NI. Control-
ling individual agents in high-density crowd
simulation. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer

Animation. SCA’07. Eurographics Association:
Aire-la-Ville, Switzerland, Switzerland, 2007; 99–108.

32. Paris S, Pettré J, Donikian S. Pedestrian reactive nav-
igation for crowd simulation: a predictive approach.
Computer Graphics Forum 2007; 26(3): 665–674.

33. van den Berg J, Lin MC, Manocha D. Reciprocal
velocity obstacles for real-time multi-agent navigation.
In Proceedings of the 2008 IEEE International Con-
ference on Robotics and Automation. IEEE: Pasadena,
CA, 2008; 1928–1935.

34. Singh S, Kapadia M, Hewlett B, Reinman G, Falout-
sos P. A modular framework for adaptive agent-based
steering. In Proceedings of the 2011 Symposium on
Interactive 3D Graphics and Games. I3D’11. ACM:
New York, NY, USA, 2011; 141–150.

35. Singh S, Kapadia M, Reinman G, Faloutsos P. Footstep
navigation for dynamic crowds. Computer Animation
and Virtual Worlds 2011; 22(2-3): 151–158.

36. Kapadia M, Beacco A, Garcia F, Reddy V, Pelechano
N, Badler NI. Multi-domain real-time planning in
dynamic environments. In Proceedings of the 2013
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA’13. ACM: New York, NY, USA,
2013; 115–124.

37. Schuerman M, Singh S, Kapadia M, Faloutsos P. Sit-
uation agents: agent-based externalized steering logic.
Computer Animation and Virtual Worlds May 2010;
21: 267–276.

38. Xu YD, Badler NI. Algorithms for generating motion
trajectories described by prepositions. In Proceed-
ings of Computer Animation 2000, Philadelphia,
Pennsylvania, USA, 2000; 30–35.

39. André E, Bosch G, Herzog G, Rist T. Characterizing
trajectories of moving objects using natural language
path descriptions. In Proceedings of the 7th European
Conference on Artificial Intelligence, Brighton, UK,
1986; 1–8.

40. Bhattacharya S, Likhachev M, Kumar V. Search-based
path planning with homotopy class constraints in 3D.
In Proceedings of the 26th AAAI Conference on Arti-
ficial Intelligence, Toronto, Ontario, Canada, 2012;
2097–2099.

41. Bhattacharya S, Likhachev M, Kumar V. Topologi-
cal constraints in search-based robot path planning.
Autonomous Robots 2012; 33(3): 273–290.

42. Hernandez E, Carreras M, Galceran E, Ridao P. Path
planning with homotopy class constraints on bathymet-
ric maps. In Oceans - Europe, 2011; 1–6.

43. Phillips M, Hwang V, Chitta S, Likhachev M. Learning
to plan for constrained manipulation from demonstra-
tions. In Robotics: Science and Systems IX. Technische
Universität Berlin: Berlin, Germany, 2013.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

http://dl.acm.org/citation.cfm?id=1921427.1921451
http://dl.acm.org/citation.cfm?id=1921427.1921451

K. Ninomiya et. al Constraint-aware navigation in dynamic environments

44. Geraerts R. Planning short paths with clearance using
explicit corridors. In Proceedings of the 2010 IEEE
International Conference on Robotics and Automation.
IEEE: Pasadena, CA, 2010; 1997–2004.

45. Sturtevant NR. Incorporating human relationships into
path planning. In Proceedings of the 9th AAAI Con-
ference on Artificial Intelligence and Interactive Dig-
ital Entertainment, Northeastern University, Boston,
Massachusetts, USA, 2013; 177–183.

46. Kapadia M, Ninomiya K, Shoulson A, Garcia F, Badler
NI. Constraint-aware navigation in dynamic environ-
ments. In Proceedings of the 2013 ACM SIGGRAPH
Conference on Motion in Games (MIG). MIG’13.
ACM: New York, USA, 2013; 111–120.

47. Shoulson A, Marshak N, Kapadia M, Badler NI.
Adapt: the agent development and prototyping testbed.
In Proceedings of the 2013 ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games. I3D’13.
ACM: New York, NY, USA, 2013; 9–18.

48. Sturtevant NR. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and
AI in Games 2012; 4(2): 144–148.

AUTHORS’ BIOGRAPHIES

Kai Ninomiya is an undergraduate stu-
dent in computer science and mas-
ter’s degree student in computer graph-
ics at the University of Pennsylvania.
Kai worked on the original Motion
in Games publication in the summer
of 2013 as an undergraduate research
assistant in the UPenn Center for

Human Modeling and Simulation.

Mubbasir Kapadia is an Associate
Research Scientist at Disney Research
Zurich. Previously, he was a postdoc-
toral researcher and Assistant Director
at the Center for Human Modeling and
Simulation at University of Pennsylva-
nia. He received his PhD in Computer
Science at University of California,

Los Angeles.

Alexander Shoulson is Ph.D. stu-
dent at the University of Pennsylvania,
supervised by Dr. Norman I. Badler.
His research focuses on interactive nar-
rative, practical game AI, character
animation, and behavior authoring for
virtual humans.

Francisco Garcia is a MS/Ph.D stu-
dent at the University of Massachusetts,
Amherst. He graduated with a B.S.
in Computer Science from the Univer-
sity of the Sciences in Philadelphia in
2012. His research interests are Arti-
ficial Intelligence, Robotics, Planning
and Machine Learning.

Norman I. Badler is the Rachleff Pro-
fessor of Computer and Information
Science at the University of Pennsylva-
nia. He received his PhD in Computer
Science from the University of Toronto
in 1975. His research involves devel-
oping software for human and group
behavior modeling and animation. He

is the founding Director of the SIG Center for Com-
puter Graphics and the Center for Human Modeling and
Simulation at Penn.

Comp. Anim. Virtual Worlds (2014) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

	Planning approaches to constraint-aware navigation in dynamic environments
	Abstract
	Introduction
	Related Work
	Problem Definition
	Environment Representation
	Triangulation
	Dense Uniform Graph
	Hybrid Graph
	Adaptive Highway Graph

	Constraints
	Constraint Definitions
	Multiplier Field

	Planning Algorithm
	Results
	Evaluation of Hybrid Domain
	Evaluation of Adaptive Highway Domain
	Constraint System Examples
	Parameter Selection and Performance

	Conclusion
	ACKNOWLEDGEMENTS
	APPENDIX A: Anytime Dynamic Planner
	References

