
On Justifying and Verifying Relaxed Detection

of Conflicts in Concurrent Programs

Position paper

Omer Subasi, Serdar Tasiran

Koç University

{osubasi,stasiran}@ku.edu.tr

Tayfun Elmas

University of California, Berkeley

elmas@cs.berkeley.edu

Adrián Cristal, Osman Unsal

Barcelona Supercomputing Center

{adrian.cristal,osman.unsal}@bsc.es

Tim Harris

Microsoft Research

tharris@microsoft.com

Rubén Titos-Gil

University of Murcia

rtitos@ditec.um.es

Abstract

Transactional Memory (TM) simplifies concurrent program-

ming by providing atomic, compositional blocks within

which programmers can reason sequentially. Many trans-

actions have an access pattern where, initially, a large por-

tion of the shared data is read, local computations is per-

formed, and, later, a small portion of shared data is updated.

Such transactions conflict frequently and result in poor per-

formance. TM implementers have developed mechanisms

for programmer-directed relaxed conflict detection. The pro-

grammer indicates to the TM to ignore certain conflicts.

As a result, the frequency of conflict is reduced and per-

formance approximates hand-crafted fine-grain concurrency.

However, the clean, sequential, atomic compositional block

simplicity of TM is lost. In this paper, we present a method

for abstracting in a quantified manner the accesses on which

conflicts are ignored. This abstraction, and a soundness the-

orem we state and prove, allow the programmer to reason se-

quentially on an abstracted version of the transaction. Prop-

erties proved on this abstract but sequential version of the

transaction carry over to the original program.

1. Introduction

Transactional memory (TM) [11] simplifies shared-memory

concurrent programming greatly by providing atomic blocks

as a composable programming construct while, transparently

to the programmer, allowing concurrency. Within atomic

blocks, programmers are able to use sequential reasoning

and sequential verification tools. Invariants about the pro-

gram need only be proven using the atomic blocks as coarse-

grain actions.

A typical TM implementation maintains read and write

sets – the sets of memory locations that a transaction reads

from and writes to. Transactions proceed optimistically, but

when the write set of one transaction has a non-empty in-

tersection with the read or write sets of another concurrent

transaction, one of the transactions is aborted and retried.

Careful contention management results in acceptable perfor-

mance for many programs.

For atomic blocks with a certain access pattern, how-

ever, the straightforward conflict-detection approach results

in poor performance. These programs are characterized by

long-running transactions that start with a “read phase”

where a possibly-large portion of shared data is read by the

transaction. The transaction then carries out local computa-

tion and proceeds to its “commit phase,” where it updates

shared state. The commit phase may contain both read and

write accesses to the shared state. Stated informally, these

transactions have the property that if the following condi-

tions are met, their updates to the shared state are valid:

1. The read phase reads a consistent but possibly outdated

(stale) snapshot of the relevant part of the shared data,

2. The accesses in the commit phase do not conflict with the

writes of other concurrent transactions

Examples of this access pattern can be found in the

STAMP transactional programming benchmark suite [3, 13].

In the Genome benchmark, multiple concurrent transactions

perform insertions into a sorted linked list. All insertions

read prefixes of the linked list. Consider two transactions,

one performing an insertion closer to the head of a long

linked list, and the other one closer to the tail. The prefix

read by the latter transaction will be modified by the former

one. Yet, both transactions should be able to commit as they

will be performing insertions correctly, despite this “Write-

After-Read (WAR)” conflict. In the Labyrinth benchmark,

concurrent transactions try to route wires connecting pairs

of points in a three-dimensional grid. Each transaction first

makes a local copy of the grid state and then tries to find a

path. As long as the path found does not intersect with an-

other one found by a concurrent transaction, the labyrinth

router functions correctly. In these two examples, invariants

of the program, i.e., sortedness of the list or non-overlapping

of paths, hold true despite the fact that transactions may be

operating on a stale but consistent snapshot.

1 2012/1/28



In order to provide reasonable performance in these

cases, TM packages have devised programmable mecha-

nisms that allow transactions to ignore certain conflicts

[5, 9, 12, 13]. For instance, [13] allows the programmer to

use “!WAR” annotation for part of the transaction, with the

interpretation that writes by other transactions conflicting

with reads performed in the !WAR portion of the transaction

will be ignored. These studies have demonstrated that the use

of relaxed conflict detection greatly improves performance.

Unfortunately, so far, this has come at the expense of losing

the simplicity of sequential reasoning within a transaction.

The programmer currently has no clear theory or tools us-

ing which she can reason about and verify that her program

will run as intended under such TM with relaxed detection

of conflicts.

This paper is about verifying programs that use TMs with

programmer-controlled relaxed conflict detection. We pro-

vide a way of modeling relaxed conflict detection, which,

in turn, allows the programmer to use sequential reason-

ing on a more abstract but sequential version of the trans-

action. With this approach, static proofs of concurrent pro-

grams using TMs with relaxed conflicts are still much sim-

pler than those for hand-crafted fine-grain concurrent pro-

grams. In order to allow sequential thinking within a trans-

action, for each variable access α, we identify the set

of accesses IgnoreConflictspαq in the program such that

β P IgnoreConflictspαq iff the transaction ignores potential

conflicts between α and β. We then abstract α to rα in a pre-

scribed way. This abstraction makes rα express possible side

effects of the conflicting accesses β on access α and allows

transactions containing rα to be serialized in a sound manner.

For instance, a read of a variable x, instead of returning the

current value of x, can return a value for x that may be the

result of one of the conflicting writes to x. Put differently,

we add more behavior to relaxed accesses by replacing them

with abstracted versions. As a result, we obtain a transaction

with more abstract actions, but one that now can be treated

sequentially. On this version of the program, invariants, pre-

and post-conditions, and assertions can be proven using se-

quential reasoning. The soundness theorem for our approach

guarantees that properties proven on the abstract sequential

version hold of the original program—when it is run under

TM with relaxed detection of conflicts.

The atomicity guarantee provided by TMs relies on the

fact that, stated in Lipton’s theory of movers [8], that actions

are of the correct mover types (right-mover or left-mover)

so that they can all be made contiguous around the com-

mit action of the transaction. In terms of the access pattern

described above, this translates to all read accesses needing

to be right movers. Conflicting writes by other transactions,

which are ignored due to the !WAR annotation, prevent reads

from being right movers, and this is the reason we perform

the abstraction as outlined above. To be able to prove any-

thing interesting about programs using relaxed conflict de-

tection, the programmer needs to provide a program-specific

abstraction for read actions. The abstraction allows a read

action commuted to the right of a conflicting write to still

read the old (stale) value – the value before the conflicting

write took place.

While our method requires manual work for the abstrac-

tion, we believe that the programmer who has directed the

TM to ignore certain conflicts has in mind an intuitive model

of possible interfering actions, therefore, it is not difficult for

her to provide this abstraction.

In particular, for a read returning a value v, the program-

mer believes that, despite the interference by other concur-

rent writes, the value read still satisfies a certain property. By

abstracting the read, the user provides us this guess. In the

Labyrinth benchmark, for instance, this abstraction allows

a read to non-deterministically see a free labyrinth cell as

full to model interference from concurrent labyrinth transac-

tions. In the Genome benchmark, while a thread is traversing

a linked list, other threads may modify the link structure by

inserting new nodes to the list. The abstraction of reads from

the “next” pointers of list nodes allows a thread to jump over

multiple nodes to ignore the writes to and thus to model the

interference on the next pointers.

If the guess of the programmer about the safety of the

abstraction is wrong, our method will not succeed, but it

will tell the programmer that the guess was wrong, and why.

Otherwise, the correctness of the guess is verified, and, using

this guess, now the programmer can assume that she has

a sequential atomic block and verify all relevant properties

of the block she initially had. This can include assertions,

pre- and post-conditions of blocks. In particular, let P be

the original program and PAbs be the program after applying

the abstraction. If the abstraction in PAbs is verified correct

(sound), then our soundness theorem gives two guarantees.

First, every concurrent execution of PAbs is equivalent to an

execution of PAbs in which every transaction is serialized.

This enables sound, sequential verification of any safety

property in PAbs . Second, the result of any sequential safety

proof on PAbs can be soundly carried on P .

Our method is compositional in the following way. When

the program at hand is composed with others that contain

transactions, the correctness of the existing parts of the pro-

grams can simply be checked by annotating the additional

transactions with sequential assertions regarding their poten-

tially interfering writes, and verifying these using sequential

methods. This is not no cost, but, as is usually the case, im-

proved performance requires somewhat reduced modularity.

To evaluate the usability of our technique, we verified

pre- and post-conditions of transactions from Genome and

Labyrinth benchmarks from STAMP [3] that are using

TM with relaxed detection of conflicts. Titos et al. claimed

in [13] that these transactions are intended to function cor-

rectly with !WAR annotation. Our work validates the claims

in [13] about the correctness of these transactions and pro-

2 2012/1/28



vides the systematic way of validating such claims for simi-

lar programs.

We performed the proofs in two steps. First, we assumed

a TM that does not ignore any conflicts and did a standard,

contract-based sequential proof. (Here, contracts include in-

variants, pre- and post-conditions and loop invariants.) For

this, we used VCC [4] and HAVOC [7], state-of-the-art mod-

ular verification tools for C programs. Then, we applied the

abstraction on the program annotated with contracts and ap-

plied the same tools. We found that the sequential verifica-

tion of these benchmarks after the abstraction did not re-

quire extra or stronger contracts compared to the original se-

quential proof. This indicates that the arguments about why

the transactions work under relaxed detection conflicts origi-

nates from the arguments about why these transactions work

sequentially.

In summary, the contribution of this work is to provide a

modeling and static, tool-supported verification method for

programs using transactions with relaxed conflict detection.

This will enable the improved performance of relaxed con-

flict detection, with performance close to hand-crafted con-

currency control, with a little bit of extra static verification

work. This verification work is made into a recipe, and is sig-

nificantly easier than the work needed to verify hand-crafted,

fine-grain concurrency data structures.

2. Overview

2.1 Running example: StringBuffer pool

Figure 1 shows the (C++-like) pseudocode for operations of

a data structure that implements a pool of StringBuffer

objects. Such pools are widely-used in text processing (e.g.,

indexing and searching) applications that create a high num-

ber of temporarily-used strings. The pool is represented by

a fixed-size array (1K in our case) of StringBuffer object

pointers. We say that a cell in the pool array is full if that

cell contains a non-NULL pointer, and empty if it contains

the NULL pointer.

We imagine a program with multiple threads that share

the pool array to store references to unused StringBuffer

objects. In the code, we mark the lines that read from or write

to the shared pool array as shaded; other lines only access

local variables.

The Allocate operation returns a pointer to a String-

Buffer object that was either in the pool or created freshly

using the new operator. Allocate operate by traversing the

pool array and examining cells one at a time. If the cell

pool[i] is full, Allocate swaps pool[i] with NULL and

returns the old value of the cell.

The Free operation is the dual of Allocate. Free takes

a pointer to a StringBuffer object, and it either inserts the

pointer to an empty cell in the pool array or deallocates the

pointed StringBuffer object using the delete operator.

If the cell pool[i] is empty, Free swaps pool[i] with

NULL and returns the old value of the cell.

Let the following invariant express the programmer’s in-

tended correctness condition:

SBPoolInvariant: At any time, every StringBuffer ob-

ject must either be in the pool, or it must have been returned

by a call to Allocate and being used by the program. This

implies that, a call to Free must either insert the given the

pointer to the pool or deallocate the corresponding object.

2.2 Choosing a concurrency control mechanism

Notice that, we do not explicitly decorate the code in Fig-

ure 1 with any concurrency control primitive. In fact, this

program can run correctly—i.e., satisfy SBPoolInvariant—

with multiple concurrency control mechanisms. A trivial

concurrency technique that guarantees correctness is to ac-

quire (resp. to release) a common lock, say Lock, be-

fore starting (resp. ending) operations Allocate and Free.

However, such a common-global lock does not permit any

concurrency, resulting a very poor performance if many

threads attempt to simultaneously call operations of the same

pool. Transactional memory (TM) [11] provides a high de-

gree of concurrency, still preserving the invariant. In this

case, the programmer can declare each of Allocate and

Free a transaction and obtain the atomicity guarantee for

both operations without any more changes in the code.

However, this atomicity guarantee by TM still comes with

a considerable performance cost, which increases rapidly

with the contention between threads [6]. To see why, ob-

serve that before writing to cell, Allocate operates in two

phases (Free operates similarly but in a dual manner): First,

in the “read phase”, Allocate traverses the pool array and

check if each cell (pool[i]) is full. If it finds a full cell,

in the “commit phase”, it swaps the value of that cell with

NULL. Consider a thread T1 running Allocate, which reads

cells 1 through 100 (line 4) in its read phase and writes

the 101
st cell (line 6) in its commit phase. While T1 is in

its read phase, other threads may attempt to write to any

cell 1 ´ 100; for example, another thread, say T2, running

Allocate may empty a cell before T1 reads from it, or run-

ning Free may fill a cell after T1 reads from it. In such

cases the TM implementation would detect a conflict be-

tween the read of T1 and the write of T2, and force one of the

transactions to rollback its transaction. However, we observe

that such Write-After-Read (WAR) conflicts between two

threads only cause a correctness flaw (violates SBPoolIn-

variant) when the read access involved in the conflict is per-

formed in the commit phase of the transaction, i.e., T1 reads

from pool[i] and gets prepared to write to pool[i], then

T2 writes to pool[i], and finally T1 attempts to write to

the same cell pool[i]. Otherwise, reading a cell later over-

written by another thread does not violate the correctness

property dictated by SBPoolInvariant. In summary, the cor-

rectness would be established under any concurrency con-

trol that provides atomicity for the last successful iteration of

Allocate and Free that ends at line 7; the reads of pool

3 2012/1/28



StringBuffer* pool[] = new StringBuffer[1000];

1 StringBuffer* Allocate() {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 ptr = pool[i];

5 if (ptr != NULL) { // check if full

6 pool[i] = NULL; // empty cell

7 return ptr;

8 }

9 }

10 // default operation

11 return new StringBuffer();

12 }

1 void Free(StringBuffer* buff) {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 ptr = pool[i];

5 if (ptr == NULL) { // check if empty

6 pool[i] = buff; // fill cell

7 return;

8 }

9 }

10 // default operation

11 delete buff;

12 }

Figure 1. StringBuffer pool example.

from the previous iterations do not have to be atomic with

the last iteration.

We note that such concurrency control can be obtained

by assigning a separate lock to each cell in the pool array,

and acquiring the lock for pool[i] at each iteration i of

the for loop. While this scheme can be improved for per-

formance by using readers/writer lock, locking operations at

each iteration would unnecessarily reduce the performance.

In fact, the locking operations in the read phase of the trans-

action (for cells that will not be written) are unnecessary.1

Clearly, for such programs, there is a need for concurrency

control mechanisms that can not only always look for con-

flicts but also be configured to ignore some conflicts that do

not affect the functionality of the program.

2.3 Relaxed detection of conflicts for StringBuffer pool

Titos et al. [13] have addressed the problem above by

proposing a TM implementation with software-defined con-

flicts. By annotating a transaction with !WAR, the program-

mer indicates that the TM can ignore WAR conflicts, un-

less the conflicting read is followed by a write by the same

transaction to the same variable. Recall that such reads indi-

cate that the performing transaction is in its commit phase.

It is reported in [13] that for STAMP benchmarks [3] anno-

tated with conflict-defined transactions, the combination of

relaxed detection of conflicts and appropriate hardware sup-

port is able to decrease the number of aborted transactions

between 50% and 90% for up to 32-thread configurations,

and consequently reduce execution time.

Despite this performance benefit, TM with relaxed de-

tection of conflicts makes the verification of the program a

challenge. The standard TM provides the atomicity guaran-

tee to Allocate and Free, since no concurrent, conflict-

ing accesses are allowed to happen during a transaction.

That is, for every execution of the program in which oper-

ations Allocate and Free interleave with each other, there

exists an equivalent execution containing the same calls to

Allocate and Free but every call executing sequentially.

1 We assume that the execution is sequentially-consistent even without the

use of locks, i.e., accessing shared variables without any synchronization

does not cause harmful race conditions.

Therefore, if Allocate and Free are treated transactions

in a standard TM, one can verify SBPoolinvariant “sequen-

tially”, as if all calls to Allocate and Free are always run

by a single thread. This enables one to carry out the reason-

ing using state-of-the-art program analysis and verification

techniques originally developed for sequential programs.

However, TM with relaxed detection of conflicts does not

provide this atomicity guarantee, since conflicting reads and

writes from/to the pool array by different transactions are

now allowed to be interleaved. The programmer should now

ensure that such conflicting accesses do not cause harm-

ful interference and lead the program to unintended states.

Without proving the absence of such harmful interference,

it is not sound to verify the program assuming always-

atomic execution of Allocate and Free. Thus, the user has

to apply techniques for concurrent programs. On the other

hand, verification techniques for concurrent programs are

fairly more complicated and tedious to use than those for

sequential programs; further, model checking-based tech-

niques scale poorly as the concurrent program gets larger

and create more threads. Next, we present a technique that

addresses this problem and allows user to still reason se-

quentially about the program.

2.4 Abstraction for sequential verification

We propose a two-step recipe, which is elaborated for our

running example below:

1. Transform the original program P to a new program

PAbs , by (i) replacing reads from global variables with

more abstract read operations and (ii) adding assertions

to writes to the same global variables.

2. Verify “sequentially” the correctness of PAbs , i.e., prove

all the assertions in PAbs including the ones added in 1.

Figure 1 and 2 show P and PAbs , respectively, for our

running example. If all the assertions in PAbs are verified

sequentially in Step 2, then PAbs is a sound, sequential re-

duction of P , and the result of this verification can be safely

carried to P . To conclude this, we have proved that if the

assertions in PAbs are all valid sequentially, then (i) every

transaction of PAbs is serializable—i.e., for every interleaved

execution of PAbs , there exist a serialized, equivalent execu-

4 2012/1/28



1 StringBuffer* Allocate() {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 assert Abs(i, pool[i]);

5 havoc ptr;

6 assume Abs(i, ptr);

7 if (ptr != NULL) { // check if full

8 assume ptr == pool[i];

9 assert Abs(i, NULL);

10 pool[i] = NULL; // empty cell

11 return ptr;

12 }

13 }

14 // default operation

15 return new StringBuffer();

16 }

1 void Free(StringBuffer* buff) {

2 StringBuffer* ptr;

3 for (int i = 0; i < 1000; ++i) {

4 assert Abs(i, pool[i]);

5 havoc ptr;

6 assume Abs(i, ptr);

7 if (ptr == NULL) { // check if empty

8 assume ptr == pool[i];

9 assert Abs(i, buff);

10 pool[i] = buff; // fill cell

11 return;

12 }

13 }

14 // default operation

15 delete buff;

16 }

Figure 2. Abstraction of StringBuffer pool example. Abstraction predicate Abs(i,v) is true for all i and v.

tion of PAbs— and (ii) PAbs is a sound abstraction of P , thus

all the assertions satisfied by PAbs are also satisfied by P (in

the concurrent context). In the following, we focus on the

steps to reduce P to its abstract form PAbs , but, due to lack

of space, we omit explaining the sequential proof of PAbs .

We note that the aim of this changes is not to obtain an ex-

ecutable program but a program on which static verification

can be carried out. While implementing the nondetermin-

istic read operations can be tricky, the havoc and assume

statements are suitable and precise enough to express such

operations for the purpose of static verification.

Abstraction predicate. Our key idea is to incorporate the

effects of the conflicting writes that are ignored by the TM

on the global reads of a transaction. We incorporate these

effects into the code statically by rewriting these reads. For

this, we require that the user provide, for each global variable

x that is subject to conflicting accesses, a predicate Absx,

we call abstraction predicate. Intuitively, the set Absx rep-

resents the set of all feasible values that may be written to x

by any transaction during an execution.

For our example, the cells of the pool array are the shared

variables, and the abstraction predicate for the pool array

is: Abs(i,v) ” true. This means that, the data structure

works correctly (satisfies SBPoolInvariant) even though the

reads from pool[i] in the read phase are later overwritten

by other transactions with any other value, including NULL.

While our running example requires the abstraction pred-

icate true, we found that for several other programs (in-

cluding Genome and Labyrinth of STAMP), stronger ab-

straction predicates is necessary for correctness. For exam-

ple, the linked list example in Genome does not satisfy the

post-condition of the list-insertion operation, if all the reads

from the “next” pointers while traversing the linked list are

replaced by abstract reads that can read any node pointer.

Thus, for the linked list example, we needed to use stronger

abstraction predicates that dictate that the nondeterministi-

cally read node is reachable from the “head” of the list.

We transform program P to PAbs performing the follow-

ing changes in P for every global variable x.

1. Replace every read action l “ x with an action that

nondeterministically chooses a value from Absx.

2. Insert before every write action x “ l an assertion that

checks if the value of l satisfies Absx.

The first modification replaces reads from x with a more

abstract version of the action, which, instead of reading the

current value of x, is now free to read any value that satisfies

Absx. Thus, the read from pool[i] at line 4 of Figure 1

is replaced by lines 4-6 in Figure 2. The assertion at line 4

ensures that our abstraction is sound—i.e., the abstraction

predicate is already satisfied by the value the original read

would return. Note that, during the verification of PAbs , the

user also need to verify all assertions in Figure 2 in order

to perform the reasoning about PAbs sequentially and apply

this result to P . In our case, the assertion is trivially valid, as

Abs(i,v) simply evaluates to true.

Lines 5-6 implement the abstracted read action. We ex-

press this abstraction in the notation of the Boogie lan-

guage [2]. The havoc statement assigns a nondeterministic

pointer value to ptr and the assume statement introduces

an assumption that the nondeterministic value assigned by

line 5 satisfies the abstraction predicate for pool[i].

The second modification inserts an assertion before

writes to global variables. In Figure 2, the assertion is in-

serted at line 9 to check that the write to pool[i] satisfies

the abstraction predicate for the cell i. Similar to the ones at

line 4, the assertion at line 9 is trivially valid, as Abs(i,v)

directly evaluates to true.

While the full abstraction of reads in the read phase of

our example are acceptable for correctness, we cannot prove

SBPoolInvariant if we abstract the last successful read in

the commit phase, because then, for example, the Free

operation can see a full cell pool[i] as empty and overwrite

5 2012/1/28



it with the value of buff. Thus, we should incorporate the

fact that while the TM ignores WAR conflicts during the read

phase of each transaction, it does not ignore such conflicts

in the commit phase. We use the assume statement at line

8 of Figure 2 for this purpose. If, for example, a transaction

T running Allocate detects that pool[i] is full (and is

going to commit by returning the pointer in pool[i]) , no

other transaction is allowed to write to pool[i] between

T’s read from pool[i] and its write to pool[i] at line

10. By using the assumption at line 8, we indicate that

ptr contains the current (stable) value of pool[i], but

not a nondeterministically-chosen value; in other words, the

abstraction at lines 5-6 has not been applied to the last

read. We found (also while proving the other benchmarks

in the STAMP suite) that not abstracting the read in the

commit phase are essential for the proof, since the correct

functionality of the code depends on the atomicity of the

commit phase.

3. Related work

Closely related to our work, there is research on sequential

verification of correctness criteria for transactional memo-

ries. Attiya et. al. [1] provide a set of reduction rules and

types to verify concurrent modules to be serializable. They

argue that by only considering sequential interleavings, one

can verify that implementations that is based on locking such

as two-phase locking, tree locking and hand-over-hand lock-

ing, thereby, using only sequential reasoning. They prove

that a concurrent module based on these locking proto-

cols is serializable. The reductions show that if every non-

interleaved execution of the concurrent module satisfies the

locking protocol, then all executions of the module satisfy

the locking protocol. This work does not consider concur-

rency control with relaxed detection of conflicts.

Researchers have started to relax conflicts for gaining

more performance, less number of aborts and improve scal-

ability. Titos et. al. [13] suggest conflict-defined blocks and

some language construct to realize custom conflict defini-

tion where some types of conflict are superfluous. Program-

mer specifies the types of conflict that exist in real. They

show that user-defined conflict types causes less number of

transaction aborts and improves scalability. While [13] was

written by relying on the informal and intuitive deduction

of the programmer about the safety of real conflict scenar-

ios, our work provides evidence that programs using TM

implementations with relaxed detection of conflicts can be

reasoned systematically and in a sequential way requiring

minimal manual effort.

Michael L. Scott [10] suggests a sequential specification

to provide the semantics of transactional memories. When

providing the semantics, the author uses conflict function to

define when two transactions cannot both succeed. In ad-

dition, by defining arbitration function, the author specifies

which of the conflicting transaction fails. The author argues

that sequential specifications enable one to construct correct-

ness proofs easily as well as formal comparison of TM im-

plementations. The article also considers the progress issues

for TM implementations. The author suggests under what

conditions a TM implementation admits livelock-freedom,

starvation and non-blocking.

References

[1] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential verifi-

cation of serializability. SIGPLAN Not., 45:31–42, Jan. 2010.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart

Jacobs, and K. Rustan M. Leino. Boogie: A modular reusable

verifier for object-oriented programs. FMCO, 2005.

[3] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and

Kunle Olukotun. STAMP: Stanford transactional applications

for multi-processing. In IISWC ’08: Proc. of The IEEE Int.

Symposium on Workload Characterization, Sep. 2008.

[4] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and

W. Schulte. Vcc: Contract-based modular verification of con-

current c. In ICSE-Companion 2009., pages 429 –430, May

2009.

[5] Maurice Herlihy and Eric Koskinen. Transactional boosting:

a methodology for highly-concurrent transactional objects.

In Proc. 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming, PPoPP ’08, pages 207–216,

2008.

[6] Gokcen Kestor, Roberto Gioiosa, Tim Harris, Osman S. Un-

sal, Adrian Cristal, Ibrahim Hur, and Mateo Valero. Stm2: A

parallel stm for high performance simultaneous multithread-

ing systems. In 2011 Int. Conference onParallel Architectures

and Compilation Techniques (PACT), pages 221 –231, Oct.

2011.

[7] Shuvendu Lahiri and Shaz Qadeer. Back to the future: revisit-

ing precise program verification using smt solvers. SIGPLAN

Not., 43:171–182, Jan. 2008.

[8] Richard J. Lipton. Reduction: a method of proving properties

of parallel programs. Commun. ACM, 18(12):717–721, 1975.

[9] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L.

Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha,

and Tatiana Shpeisman. Open nesting in software transac-

tional memory. In Proc. of the 12th ACM SIGPLAN sym-

posium on Principles and practice of parallel programming,

PPoPP ’07, pages 68–78, New York, NY, USA, 2007.

[10] Michael L. Scott. Sequential specification of transactional

memory semantics. In ACM SIGPLAN Workshop on Trans-

actional Computing. Jun. 2006.

[11] Nir Shavit and Dan Touitou. Software transactional memory.

In Symposium on Principles of Distributed Computing, pages

204–213, 1995.

[12] Travis Skare and Christos Kozyrakis. Early release: Friend or

foe? In Workshop on Transactional Memory Workloads. Jun

2006.

[13] R Titos, M. E. Acacio, J. M. Garca, T Harris, A Cristal,

O Unsal, and M. Valero. Hardware transactional memory

with software-defined conflicts. In High-Performance and

Embedded Architectures and Compilation (HiPEAC’2012),

Jan. 2012.

6 2012/1/28


