
The Case For Merging Execution- and
Language-level Determinism with MELD

Joseph Devietti Dan Grossman Luis Ceze
University of Washington

{devietti, djg, luisceze}@cs.washington.edu

Abstract
Nondeterminism is a key contributor to the difficulty of par-
allel programming. Many research projects have shown how
to provide deterministic parallelism, but with unfortunate
trade-offs. Deterministic execution enforces determinism
for arbitrary programs but with significant runtime cost,
while deterministic languages enforce determinism stati-
cally (without runtime overhead) but only for fork-join pro-
grams expressible in their static type systems.

MELD unifies these approaches. We explain the require-
ments for soundly integrating a deterministic language into
a deterministic execution system, and describe a simple
qualifier-based type checker that ensures isolation for code
written in a deterministic language. We also extend MELD
to incorporate nondeterministic operations without compro-
mising the determinism of the rest of the program. Our ex-
periments with benchmarks from the SPLASH2 and PAR-
SEC suites show that a small number of annotations can ac-
celerate the performance of deterministic versions of these
programs by 2-6x.

1. Introduction
Nondeterminism is one of the main reasons parallel pro-
gramming is so complicated. Non-reproducible “heisen-
bugs” plague both developers and users of parallel programs,
undermining the quality of parallel software. There is a clear
need to simplify the practice of parallel programming so that
programmers can take advantage of increasingly ubiquitous
parallel computing resources.

Deterministic parallelism is a promising approach to sim-
plifying the use of parallelism. Execution-level techniques
[1–8] enforce a deterministic, but still parallel, interleaving
of memory operations at runtime. Some techniques work
for only restricted classes of programs such as data-race-
free [2] or fork-join [4] programs, while others work for
arbitrary multithreaded code. All of these approaches im-
pose some runtime overhead in exchange for determinism.
Language-level techniques [9–13] eschew runtime over-
heads by adopting a more restrictive programming model,
such as pipelines [9] or fork-join [12]. For code that fits into
such a paradigm, determinism can be enforced by construc-

tion or via a static type system, which results in no runtime
overhead. MELD proposes a new middle ground: execution-
level determinism by default – to support arbitrary exist-
ing code – with a targeted application of deterministic lan-
guage mechanisms to make the common case fast. We be-
lieve MELD is the first system to incorporate a deterministic
language within a deterministic execution system.

1.1 Overview
MELD incorporates a lightweight data-centric qualifier sys-
tem for C that allows a program’s data to be partitioned at
fine-grain between static and dynamic determinism enforce-
ment schemes. Initially, one might think that it is straight-
forward to make a function call from code managed by a
deterministic execution system into code managed by a de-
terministic language. However, naively performing such a
call can actually break determinism because deterministic
languages make assumptions about aliasing and concurrency
that do not hold if threads can make arbitrary simultaneous
calls with arbitrary data into code written in a deterministic
language (see Section 2 for an example).

To evaluate the MELD system, we built a prototype com-
piler that augments programs with a deterministic execution
runtime system, and allows the integration of code written
in a deterministic language. We build upon the CoreDet de-
terministic compiler [3] because it is open-source and pro-
vides execution-level determinism for arbitrary parallel C
programs. We also leverage Deterministic Parallel Java [12]
as the deterministic language because it is also open-source
and provides statically-enforced determinism for an imper-
ative language. The MELD prototype is not a wholly inte-
grated system – implementing a deterministic parallel lan-
guage on top of C/C++ would be a major undertaking in its
own right. We have, however, validated our system design by
implementing our qualifier type system for C and using the
isolation it guarantees to extract portions of our benchmarks
that are amenable to static determinism. We then translated
these code portions into DPJ to verify they could be ex-
pressed in a deterministic language. MELD is general, how-
ever, and can be used to integrate other deterministic lan-

1 2012/1/28

guages into alternative general-purpose deterministic execu-
tion schemes.

The value of the MELD system is shown in CoreDet and
DPJ’s complementary strengths. CoreDet performs an alias
analysis that is able to remove runtime instrumentation from
simple uses of thread-private data, but DPJ’s programmer-
driven effect system is much more powerful. DPJ’s paral-
lelism constructs are limited to fork and join, while Core-
Det supports all pthread synchronization. MELD combines
these systems to form a deterministic system that is faster
and more general than either alone.

Not all weaknesses can be complemented away, however.
To boost program throughput, CoreDet’s quantum formation
(but not store buffering) is enabled for all code, even code
written in a deterministic language. Moreover, due to de-
terminism’s non-composable nature, data managed by Core-
Det and then passed to a DPJ function cannot recover DPJ’s
sequential semantics, though the data can soundly be com-
puted upon without store buffer instrumentation while pre-
serving determinism. The practical ramification for MELD is
that while the entire program is guaranteed to be determinis-
tic, it carries the guarantees provided by an execution-level
determinism system, which is weaker than that provided by
a language-level approach. A parallel program written en-
tirely in a deterministic language has sequential semantics,
ensuring that differing numbers of threads at runtime can-
not affect the outcome of the program – the parallelism is
implicit and invisible. For execution-level techniques, how-
ever, thread count is part of program input that must be ex-
plicitly tested – running a program with a different number
of threads may expose new interleavings and new program
behaviors, albeit in a deterministic manner.

We show that MELD is straightforward to use by adding
annotations to several parallel benchmarks from the SPLASH2
[14] and PARSEC [15] suites. Most of these benchmarks are
not candidates for use in deterministic languages due to their
sophisticated use of pointers and synchronization. However,
we found that each of these benchmarks contains one or
more computationally-intensive kernels that are amenable
to deterministic language techniques. We found that a small
number of annotations can eliminate a large amount of run-
time instrumentation, speeding up programs substantially.

2. Combining Execution- and
Language-Level Determinism

Our initial model for integrating deterministic languages is
based on functions, e.g., to verify that an array sort func-
tion (and any helpers it calls) is deterministically parallel. A
deterministic language component (DLC) has a single entry
point via a function call, and can only call other code written
in a deterministic language. A DLC may be internally par-
allel, e.g., spawning threads to help with the sort, but these
threads cannot outlive the scope of the entry point call. For
simplicity, we discuss integrating a single DLC within a pro-

gram, but the generalization to multiple DLCs is straight-
forward. Each DLC is verified separately, and can be com-
piled without much of the runtime instrumentation (see Sec-
tion 3) that is required to enforce execution-level determin-
ism. Placing performance-critical code into DLCs is MELD’s
primary performance optimization.

This MELD model brings to light the implicit precondi-
tions of deterministic languages: that the language mech-
anism has full visibility into the threading and aliasing of
the data it operates upon. This is naturally fulfilled when
an entire program is written in a deterministic language, but
in our modular use, we violate this “closed world” precon-
dition. A deterministic language statically guarantees non-
interference among the threads it creates and memory it
allocates but it cannot provide any guarantees about other
threads or memory in the system beyond its control.

For determinism, we require non-interference between:

1. the threads internal to the DLC

2. concurrent calls to a DLC by different threads

3. a DLC and a thread running outside the DLC

4. two threads running outside the DLC

Condition 1) is handled by the deterministic language mech-
anism, and 4) is handled by the execution-level determinism
mechanism. Conditions 2) and 3) are the interesting ones.
The crucial issues for proving determinism are understand-
ing memory aliasing and what other code is running con-
currently. MELD relies on the constraints of a type qualifier
system to constrain aliasing (Sections 2.1) and targets simple
barrier-based parallelism that is expressible via a determinis-
tic language (Section 2.2). While only parts of programs are
amenable to this approach, we find that this is often enough
to substantially improve performance.

2.1 Type Qualifiers for Isolation
To ensure isolation of a DLC, we use type qualifiers to
track whether a declaration is used exclusively by a DLC, in
which case it is tagged as langdet, and otherwise it is tagged
with the exdet qualifier. To ease the annotation burden,
declarations are exdet by default.

The MELD type system ensures program data is parti-
tioned into exdet and langdet parts. This partition is data-
centric and fine-grained: each declaration in the program can
have a different qualifier. Our typing rules prohibit pointers
from langdet data to exdet data, and vice versa.

This static partition of a program’s data allows a DLC to
reference exdet data in a non-interfering manner (langdet
data is only accessible within a DLC and thus non-interference
is provided by the deterministic language). The MELD com-
piler inserts instrumentation to enforce non-interference
whenever a DLC references exdet data. This access requires
the same instrumentation that is used to enforce execution-
level determinism in the non-DLC part of the program. If
used naively, this mechanism risks adding a large number of

2 2012/1/28

instrumented accesses to a DLC, which is, of course, pre-
cisely what DLCs are designed to alleviate. To avoid this
pitfall, a DLC can make a local, langdet copy of exdet data
and operate upon the copy, whose aliasing properties can
then be fully understood. By having this copy occur inside
a deterministic language, while continuing to track quali-
fiers on external exdet data, we can guarantee determinism
without resorting to trusting programmers.

2.2 Supported Parallelism Patterns

tim
e

(a) (b) (c)

det. lang code

det. exec. code

barrier

Figure 1. The deterministic language parallelism patterns
supported by MELD: (a) isolated function, (b) concurrent
summary and (c) data parallel.

Making copies can be prohibitively expensive, however,
so a better option is often to give the deterministic language a
(conservative) model of the code that runs concurrently with
a DLC. Armed with such a model, a deterministic language
can reason soundly about the non-interference of the DLC.

While we currently construct these models by hand, our
requirements are modest enough that this could likely be
done automatically with a combination of static analysis
and lightweight runtime checks. Pointer aliasing in C is
notoriously complicated, e.g., due to pointers into the middle
of arrays. The MELD qualifier system helps constrain the
scope of aliasing, ensuring that all potential aliases for a
given langdet location will be marked langdet themselves.
This makes it easier for humans and computers to reason
about aliasing when constructing models.

We utilized three different models in MELD, based on
three different patterns of parallelism (Figure 1). The sim-
plest pattern is the isolated function pattern: a function that
operates on private data (perhaps by privatizing it first as ex-
plained above). An isolated function makes no assumptions
about what other code is running concurrently in the system,
but is also quite limited in expressivity. The second pattern
is the concurrent summary pattern: we form a model of all
the code that can run concurrently with a DLC and prove that
it and the DLC are non-interfering. Because our target de-
terministic language of DPJ does not support sophisticated
synchronization like locks, we cannot express complicated
happens-before constraints. Data that relies on such synchro-
nization for non-interference must remain exdet. Barrier-
delimited regions of code (as in Figure 1b) are helpful, but
not necessary, for determining what code can run concur-
rently. Our final pattern is the data parallel pattern, wherein
all threads in the program perform the same computation,

typically delimited by global barriers (while our prototype
trusts the programmer to verify the barrier actually involves
all threads, this could also be done via a simple run-time
check). With this pattern, all of the parallelism can be ex-
pressed inside the DLC. We choose patterns for each work-
load based on the complexity of the code and what is ex-
pressible in DPJ.

2.3 Case Study: streamcluster

To motivate the MELD mechanism, we describe its appli-
cation to the streamcluster benchmark from PARSEC, an
online data-mining algorithm that finds a fixed number of
median points over an input stream of n-dimensional points.
The algorithm adjusts medians to try to minimize the sum-
of-squared distances between all points and their nearest me-
dian. The most computationally intensive part of the algo-
rithm is a repeated distance calculation between points and
a current or prospective median point. Verifying the entirety
of streamcluster is impossible with current-generation de-
terministic languages, as streamcluster generates an initial
solution via an approximation pass that chooses random me-
dians and uses condition variables to signal other threads
when they need to recompute distances. However, there are
several smaller portions of the workload that are amenable
to deterministic language constructs.

Each point in the input stream is represented by a struct:
typedef struct {

float weight, cost;
float ∗coord;
long assign;
} Point;

The distance calculation involves a pairwise subtraction of
two Point s’ coord arrays:
float dist(Point p1, Point p2, int dim) {

float result=0.0;
for (int i=0;i<dim;i++)

result += (p1.coord[i] − p2.coord[i])∗(p1.coord[i] − p2.coord[i]);
return result;
}
streamcluster performs many distance calculations in par-
allel when evaluating potential medians.

The simplest way to use a deterministic language in
streamcluster would be to employ the isolated function
pattern and rewrite the dist function in such a language. The
main concern is the aliasing of the coord array. Looking at
dist alone does not reveal whether other threads may be per-
forming concurrent conflicting updates to coord. Thus, to
guarantee determinism, each read of coord (which is the real
work of the function) would be instrumented. The MELD
type system automatically inserts this instrumentation since
the Point struct (and all its fields) are labeled, by default,
as exdet. We could try to amortize the cost of this instru-
mentation by making a copy of coord before computing
the distance, but there are not enough uses of each coord
element to justify this.

3 2012/1/28

Thus, to avoid excessive instrumentation inside dist, our
deterministic language needs more information. Some of
dist’s call sites occur from inside small pieces of code de-
limited by global barriers, allowing us to use the data par-
allel pattern. The code that runs between these barriers is
a straightforward partitioned-array parallel computation and
can be expressed in DPJ using partitioned (blocked) arrays.

Across our workloads, we found many performance-
critical kernels expressible using one of our DLC patterns.
The extra reasoning enabled by global barriers for the data
parallel pattern was also important in many benchmarks.

3. Implementation
We implemented our qualifier-based type system via gcc at-
tributes that can be attached to any declaration. We modified
the Clang front-end to the LLVM compiler toolchain to per-
form type checking over qualifiers, and to annotate all AST
nodes with these qualifiers. Next, a modified version of the
CoreDet compiler 1) instruments all accesses to potentially-
shared memory to use the store buffer and 2) instruments
control flow edges to count instructions for quantum for-
mation. Store buffer instrumentation is elided for accesses
to data that are tagged as langdet or nondet. Since every
store buffer access involves a hash table lookup plus extract-
ing/updating the desired bytes (and an additional access/-
copy to global memory for locations not yet buffered), elid-
ing this instrumentation is a substantial performance win.

4. Incorporating Nondeterminism
We may wish to allow a certain amount of nondeterminism
within our program, e.g., logging, network output or profil-
ing code, for two reasons: 1) its nondeterminism will not
have a large bearing on the determinism of the rest of the
program and 2) such nondeterministic code can run without
the overheads of the execution-level determinism system. To
employ nondeterminism in a sound way, we need to formally
guarantee that its effects are not allowed to “contaminate”
the determinism of the rest of our program.

To accomplish this we employ a standard static information-
flow tracking type system. The main extensions are 1) ad-
ditional restrictions placed on scalar assignments, and 2)
protection against implicit flows via control flow. These ad-
ditions suffice to prevent the nondeterministic part of the
program from affecting the other, deterministic parts.

The nondeterministic part of the program has no spe-
cial requirements. To return to our list of correctness con-
ditions from Section 2, we must additionally ensure non-
interference between:

5. nondeterministic code and threads running inside a DLC

6. nondeterministic code and threads running outside a
DLC

There is, of course, no requirement to isolate nondeterminis-
tic code from itself. It is sufficient to extend the type lattice to

langdet v exdet v nondet and run standard information-
flow typing rules.

Casts that modify the qualifiers of nondet data (endorse-
ments in the information-flow tracking literature) have spe-
cial semantics: they represent a kind of “internal input” to the
deterministic part of a program, analogous to external input
read from, e.g., files or sockets. A record-and-replay system
building upon MELD would perform logging at nondet en-
dorsements to precisely capture this internal input and allow
for repeatability of the deterministic portion of the program.

MELD’s data-centric annotation approach is especially
significant when nondeterminism is allowed into a program,
because determinism guarantees are only meaningful when
referring to data. An integer i will have deterministic con-
tents at the end of a program iff it is only ever updated
with deterministic values.1 A code-centric approach to deter-
minism like [13] allows deterministic and nondeterministic
values to be assigned to i, albeit only during distinct deter-
ministic and nondeterministic phases, respectively, of a pro-
gram’s execution. Such an approach cannot, however, make
any guarantees about i’s value being deterministic. Different
levels of determinism are not composable: passing a vari-
able with a nondeterministic value to a function written in a
deterministic language cannot “recover” determinism.

5. Evaluation
5.1 Experimental Setup
We ran our experiments on an 8-core 2.4GHz Intel Xeon
E5462 (“Nehalem”) with 10GB of RAM, using 64-bit
Ubuntu Linux 8.10. We present results that are the average
of 5 runs. We used C benchmarks from the SPLASH2 and
PARSEC suites. Details about each benchmark are given in
Table 1, including the input problem size and optimal Core-
Det quantum size. barnes, lu and radix are from SPLASH2,
and blackscholes and streamcluster are from PARSEC
2.0. We scaled the problem sizes for SPLASH2 workloads
so that the program runs for about a minute on our test ma-
chine with 8 nondeterministic threads. For PARSEC work-
loads we use the standard native input set. All benchmarks
were run with 64-byte chunks for the store buffer, all of
CoreDet’s compiler optimizations enabled, and the mem-
ory consistency optimizations from [5]. The streamcluster
benchmark was originally written in C++, but as it used very
few C++ idioms it was straightforward to port it to C for
compatibility with MELD.

5.2 Performance
Figure 2 shows the runtime overhead of MELD and Core-
Det normalized to nondeterministic execution, with an equal
number of threads (lower is better, and 0% means running

1 Modulo the special case of resetting the variable to a known deterministic
value. This is useful in a security context for regaining trust from untrusted
values [16], but is not useful in our context since the nondeterministic value
cannot be read.

4 2012/1/28

benchmark description input quantum size LOC MELD cloned parallelism locks conds barriers
(insns) annots/casts LOC pattern (2.2)

barnes n-body simulation 4M bodies 200k 2964 6/7 0 conc. sum. 6 0 6
blackscholes options pricing parsec-native 500k 420 8/0 0 data par. 0 0 0

lu LU factorization 7000×7000 matrix 750k 993 10/3 8 data par. 1 0 6
radix radix sort 229 integers 400k 878 2/2 0 data par. 1 2 7

streamcluster online clustering parsec-native 200k 2347 3/1 8 data par. 3 1 19

Table 1. Benchmarks and configurations used.

barnes

2 4 8

blackscholes

2 4 8

lu

2 4 8

radix

2 4 8

streamcluster

2 4 8

0%

200%

400%

600%

800%

ov
er
he

ad
 n
or
m
al
iz
ed

 to
 n
on

de
t

31
7%

12
6%

30
6%

16
5%

30
6%

10
6%

28
%

4% 14
%

19
% 46
%

9%

77
1%

12
0%

64
1%

82
%

73
0%

11
6%

76
%

22
% 81

%

29
%

11
2%

57
% 11

3%

44
%

18
6%

53
%

21
5%

56
%

Meld

CoreDet

Figure 2. Performance of MELD (light bars) and CoreDet (dark bars) normalized to nondeterministic execution with the same
number of threads.

just as fast as nondeterminism). While CoreDet experiences
large performance overheads for some workloads, MELD
consistently reduces CoreDet’s overheads by 2-6x. More im-
portantly, MELD’s overhead is quite reasonable in an abso-
lute sense. Programs running with MELD never experience
more than a 2.6x slowdown over nondeterministic execution,
even when running with 8 threads. Many of our workloads
have overheads of 50% or lower, bringing determinism for
arbitrary programs into the realm of practical applicability.

5.3 Usability
To evaluate MELD’s usability, we quantitatively measure its
annotation burden. Table 1 shows the size of each bench-
mark in lines of code, and gives the number of declaration
annotations and casts used in MELD-ing each program. For
lu and streamcluster, we also had to clone a small function
to work around our prototype’s lack of qualifier polymor-
phism. The annotation burden for MELD is quite low and
we found the process of adding qualifiers straightforward,
particularly since our compiler provides precise compile-
time errors about missing or incorrect qualifiers. Table 1 also
shows that the data parallel pattern is a common idiom for
expressing the safe parallelism in our workloads.

The right-hand columns of Table 1 show the number
of lock acquire, condition variable wait and barrier wait
statements in our workloads. The presence of locks and
condition variables is a sign that a benchmark will not be

eminently suitable for porting to a deterministic language.
Other, subtler cases like complicated array indexing can
also be an issue. Ultimately, only one of our workloads –
blackscholes – can be readily ported to a deterministic
language. MELD’s more flexible model, however, can easily
accomodate more sophisticated workloads.

6. Related Work
MELD is most related to previous work on deterministic exe-
cution systems and deterministic languages. We elide discus-
sion of record-and-replay schemes as they provide repeata-
bility (with additional space overhead) but no guarantee of a
consistent outcome like determinism does.

Deterministic execution systems allow programs writ-
ten in standard parallel languages like C and C++ to exe-
cute deterministically. DMP [1] proposed hardware support
for deterministic execution. Subsequently, Calvin [17] and
RCDC [5] proposed simpler hardware that eschewed the
need for speculation. These hardware proposals offer high
performance (typically less than 30% runtime overhead) but
require new processor architectures. MELD builds upon the
CoreDet deterministic compiler [3, 5] that enforces deter-
minism purely in software. Dthreads [8] provides determin-
ism for arbitrary programs using copy-on-write paging for
isolation in lieu of CoreDet’s store buffers. Dthreads’ ap-
proach, while occasionally vulnerable to forward progress
issues, is generally faster than CoreDet’s; replacing the

5 2012/1/28

CoreDet runtime with Dthreads would be interesting future
work. The dOS [6] operating system provides determinis-
tic execution as an OS service, enforcing determinism for
arbitrary binaries (no recompilation necessary) but at high
runtime cost. Kendo [2] provides determinism for race-free
programs via deterministic synchronization, and is able to
elide CoreDet’s memory and quantum formation instrumen-
tation as a result. Grace [4] and Determinator [7] provide de-
terminism for fork-join programs. Tern [18] and Peregrine
[19] use schedule memoization to constrain the execution
of a parallel program. While not offering true determinism,
Tern and Peregrine show that many programs will run well
even when limited to just a handful of schedules.

Many deterministic parallel languages have been pro-
posed. Many are functional languages, like NESL [10] and
Data Parallel Haskell [20]; their lack of mutability greatly
assists automated reasoning about parallelism. SHIM [21]
is a deterministic message-passing language based on MPI.
The StreamIt [9] language provides determinism by using
streams in a pipeline processing model instead of using
shared memory. Jade [11] is an implicitly parallel language,
where programmers write sequential code that is annotated
to allow a compiler to extract parallelism automatically. De-
terministic Parallel Java [12] is a set of extensions to Java’s
type system that uses effects to reason about interference
between concurrent operations. These effects can in many
cases by inferred automatically [12]. DPJ supports fork-join
parallelism over array and tree data structures.

A recent extension to DPJ [13] provides support for code-
centric nondeterminism within DPJ’s existing fork-join par-
allel framework. However, as we explain in Section 4, de-
terminism’s non-composability means that, in principle, a
single nondeterministic construct can invalidate the deter-
minism of a DPJ program because, with a code-centric ap-
proach, the data manipulated by a nondeterministic opera-
tion is sandboxed only for the duration of such an operation.

7. Conclusion
We have presented MELD, a new system for integrating de-
terministic languages within a deterministic execution sys-
tem. We leverage deterministic execution’s support for arbi-
trary parallel programs, and deterministic languages’ sup-
port for fast, statically-checked determinism to accelerate
the performance of deterministic execution on programs that
could not be readily expressed in a deterministic language.
Our results show that integrating Deterministic Parallel Java
into the CoreDet deterministic execution system can im-
prove determinism’s performance by 2-6x, while requiring
little annotation overhead.

References
[1] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Determin-

istic Shared Memory Multiprocessing. In ASPLOS, 2009.

[2] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ASPLOS, 2009.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: a Compiler and Runtime System for Deter-
ministic Multithreaded Execution. In ASPLOS, 2010.

[4] E. Berger, T. Yang, T. Liu, , and G. Novark. Grace: Safe and
Efficient Concurrent Programming. In OOPSLA, 2009.

[5] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: A Relaxed Consistency Deterministic Computer. In
ASPLOS, 2011.

[6] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic
Process Groups in dOS. In OSDI, 2010.

[7] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-
Enforced Deterministic Parallelism. In OSDI, 2010.

[8] T. Liu, C. Curtsinger, and E. Berger. Dthreads: Efficient and
Deterministic Multithreading. In SOSP, 2011.

[9] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
Language for Streaming Applications. In CC, 2002.

[10] G. Blelloch. NESL: A Nested Data-Parallel Language (Ver-
sion 3.1). Technical report, Carnegie Mellon University, Pitts-
burgh, PA, 2007.

[11] M. Rinard and M. Lam. The Design, Implementation, and
Evaluation of Jade. ACM TOPLAS, 20(3), 1988.

[12] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R. Ko-
muravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A Type and Effect System for Deterministic Parallel Java. In
OOPSLA, 2009.

[13] R. Bocchino, S. Heumann, N. Honarmand, S. Adve, V. Adve,
A. Welc, and T. Shpeisman. Safe Nondeterminism in a
Deterministic-by-Default Parallel Language. In POPL, 2011.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations. In PACT, 2008.

[16] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and
T. Sherwood. Complete Information Flow Tracking from the
Gates Up. In ASPLOS, 2009.

[17] D. Hower, P. Dudnik, D. Wood, and M. Hill. Calvin: Deter-
ministic or Not? Free Will to Choose. In HPCA, 2011.

[18] H. Cui, J. Wu, C. c. Tsai, and J. Yang. Stable Deterministic
Multithreading through Schedule Memoization. In OSDI,
2010.

[19] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
Deterministic Multithreading through Schedule Relaxation.
In SOSP, 2011.

[20] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller,
and S. Marlow. Data Parallel Haskell: A Status Report. In
Workshop on Declarative Aspects of Multicore Programming
(DAMP), 2007.

[21] S. A. Edwards and O. Tardieu. SHIM: A Deterministic Model
for Heterogeneous Embedded Systems. In EMSOFT, 2005.

6 2012/1/28

