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Abstract

In parallel programming, a reduction is an opera-
tion that combines values across threads into a sin-
gle result, and can be designed and implemented
so as to enforce determinism, not only on the re-
sult, but also on the intermediate values and eval-
uation sequence. These features make the reduction
an attractive feature for a language-based approach
to deterministic parallelism, especially one that, like
OpenMP, provides annotations to parallelize legacy
serial code. Hence reductions are a planned feature
of the Deterministic OpenMP (DOMP) project. To
enable DOMP to help programmers eliminate non-
deterministic code wherever possible, we propose a
generalized reduction that supports arbitrary data
types and user-defined operations—a generalization
rich in challenges for language design and implemen-
tation.

1 Introduction

Deterministic OpenMP (DOMP) is a recently pro-
posed approach to the problem of achieving efficient,
flexible, user-friendly deterministic parallelism. It
brings together previous developments from the two
areas of programming languages and systems in or-
der to offer a combination of convenience to the pro-
grammer and strict enforcement of race-freedom and
determinism guarantees.

On the language side, DOMP is based on the well-
known OpenMP specification [10, 22], a set of anno-
tations and function calls that can be added to legacy
serial code in languages such as C, C++, or For-
tran, enabling the programmer to parallelize it con-
veniently and incrementally. OpenMP offers a range
of constructs sufficiently broad to provide reasonable
expressiveness in parallelizing code.

On the systems side, DOMP draws from the ideas
of Workspace Consistency and working-copies de-
terminism [4], a memory and programming model
that eliminates race conditions by handling shared
data, roughly speaking, as versioning systems han-

dle shared documents—providing an isolated working
copy for each thread, merging these copies at syn-
chronization points, detecting any conflicting writes
at merge time, and treating them as errors.

The OpenMP standard supports a reduction fea-
ture, which makes it possible to aggregate computed
data across threads—for instance, to get the sum or
product of individual values computed severally by
concurrent threads. The reduction is an attractive
feature for DOMP. Although it may look like a pur-
poseful race condition, because each thread seems to
update the reduction variable at the same time, it
is in fact inherently deterministic: a sum or product
will always be the same on every run with the same
input, regardless of scheduling accidents, so long as
the individual summands or factors are the same.

Reductions fit in well with DOMP’s goals. But,
in order to be compatible with working-copies de-
terminism, DOMP’s API must exclude certain other
features of OpenMP because they are naturally
nondeterministic—low-level race management con-
structs such as atomic, critical, and flush. Research
suggests, however, that programmers often use these
features only in order to implement, by hand, higher-
level idioms that are, themselves, inherently deter-
ministic, but for which OpenMP offers no ready-made
constructs. One such case is a more general form
of reduction. OpenMP only supports reductions for
scalar value types, such as int and double, and for a
restricted set of simple combining operations, such as
addition (for sums) and multiplication (for products).
If DOMP offered a generalized reduction for arbitrary
types, including those accessible only by indirection,
and for user-defined binary operations, then, we be-
lieve, programmers would be able to avoid many in-
stances of unsafe, low-level synchronization abstrac-
tions.

A generalized, deterministic reduction construct
comes with its own new questions and challenges,
however, which the rest of this paper considers. Are
there any constraints at all that DOMP must place
upon the user-defined operations that a reduction can
support? What should the API look like and what
are possible tradeoffs in its semantics? What should
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the fixed evaluation order be? How might it be im-
plemented efficiently so as to take advantage of par-
allelism while safeguarding determinism? What sort
of threading model is best suited for this purpose?
What are the other major implementation challenges
and how might we address them?

Section 2 reviews the background to these ques-
tions, and related work, in greater detail; Section 3
considers design-related challenges, such as the def-
inition of the API; Section 4 does the same with
implementation challenges; Section 5 reports on the
project’s current state; and Section 6 concludes.

2 Background

Research has established the desirability of achieving
deterministic parallelism at a reasonable cost to per-
formance [5, 11, 21]. Various teams have proposed
distinct solution approaches, of which Deterministic
OpenMP [3] is a recent one whose motivation we re-
view here. We then take up the importance of reduc-
tions in general and within DOMP in particular.

2.1 Deterministic OpenMP

Among the earliest efforts to provide deterministic
parallelism, language-based approaches are promis-
ing, but may apply only to special purposes, or may
entail new and unfamiliar concepts, requiring exten-
sive rewriting of legacy code [1, 2, 6, 12, 17, 19, 23, 24].
In order to support legacy code, other teams have de-
veloped deterministic replay systems, but these are
generally more practical for development and debug-
ging than for production systems [14, 16, 20, 25].
Deterministic scheduling systems also support legacy
code [7, 8, 9, 15], but only allow race conditions to be
reproduced (and perhaps silently executed) without
eliminating them [3, 4, 5].

Working-copies determinism also supports legacy
code in languages such as C, but it eliminates race
conditions by catching them and treating them as
runtime errors. Working-copies determinism is based
on the Workspace Consistency memory model [4],
and underlies the design of the Determinator op-
erating system [5]. Workspace consistency requires
that the programming language, implementation,
and runtime system all remain naturally determin-
istic, meaning that interprocess or inter-thread syn-
chronization events must occur in a manner that the
program alone specifies, wholly immune to the sched-
uler or any hardware timing effects. Accordingly,
a compatible program eschews such naturally non-
deterministic synchronization abstractions as mutex

locks and condition variables, relying instead on de-
terministic abstractions such as fork, join, and bar-
rier. The execution environment then enforces race
freedom by providing each concurrent thread with its
own private logical copy of shared state at the fork,
and merging the changes written by these threads
into the emerging parent thread at join or barrier,
checking for conflicting writes in the process and
treating any such conflicts as errors. While the Deter-
minator project demonstrated the efficient implemen-
tation of working-copies determinism, the program-
ming model, constrained to this small set of synchro-
nization abstractions, suffered from a lack of expres-
siveness and flexibility.

A deterministic version of OpenMP may remedy
this shortcoming. The OpenMP standard defines a
set of constructs, optional clauses, and routines that
a programmer can add to a program written in a
legacy language such as C, C++, or Fortran, in or-
der to parallelize it easily and incrementally. The
constructs annotate structured blocks. The fork-join
synchronization pattern and the orientation toward
structured blocks make for a convenient fit between
working-copies determinism and OpenMP. For a de-
terministic version truly compatible with working-
copies determinism, we must exclude the relatively
few naturally nondeterministic constructs, such as
atomic, critical, and flush, and provide an imple-
mentation that applies working-copies semantics to
the remaining features. This is the Deterministic
OpenMP (DOMP) project [3].

While DOMP promises greater expressiveness and
ease of adaptation of legacy code for working-
copies determinism, its exclusion of nondeterminis-
tic OpenMP features might seem to limit its use-
fulness in adapting real-world code. The research
supporting DOMP, however, suggests that many in-
stances of naturally nondeterministic synchronization
abstractions actually arise from the need to imple-
ment higher-level idioms that are, themselves, nat-
urally deterministic in principle, but for which the
available language constructs do not offer direct sup-
port. With two such features, generalized reductions
and pipelines, most uses of nondeterministic OpenMP
constructs can be eliminated. The first of these is the
concern of this paper.

2.2 Generalized Reductions

A reduction, also called a fold in functional program-
ming, is a kind of higher-order operation whose spe-
cial features make it a potentially useful language
construct for deterministic parallelism. Given a data
structure, such as a list z whose elements have type T
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and a binary “combining” function f : (T × T )→ T ,
a reduction r : (f × [T ])→ T applies f recursively to
the elements of z, first to the first pair, and then to
the result and the next element, etc., to arrive at the
final result zf :

zf = r(z) = f (f (. . . f (f (z0, z1) , z2) , . . . ) , zn−1)

Parallel threads might compute the respective val-
ues of the list elements z0, . . . , zn−1 concurrently,
while r itself, expressing a series of dependencies, can
be controlled by careful synchronization. Moreover,
if the combining operation is both associative and
commutative, the end result zf remains the same re-
gardless of the order of intermediate evaluation steps.
Hence, so long as the intermediate results remain
opaque and inaccessible, the entire reduction opera-
tion is effectively deterministic, even in an implemen-
tation that does nothing special to enforce or guar-
antee determinism.

This is the case with OpenMP, whose paralleliz-
ing constructs annotate otherwise serial structured
blocks in a C, C++, or Fortran program. The op-
tional reduction clause included in such an annota-
tion specifies an operation and one or more variables,
such that the compiled code will apply the reduction
to the thread-local instances of that variable:

omp_set_num_threads(4);

int x = 0;

#pragma omp parallel reduction(+:x)

{ x += omp_get_thread_num() + 1; }

// x == 1 + 2 + 3 + 4 == 10

Semantically, reduction indicates that each
thread in the ensuing block gets its own private copy
of each reduction variable, initialized to the opera-
tion’s identity value, such as 0 for +. At the end of
the block, OpenMP combines all these private val-
ues using the specified operator, and combines the
result with that variable’s initial value from before
the parallel block. OpenMP makes no guarantees
about the evaluation order and thus treats interme-
diate values as undefined or indeterminate—but the
final result will always be the same.

A truly deterministic parallel framework could,
however, fix—and document—a predetermined eval-
uation order, so that intermediate states would be
reproducible. Such a prescribed order could, itself,
preserve some parallelism, e.g., combining values in
a binary tree pattern, each rank of which executes in
parallel. This would make sense for reduction seman-
tics in DOMP.

OpenMP only supports reductions on scalar value
types and a small set of simple, associative and com-
mutative, arithmetic or logical operations: +, -,*,

&, |, &&, ||, ^. (The operator - counts as com-
mutative because the initial value for the reduction
is 0; the initial value given in the program is added
at the end.) These constraints make implementa-
tion fairly straightforward; but what if we want more
for DOMP? For instance, vector addition, which is
commutative and associative, seems but a small step
away; but, without support for pointers and aggre-
gate types, we must implement the equivalent us-
ing low-level, naturally nondeterministic and there-
fore error-prone, synchronization abstractions, such
as the atomic or critical construct. Furthermore, if
we follow a fixed evaluation order and make it known
to the programmer, we can even relax the constraints
on operations, and thus extend the usefulness of re-
ductions. For instance, matrix multiplication is asso-
ciative but not commutative. If the evaluation order
is not only known but reasonably intuitive with re-
spect to the written program, the programmer can
put the factor matrices in the right places and enjoy
the benefits of deterministic parallelism. Such a de-
sign follows the “principle of least surprise”: although
the evaluation order is fixed independently of the op-
eration and data, the programmer can work with it
in mind so as to get the correct results—reliably and
reproducibly.

3 Design Challenges

Defining an appropriate reduction feature for DOMP
raises several issues in language design and its im-
plications for possible implementation. In particular,
we consider (a) the constraints on allowable combi-
nation functions, (b) the choice of a suitably general
API and (c) possible evaluation orders.

3.1 Constraints on Functions

In saying that DOMP reductions should support
“arbitrary” user-defined combination functions, we
assume some unspoken constraints. For instance,
the definition of reduction (2.2) stipulates that the
function’s two arguments and return value all have
the same type. In addition, the OpenMP specifica-
tion’s description of the semantics of reductions re-
quires that the combination function have an iden-
tity element of the same type. This is necessary for
OpenMP’s way of avoiding the duplication of the ini-
tial value to work: each thread’s private copy of the
reduction variable must be initialized to the identity
value, and the original initial value must be brought
into the computation at the end. There are other
ways to avoid duplication—for instance, by applying
the inverseof the combination function whenever the
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master joins any other thread in the team [13], an
approach which generalizes beyond OpenMP’s team
threading model to arbitrary forking and joining pat-
terns. In that case, however, every function must
have an inverse, and it is generally easier to find an
identity element than an inverse function. Multiplica-
tion of square matrices has a known identity element,
but an inverse may not exist; if it does, finding it may
not be trivial.

As noted, OpenMP requires that the combination
function be both commutative and associative, but
we propose relaxing this constraint to allow functions
that are not commutative, such as matrix multiplica-
tion, so long as the programmer knows the evaluation
order in advance. Must the function be associative?
If not, we might get incorrect results when paralleliz-
ing intermediate evaluation steps. Fortunately, this
constraint is not hard to satisfy in most ordinary pro-
grams.

3.2 API

Since OpenMP and DOMP work with C-style lan-
guages, supporting arbitrary and not just scalar value
types means having to deal with pointers. To keep
the API simple, then, we propose that the combina-
tion function have the most general of signatures:

void f(void * cum, const void * new);

A call f(c, n) changes the value of c as a side ef-
fect to reflect the application of f on c and n. While
this specification accommodates composite types and
keeps the rules straightforward, it means that simple
scalars would have to be passed effectively by refer-
ence rather than by value, slightly complicating the
code.

Since the user may define any combination func-
tion within these constraints, he or she must supply
the appropriate identity element, as well as the re-
duction variable. Moreover, DOMP’s working-copies
determinism model requires that the runtime make
thread-local copies of the identity element, and, for
each thread, re-point the reduction variable to point
to this local, or scratch, copy. (This is equivalent to
OpenMP’s initializing thread-local copies of the re-
duction variable to the identity value.) The scratch
object serves as an accumulator in the merge pro-
cess. At the end of the evaluation sequence, the mas-
ter passes the reduction variable’s original object and
the scratch object, containing the penultimate cumu-
lative result, to the combination function; stores the
final result in the original object’s location; and re-
points the reduction variable again to point there.
And, since the master must make these local scratch

copies of an arbitrary identity object, it is most prac-
tical to store the identity object in contiguous mem-
ory, and inform the master of the object’s size.

The reduction call itself, then, takes the form

omp_reduction(void (*f)(void *, void*),

void ** var, void ** identity,

size_t size);

The master saves the reduction variable pointer’s
address, the address of the original reduction vari-
able object, the scratch object’s address, and f in a
reduction var data structure for use during evalua-
tion.

3.3 Evaluation Order

A good fixed evaluation order should try to satisfy
two different demands: (a) intuitive clarity for the
programmer, and (b) opportunities to parallelize the
evaluation as much as possible. For the first, it makes
sense to have the order of evaluation follow the or-
der of thread IDs, provided that the programmer can
know or discover this. For instance, given a num-
ber of setions within a sections construct less than
or equal to the number of available threads, DOMP
could guarantee that the first section went to thread
0 (the master), the second to thread 1, etc., and that
the runtime’s evaluation order would be equivalent to
that of the sequential execution of the sections by a
single thread.

The simplest way of going about this is to have the
master, at the end of a parallel block, aggregate the
result sequentially. Using the symbol � to represent
the combination function, we then would have

zf = (. . . ((z0�z1)�z2) . . .�zn−1)

In fact, GCC’s libgomp implementation serializes in
this manner, but without any fixed order at all, hav-
ing each thread use low-level atomic instructions to
update the original reduction variable after it has fin-
ished computing on its private copy. But this ap-
proach, even if made deterministic, foregoes paral-
lelism entirely. Using the function’s associativity, we
can equivalently evaluate in pairs, and then again in
pairs of results, etc., following a binary tree. For 8
threads, for instance,

zf = (((z0�z1)� (z2�z3))� ((z4�z5)� (z6�z7)))

Note that this evaluation order does not move the
elements from their original order and therefore does
not imply commutativity.

As it happens, this binary tree coincides nicely with
an efficient implementation of the merge phase in
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Figure 1: DOMP merge scheme for (a) 7 and (b) 8 threads. Efficiently parallel evaluation of reductions can
coincide with merging.

working-copies determinism. In this scheme, every
even-numbered thread merges another thread into it-
self at least once. Threads whose IDs are higher
powers of two repeat this procedure, and the mas-
ter, whose ID is 0, merges into itself, in order, every
thread whose ID is a power of two. Figure 1 repre-
sents this scheme for 7 and 8 threads, respectively.
Every rank of the tree corresponds to parallel execu-
tion. For reductions, each merge operation includes
an application of the combination function f for the
two versions of reduction variable v:

f(vself , vother)

At the end, the master applies

f(vinit, vself)

This scheme preserves the program’s expressed or-
der.

4 Implementation Challenges

The DOMP project in general, and the DOMP re-
duction in particular, present a number of challenges
for implementation. Whereas conventional OpenMP
implementations such as GCC’s libgomp use an un-
derlying shared-process threading model based on
pthreads, this may not be ideally suited to our current
needs. Whether the implementation uses lightweight
threads or processes, moreover, the performance may
benefit from maintenance of a thread pool even af-
ter the first parallel block is finished, for use in later
parallel blocks. Finally, at the end of each paral-
lel block, at merge time, the thread merging another
thread’s data into its own (while checking for conflict-
ing writes) would ordinarily always spot a conflict on
the reduction variable, unless the latter is given spe-
cial treatment. We now consider each of these issues.

4.1 Threads or Processes

Without working-copies determinism, and if the al-
lowable combining functions and their respective
identity values are narrowly constrained as they are
in standard OpenMP, it is practical for the compiler
to create thread-local “copies” of each reduction vari-
able by simply allocating space in each thread’s stack
and initializing it to the known default value. One of
the compiler’s transformation steps could turn this
code

int x = 42;

#pragma omp parallel

{ x += 3; }

into something like this:

struct data_t { int x; } data;

int x = 42;

data.x = x;

for (int i = 0; i < num_threads; ++i)

pthread_create(&threads[i], &attr,

&f0, &data);

/* ... */

void * f0(void * data) {

int x = 0;

x += 3;

atomic_op(data->x += x); }

But for working-copies determinism, each of DOMP’s
threads needs to have thread-private copies of all
shared state, including objects to which pointer vari-
ables refer. Since the latter makes object-by-object
copying impossible, the compiler or runtime would
have to copy entire memory regions (data segments)
for each thread, along with thread-specific address
translations. A runtime virtual machine might do the
address translation with reasonable efficiency [18].
Alternatively, and perhaps more simply, the imple-
mentation could spawn new processes using Unix
fork, which would allow each thread to inherit its
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own private copy of shared state automatically. This
approach shifts the complexity away from copying
and toward interprocess communication and synchro-
nization at merge time—and afterwards, to broadcast
updates to shared state, if we maintain a thread pool
for the next parallel block (discussed below).

4.2 Thread Pools

Once the master process has spawned enough child
processes to make a team, it seems clearly advan-
tageous to keep the team around after the end of a
parallel block, in order to avoid spawning it anew
on a later parallel block. The allocation and ini-
tialization of reduction variable and identity objects
can occur in any serial execution context, including
one between two parallel blocks. In this case, the
master must update processes waiting in the thread
pool with the changed state before they restart par-
allel execution. These updates include, not only the
obects themselves, but also the values of the vari-
ables pointing to them. We can accomplish this with
reasonable efficiency by copying the relevant virtual
memory pages from the master’s address space to a
scratch file, and then having the team threads copy
those pages from the scratch file to their own address
spaces, asynchronously and in parallel, before resum-
ing execution. DOMP uses the same mechanism to
update waiting pooled threads about dynamic mem-
ory allocation or other state changes between parallel
blocks. A common way of catching all such changes
in state is to write-protect the master’s data seg-
ments between parallel blocks, trap on each write,
and record the page of each trap. Since the relevant
portion of the stack is usually small (spanning two
pages at most), the master can include the stack in
updates by default, thus avoiding at least some traps.

4.3 Merging around the Reduction

At the heart of the merge process in DOMP’s im-
plementation of working-copies determinism is a loop
that goes over each byte (or other-size chunk, depend-
ing on the merge granularity) of the thread’s own
data (self ), the other thread’s corresponding data
(other), and a pristine reference copy (ref ), tucked
away at the start of the parallel block and represent-
ing that earlier state of the data:

for (; self != end; ++self, ++other,

++ref) {

if (*other != *ref) {

if (*self != *ref)

race_exception();

else *self = *buddy;

}

}

When the loop reaches the address of the identity
object to which the reduction variable points, it will
surely detect a race condition—not what we intend!

To avoid this problem, each merging thread re-
solves all reductions with its paired thread before en-
tering the merge loop. Then, when the merge loop
detects a conflict, it first checks the conflicting ad-
dress against the list of scratch objects. If a conflict-
ing address falls within the range of a scratch object,
the merge loop skips forward to that object’s end.
With the globally-visible list of reduction var struc-
tures sorted on scratch object addresses, the merging
thread can evaluate, check, and skip with reasonable
efficiency.

5 Current State

We currently have a complete implementation of the
core features of DOMP, including generalized reduc-
tions, and have successfully tested cumulative ma-
trix multiplication. To implement DOMP, we lever-
aged GCC’s parsing mechanism by altering only its
OpenMP support library libgomp, replacing relevant
Gnu implementations with our own DOMP imple-
mentations of libgomp’s internal API. We plan soon
to demonstrate and evaluate the replacement of un-
safe low-level synchronization constructs with DOMP
reductions in NPB benchmarks.

6 Conclusion

A generalized reduction is an attractive feature for
Deterministic OpenMP, one that furthers its goal of
combined convenience and strict, race-free determin-
istic parallelism. Although design and implementa-
tion challenges are not trivial, we have seen possi-
ble ways to overcome these, so as to help fulfill the
promise of DOMP and working-copies determinism.
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