
Tasks with Effects
A Model for Disciplined Concurrent Programming

Stephen Heumann Vikram Adve
University of Illinois at Urbana-Champaign

{heumann1,vadve}@illinois.edu

Abstract
Today’s widely-used concurrent programming models pro-
vide few safety guarantees, making it easy to write code with
subtle errors. Some parallel programming models offering
stronger guarantees have been proposed, but these are often
too restrictive to express the full range of uses for concur-
rency in large applications.

In this paper, we argue for a new programming model
based on tasks with effects. In this model, the core unit of
work is a dynamically-created task. The key feature of our
model is that each task has programmer-specified effects,
and a runtime scheduler is used to ensure that two tasks
are run concurrently only if they have non-interfering ef-
fects. This allows us to guarantee that programs written in
this model are data-race free. We describe this programming
model and its properties, briefly discuss our prototype im-
plementation of it, and propose several research questions
related to this model.

1. Motivation
Concurrent programming has become ubiquitous. To ex-
ploit the full capabilities of the multicore processors in to-
day’s desktops and even handheld devices, they must be pro-
grammed in parallel. This will only become more true in
the future, as processor performance gains continue to come
largely from increased parallelism. Concurrency is also used
for reasons other than providing parallel performance gains.
In an interactive application, long-running operations should
be run concurrently with the user interface event processing
in order to preserve responsiveness, whether or not the time-
consuming operation is itself parallel. Some operations are
also simply most naturally expressed in terms of concurrent
actors [4] communicating asynchronously.

Today’s complex applications often combine these forms
of concurrency. In nearly any interactive application that
does time-consuming computations, it will be desirable both
to parallelize them if possible and to run them concurrently
with user interface operations. A game, for example, may
have high-performance graphics and AI algorithms that are
internally parallel, and may also run these operations and
others such as network communications concurrently with
each other and with user interface operations. Servers re-

sponding to client requests also use concurrency in similar
ways.

Unfortunately, concurrent programming introduces a
great deal of complexity and opportunities for errors. Cor-
rectness challenges like data races, deadlocks, atomicity vi-
olations, and memory models [2] can be a huge drag on
productivity. A particularly insidious issue is that concur-
rent programs can have nondeterministic behavior that varies
from run to run depending on the interleaving of operations,
producing bugs that only occasionally manifest themselves.

Today’s mainstream programming models do little to ad-
dress these problems. The most common approach today is
to use explicit threads and locks, which are low-level, error
prone, and difficult to reason about. They provide no well-
defined structure for the parallel control flow and no guaran-
tees about parallel correctness properties. Systems based on
the more abstract notion of tasks, such as Intel’s Cilk [6] and
Threading Building Blocks (TBB) [13], Apple’s Grand Cen-
tral Dispatch and operation queues [5], Microsoft’s Task Par-
allel Library in .NET [19], and the ForkJoinTask frame-
work in Java 7 [17, 21] provide more structured parallel con-
trol and synchronization constructs. However, none of these
systems offer checked guarantees of strong safety properties
either, not even data-race freedom.

A few languages such as Erlang are based on the actor
model of concurrency [4], which does not support shared
memory, and so eliminates errors such as data races and
atomicity violations. These languages do not eliminate other
concurrency errors like deadlock and unintentional nonde-
terminism. Moreover, a model without shared mutable mem-
ory is not well suited for many high performance algorithms
that require fine-grained updates to shared global state.

Another limitation of many proposed models for safe par-
allel programming is performance. In particular, a number of
models include mechanisms to execute code speculatively
and roll back execution if two pieces of code executing con-
currently perform conflicting accesses. A wide variety of
systems use such mechanisms, including software transac-
tional memory systems [12], Galois [16], and Aida [18].
These systems can offer appealing programming models, but
there is generally a cost in performance, both from the need
to log and check information about memory accesses, and
from the possibility of discarded work due to rollbacks.



A fundamental question that arises is what guarantees a
programming model should provide. The Deterministic Par-
allel Java (DPJ) language [8] provided a strong set of paral-
lel safety guarantees that greatly simplify reasoning about
parallel programs written in it, which can combine deter-
ministic and nondeterministic algorithms. DPJ guaranteed
five properties: (a) data race freedom; (b) strong atomic-
ity [1]; (c) deadlock freedom; (d) deterministic semantics for
parallel computations, unless explicitly written using non-
deterministic parallel constructs; and (e) sequential equiv-
alence for deterministic constructs. These guarantees are
stronger than any previous or current parallel programming
model we know of that supports both deterministic and non-
deterministic parallelism. We believe that these properties
are appropriate for future applications that combine inter-
active and compute-intensive components.

Although DPJ provides strong guarantees, it is too re-
strictive to express the various forms of concurrency used
in complex interactive applications. Most critically, DPJ is
restricted to a fork-join parallelism structure, which is not
suited to the general, event-driven form of concurrency re-
quired by the interactive aspects of these applications. DPJ
may be able to express some individual parallel computa-
tions within these programs, but it faces two restrictions here
as well. First, it can only express fork-join parallelism, and
excludes cases like pipelined computations or algorithms
with more general task graphs [3]. Second, DPJ relies on
a purely static type system to enforce its correctness require-
ments, and many algorithms cannot be checked with such
a system, e.g. graph-based algorithms. Also, DPJ’s support
for nondeterministic computations relies on a software trans-
actional memory system, which performs poorly due to the
cost of logging and rollbacks.

We seek to define a new programming model that can pro-
vide most or all of the guarantees provided by DPJ, but with
the flexibility and expressivity to support a wide variety of
concurrent programs including interactive applications, and
without the performance problems of speculation and roll-
back. To satisfy these goals, we propose a new programming
model based on tasks with effects. This model uses tasks sim-
ilar to those of other task-based systems, but requires the
programmer to declare the effects of each task. The run-time
system then schedules tasks so as to ensure that only tasks
with non-interfering effects can run concurrently. In combi-
nation with a static phase that ensures the declared effects of
a task are sound, this can provide a guarantee that the pro-
gram is data-race free. We also ensure that our effect system
does not give rise to deadlocks. Finally, our model supports
explicitly declared deterministic algorithms.

2. Basic Programming Model
In our programming model of tasks with effects, a program
execution consists entirely of a set of tasks. A program
is launched by creating an initial main task, and further

tasks may be created by the program as it executes. Each
task can optionally take arguments and return a value at its
completion, like a future. In our prototype implementation,
we use the executeLater operation to create a task, and
the getValue operation to await the completion of a task
and get the value it returned, if any.

Effects are used to control the scheduling of tasks. Each
task has an effect specification, which is checked at compile
time to ensure that it accurately (conservatively) reflects the
task’s memory accesses. These effect specifications of tasks
are in turn used at run time by the task scheduler, which
will ensure that no two tasks with interfering effects can
run concurrently. This combination of static effect checking
and an effect-aware run-time scheduler guarantees that the
program will be data race free.

2.1 Effects and Regions
In order to perform effect-based scheduling of tasks, it must
be possible to characterize the effects of each task, and to
check whether the effects of two different tasks interfere
with each other. In our prototype system we focus on the
effects of memory accesses, although effects could also be
used to control access to other types of resources. Thus, each
effect can be thought of as permitting either read or write
access to a certain set of memory locations.

Intuitively, two effects interfere if they could cover ac-
cesses to the same memory location and at least one of those
accesses could be a write. Two sets of effects interfere if
there is pairwise interference between any two individual ef-
fects in the sets. Two tasks can only be run concurrently if
their effects do not interfere, which is the core property en-
forced by our scheduler.

In our prototype implementation, we use the effect sys-
tem originally developed for the Deterministic Parallel Java
(DPJ) language [7]. DPJ is an extended version of Java that
uses type and effect annotations. Based on those annotations,
the DPJ compiler can guarantee that a restricted class of par-
allel programs behave deterministically. In this work, how-
ever, we adopt the type and effect system from DPJ for use
in combination with our effect-based task scheduling model,
which can support a much broader range of concurrent pro-
grams.

The DPJ type and effect system is based on a partitioning
of memory into regions. The programmer can declare the
names of regions, and each object field and array cell is
specified to be in a particular region. DPJ supports nested
hierarchies of regions using a mechanism called region path
lists (RPLs), and a wildcard * can be used in RPLs to specify
effects covering a set of regions. The DPJ region system also
includes features such as region-parameterized types and a
mechanism to place each element of an array in its own
region.

Using this partitioning of memory into regions, DPJ al-
lows the effects of any operation in the program to be speci-
fied in terms of read and write effects on memory regions. In



a DPJ program, the programmer declares the effects of each
method as part of its method signature. Using purely static,
intraprocedural checks, the DPJ compiler can then verify
that the declared effects of each method actually cover the
effects of every operation in the method. The DPJ type and
effect system also defines formally under what circurstances
two effects can be proven to be non-interfering (intuitively,
they must be on entirely disjoint regions of memory, unless
both are only read effects).

In our system, we adopt DPJ’s region-based type and
effect system and require the programmer to declare the
effects of each task and each method, which are statically
checked as in DPJ. Unlike in DPJ, however, the compiler
generates code to keep track of the effects of each task at run
time. This information is then used by the run-time scheduler
to guarantee noninterference of effect between concurrent
tasks.

2.2 Effect-Based Task Scheduling
The key property that must be enforced by the run-time task
scheduler in our model is that two tasks with interfering ef-
fects will not be run concurrently. To do this, the scheduler
will have to delay the execution of tasks that are created
while another task with interfering effects is already execut-
ing. In an efficient scheduler, it will probably also be de-
sirable to delay tasks based on the availability of execution
resources, e.g. by using a thread pool sized to the number of
available cores.

Considerable variation is possible in the design of an
effect-aware task scheduler. In our initial prototype imple-
mentation, we use a fairly simple approach based on a single
queue of tasks. In a higher-performance implementation, the
effect checking could be structured around regions, so that
tasks accessing entirely disjoint regions do not need to be
explicitly checked against each other. It may also be helpful
to have the scheduler enforce additional properties related to
fairness or task ordering, in addition to the basic property of
noninterference. We believe that designing an effect-based
task scheduler that guarantees useful properties and offers
good performance for a wide range of parallel algorithms
will be an important area of future work.

3. Effect Transfer
The model we have described so far envisions the effects of
each task remaining unchanged throughout the lifetime of
that task. However, it can be valuable to change the effects
of tasks during their lifetimes, and in particular to transfer
effects from one task to another. Effect transfer can be used
to support a guarantee that certain computations are deter-
ministic (see section 4), to eliminate a class of deadlocks,
and to support a construct similar to a synchronized block.

An implementation of effect transfer should preserve the
property that no two tasks have interfering effects while
they are executing concurrently. To do this, the system must

ensure that a task does not perform operations covered by
a given effect after it transfers that effect away (unless it is
later transferred back).

Effect transfer allows the effects covering a task or a
method to change while it is running. This introduces some
additional complexity in our approach of statically checking
that each memory access in the program code is covered by
the declared effects of the task or method where it appears.
We now need to individually track the covering effects appli-
cable to each operation in the program, taking into account
changes in the applicable set of effects due to effect transfer
operations. We prefer to maintain a purely static approach
for checking the effects of individual memory accesses, both
for efficiency reasons and to detect errors at compile time.
Therefore, we compute and check covering effects conser-
vatively using a new data flow analysis pass in the compiler.

3.1 Effect Transfer on Task Creation and Completion
In our prototype implementation, we support two major
types of effect transfer operations. The first is a system to
transfer some of the effects of a parent task to a newly-
created child task, and later transfer those effects back to the
parent task when the child task completes and unblocks the
parent. This is particularly useful for fork-join styles of par-
allelism, and it can be used to ensure that some algorithms
are deterministic, as described in section 4.

A parent task can create multiple child tasks, each with
effects covering the data it will work on (e.g. an element or
range of elements in an array). If they are created with the
special operation spawn, then the system will ensure that
the parent task’s effects cover each child task’s effects, and
will automatically transfer each child task’s effects from the
parent to that child when it is created. This enables the child
task to run immediately, since “ownership” of the effects is
transferred directly from the parent to the child task, and
thus no other tasks with conflicting effects may be running
simultaneously.

If a task is created with spawn, its parent task may
await its completion with the join operation. All spawned
tasks are automatically joined at the end of the method that
spawned them, if they are not explicitly joined earlier. The
join operation transfers the effects of the completed child
task back to its parent task.

3.2 Effect Transfer when Waiting for a Task
The second kind of effect transfer we use in our system is
from a blocked task to a task it is waiting on, primarily to
prevent deadlock. When one task is waiting for another to
complete using a getValue or join operation, we allow
the waiting task’s effects to be transferred to the task it is
waiting on, if necessary in order for that task to execute. This
effect transfer is also applied recursively through a chain of
waiting tasks. The effects are automatically transferred back
to the original task before it resumes execution following the
getValue or join operation.



This mechanism prevents a situation that could otherwise
give rise to deadlock, where one task is directly or indirectly
waiting on another, but that other task cannot start because
its effects conflict with those of the first task. This does
not eliminate all deadlocks, but in practice we found that
it addressed several cases that would otherwise deadlock in
a program written with our prototype system.

This also allows for a programming paradigm similar to
a synchronized or atomic block in traditional programming
models. One task can launch a second task with a superset
of its effects, and then use a getValue operation to wait
for the second task. This transfers the first task’s effects to
the second task (allowing it to access the same regions as
the first task), and leaves the second task to wait until it can
acquire access to the regions covered by its other effects,
which would typically correspond to a shared resource.

4. Guaranteed Determinism
Programs written using our model are not required to be
deterministic. There are significant classes of parallel algo-
rithms that are inherently nondeterministic, and it is also not
generally useful to speak of the determinism of an interactive
program driven by user input or external requests. Therefore,
we think it is important that our system not restrict all pro-
grams written it to be deterministic.

However, many parallel algorithms are in fact determin-
istic. That is, they always produce the same output given the
same input state. Since this is an expected property of many
algorithms, detecting violations of it can be a useful way
of finding bugs. Moreover, knowing that a program or an
algorithm within a program is deterministic makes it much
easier to reason about: the user of the program or algorithm
knows that it will always produce the same output given the
same input, so they need not be concerned that different par-
allel interleavings of operations may produce different re-
sults. Determinism also makes a program or algorithm much
simpler to debug, since one knows that the same result will
be produced every time it is run with a given input.

DPJ [7] can provide a compile-time guarantee of deter-
minism using the combination of its type and effect system
and simple parallelism constructs supporting only fork-join
patterns of parallelism. We aim to provide a similar static
guarantee of determinism for deterministic algorithms or
programs in our system.

To do this, we allow the programmer to annotate tasks or
methods as @Deterministic. In code that has this annota-
tion, the compiler will enforce that the only task-related op-
erations used in the code are the spawn and join operations
described in section 3.1. Also, code annotated as determin-
istic may call only other deterministic methods and spawn
other deterministic tasks.

These restrictions ensure that the code invoked from a de-
terministic task or method (including through the creation of
other tasks) accesses memory only as specified by its de-

1 class Image {
2 region Top, Bottom;
3 final int[]<Top> topHalf; // pixel values
4 final int[]<Bottom> bottomHalf;
5 ...
6 @Task @Deterministic void
7 increaseContrast() writes Top, Bottom {
8 SpawnedTaskFuture<Void, writes Top> f =
9 increasePixelContrast.spawn(topHalf);

10 increasePixelContrast(bottomHalf);
11 f.join();
12 }
13 @Task @Deterministic private <region R> void
14 increasePixelContrast(int[]<R> pixels) writes R {
15 // modify values in pixels array
16 }
17 }

Figure 1. Example computation.

clared effects. Moreover, there is a defined order by which
control of each region covered by those effects is transferred
between tasks, as determined by spawn and join opera-
tions. (Note that effect transfer on join operations, as de-
scribed in section 3.2, will never be needed in a determin-
istic computation, and thus will not occur.) Therefore, for a
given input state of the memory in regions covered by the
effects of the deterministic task or method, there is a deter-
ministic output state that will not vary between executions
of the deterministic code. This state is the same as the state
produced if the code were executed sequentially with each
task’s code run at the point where the task is spawned. These
deterministic computations are also deadlock-free.

Our system can provide a compile-time guarantee of de-
terminism for a large class of programs, including all de-
terministic programs supported by DPJ. In addition, we can
provide a determinism guarantee for individual algorithms
within larger programs that are not fully deterministic. We
believe this is very valuable for realistic programs such as
interactive applications. It is often not possible to guaran-
tee that the entire program runs deterministically based on
its initial inputs, but it is still useful to check that individual
algorithms behave deterministically.

5. Example
Figure 1 gives an example of how our task system might

be used in an image editing program. It shows a class Image
representing an image, with the pixel values held in two
arrays, topHalf and bottomHalf. The cells of these two
arrays are defined as being in the regions Top and Bottom,
respectively. (We show this arrangement for simplicity. In a
real program, we could put each array cell in its own region.
This would allow for more fine-grained parallelism, e.g. at
the level of rows in the image. We could also place the data
for different Image objects in separate regions, potentially
allowing them to be updated concurrently.)

The task increaseContrast can be executed to in-
crease the contrast of the image. It would typically be
run with executeLater, which would place it in a
queue to be scheduled. Because its effects are declared as
writes Top, Bottom, our scheduler will ensure that it is



scheduled only when no other tasks that access the regions
Top or Bottom are running concurrently.

A separate task increasePixelContrast actually up-
dates the pixel values in an array. It has a region param-
eter R corresponding to the region containing the cells
of the array passed to it. Since its declared effect is
writes R, increasePixelContrast(topHalf) has the
effect writes Top.

Within the increaseContrast task, we wish to op-
erate in parallel on the two halves of the image. We do
this using the spawn operation (described in section 3.1)
to create an instance of the increasePixelContrast

task with the argument topHalf. This transfers the effect
writes Top directly from the parent increaseContrast
task to the new child task, which means the new task can
be enabled for execution immediately, since there cannot
be any other tasks with conflicting effects executing con-
currently. The parent task also continues executing concur-
rently, with its remaining effect writes Bottom. It runs
increasePixelContrast(bottomHalf) as a method
within the same task, which is possible since it still retains
the effect writes Bottom.

After that computation finishes, the parent task joins the
future returned when the child task was spawned. This join
operation also transfers the child task’s effect writes Top

back to the parent task. After this, both halves of the image
will have been updated, so any other task waiting for the
increaseContrast task to finish (using getValue) will
know that the full operation is complete by that point.

The computation done by increaseContrast is deter-
ministic. The @Deterministic annotations on both tasks
reflect this, and the compiler will verify that these tasks be-
have deterministically, as described in section 4.

6. Research Questions
There are several key research questions raised by our model
of tasks with effects. These include the following:

How should effects be represented in source code? Im-
portant considerations in designing the effect system include
ease of use for the programmer, expressiveness to support
various patterns of data access and sharing, and the perfor-
mance overheads of the run-time scheduling mechanisms.

We have adopted the region-based effect system from
DPJ in our initial prototype, but other effect systems are pos-
sible. Ownership type systems express effects in terms of
objects [9, 20], which have somewhat more limited expres-
sivity (at least in systems so far) but might be easier to use.
ACCORD [15] expresses effects directly in terms of pro-
gram variables, which is convenient but raises the problem
of aliasing between variable names. It might also be desir-
able to introduce new types of effects focused on resources
such as files, database records, or other shared resources.

A different dimension of simplifying the programming
burden is minimizing the effect annotations that must be

written. One attractive choice is to design ways to encap-
sulate code without internal effect annotations, e.g., so that
annotations are only needed at module boundaries for sepa-
rately compiled modules. Another valuable approach could
be to relate higher-level and lower-level effect annotations
at abstraction boundaries. Automatic effect inference algo-
rithms may be needed for these strategies [22].

How should effects be represented and compared at run
time? Our current prototype implementation uses a task
queue, where all the effects of each task must be checked
against all the effects of the other tasks that are running or are
ahead of it in the queue. But for improved performance and
scalability, we would like to use an effect-checking scheme
based on the actual regions on which each task has effects.
Effect checking would then only require checks against other
tasks accessing the same regions, and it could proceed in par-
allel for tasks with effects on completely unrelated regions.

To design a system based on these principles, we will also
have to define suitable data structures to represent effects. If
we continue to use our current hierarchical region system,
perhaps a tree-like structure accessed using hand-over-hand
locking could be appropriate. It may also be desirable to im-
plement fast special cases for simple, commonly-occurring
patterns of effect usage. These run-time performance con-
siderations may in turn affect how the effects must be rep-
resented in the program code, requiring this question to be
considered together with the previous one.

How can the tasks-with-effects model be extended for
heterogeneous and non-shared-memory systems? Our
work so far has focused on shared-memory multicore sys-
tems, but we believe our model can also be applicable to
other parallel system architectures. Most client systems to-
day include both a CPU and a programmable GPU, and
future systems are predicted to have an even more diverse
range of hardware, including general purpose cores, a GPU,
Digital Signal Processors (DSPs), programmable logic de-
vices like FPGAs, and multiple custom or semi-custom ac-
celerator cores for different functions [11, 14]. It would be
desirable to program these using a unified programming
model. We believe the tasks-with-effects model can be used
for a wide range of different hardware, including heteroge-
neous systems. One advantage of our model is that explicit,
region-based effects provide a natural means for specifying
the data movement between cores and accelerators, many of
which require explicit data copying between global memory
and local, scratchpad memories.

In any architecture where data must be explicitly trans-
ferred between different processors, regions and region-
based effects might be used as a means of controlling data
transfers. For example, the DeNovo project [10] has shown
that on a global address-space architecture, it is possible to
implement a highly efficient region-based coherence pro-
tocol using extremely simple hardware. One key question
is how the DeNovo model could be extended for a true



message-passing system, where a global address space is not
available. When a task with effects on a region is started on
a processor different from the one that owns the region, the
system could automatically transfer the necessary data.

How can stronger safety properties be enforced in the
tasks-with-effects model? Our system ensures noninterfer-
ence of effect among concurrently-executing tasks, and with
our region-based effect system this gives a guarantee of data-
race freedom. We can also provide a guarantee of deter-
minism for many deterministic algorithms, as described in
section 4. We believe these are important safety properties
that should be guaranteed by the system. Moreover, the pro-
grammer can work around restrictions on the expressiveness
of the system by choosing whether or not to request the
strongest guarantees, such as our determinism guarantee.

The major property that is not supported sufficiently
in the current model is deadlock freedom. Guaranteed-
deterministic algorithms are deadlock-free, and the effect
transfer mechanism described in section 3.2 eliminates a
large class of deadlocks, but it is still possible to write a pro-
gram that deadlocks using our system. Since all synchroniza-
tion in our model relies on our runtime system, it should be
possible to detect a deadlock and fail in an orderly way, al-
though doing so may impact performance. It would be valu-
able, if possible, to also provide a static guarantee of dead-
lock freedom, at least for some large class of programs.

7. Summary
Future client-side applications will increasingly combine
rich interactivity with more demanding compute-intensive
algorithms, requiring sophisticated concurrent programming
models. In order to preserve programmer productivity while
achieving high performance, these programming models
must enforce strong correctness guarantees, such as data race
freedom, atomicity, deadlock freedom, and determinism.

We have described a new programming model based on
tasks with effects. The effects of each task are specified by
the programmer and statically checked by the compiler. A
run-time task scheduler is then used to ensure that tasks
with interfering effects are not run concurrently. This effect-
based scheduling approach guarantees the absence of data
races. We also define the concept of effect transfer between
tasks, and show how this can be used to verify that many
algorithms are deterministic.

We believe our programming model is suitable for a wide
range of concurrent and parallel programs, including large
applications that use concurrency in multiple different ways.
More generally, we believe a combination of static checks
and a dynamic runtime that enforces certain properties is a
good approach to verifying safety properties without unduly
compromising expressivity. We feel that our programming
model, and more broadly the problem of designing disci-
plined yet flexible systems for concurrent programming, of-
fers numerous opportunities for valuable ongoing research.

Acknowledgements
This work was funded by the Illinois-Intel Parallelism Cen-
ter at the University of Illinois at Urbana-Champaign. The
Center is sponsored by the Intel Corporation.

References
[1] M. Abadi et al. Semantics of transactional memory and

automatic mutual exclusion. In POPL, 2008.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Comp., Special Issue on Shared-
Mem. Multiproc., pages 66–76, December 1996.

[3] V. S. Adve and M. K. Vernon. Parallel program performance
prediction using deterministic task graph analysis. ACM
Trans. on Comp. Systs., 22(1):94–136, 2004.

[4] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[5] Apple. Concurrency Programming Guide.
http://developer.apple.com/library/mac/documentation/
General/Conceptual/ConcurrencyProgrammingGuide/, 2011.

[6] R. D. Blumofe et al. Cilk: An efficient multithreaded runtime
system. In PPOPP, 1995.

[7] R. L. Bocchino et al. A type and effect system for Determin-
istic Parallel Java. In OOPSLA, 2009.

[8] R. L. Bocchino et al. Safe nondeterminism in a deterministic-
by-default parallel language. In POPL, 2011.

[9] C. Boyapati et al. Ownership types for safe programming:
preventing data races and deadlocks. In OOPSLA, 2002.

[10] B. Choi et al. Denovo: Rethinking the memory hierarchy for
disciplined parallelism. In PACT, 2011.

[11] R. Hameed et al. Understanding sources of inefficiency in
general-purpose chips. In ISCA, 2010.

[12] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd
Edition. Morgan & Claypool Publishers, 2010.

[13] Intel. Intel Thread Building Blocks Reference Man-
ual. http://software.intel.com/sites/products/documentation/
hpc/tbb/referencev2.pdf, Aug. 2011.

[14] R. Iyer et al. Cogniserve: Heterogeneous server architecture
for large-scale recognition. IEEE Micro, 31:20–31, May 2011.

[15] R. K. Karmani et al. Thread contracts for safe parallelism. In
PPoPP, 2011.

[16] M. Kulkarni et al. Optimistic parallelism requires abstrac-
tions. In PLDI, 2007.

[17] D. Lea. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande, 2000.

[18] R. Lublinerman et al. Delegated isolation. In OOPSLA, 2011.

[19] Microsoft. Task Parallel Library.
http://msdn.microsoft.com/en-us/library/dd460717.aspx.

[20] P. Müller and A. Rudich. Ownership transfer in universe
types. In OOPSLA, 2007.

[21] Oracle. Java Platform, Standard Edition 7 API specification.
http://download.oracle.com/javase/7/docs/api/.

[22] M. Vakilian et al. Inferring Method Effect Summaries for
Deterministic Parallel Java. In ASE, 2009.


