The Beauty and the Beast

An Exercise in Comparative Computational Linguistics

collaboration with F. Zappa Nardelli A. Pelenitsyn J. Belyakova, B. Chung

Speaker’s note: | have great affection for both languages. Neither title/contents should be construed negatively.
My goal is to make points about language design and, perhaps, meta-points about how we approach it.
Warning: You are going see code written in Fortress, Cecil, Julia, R, and C. And some reduction rules if we get around

to it. And a demo.

Warning: The research part is work in progress...

DARPA HPCS was to be the Manhattan project of parallel computing. Initially modest funding (~$12m for Cray, IBM,
Sun, SGI); ballooning to $500m for IBM and Cray. HPCS started in ~02 and ran until ~10. Sw. outcomes were Chapel
from Cray, X10 from IBM and Fortress. X10 was an ambitious but stuck to the Java/C++ mold for adoption.

Fortress was a wildly ambitious. One can’t do the language justice in the time, read the papers.

Speaker’s note: neither associated with Fortress nor the Julia team. Some here is speculation and post hoc
reconstruction. Shortly part of the IBM’s X10, very shortly.

Guy Steele’s slogan.

One of the aim of Fortress was to be an extensible rather than building all possible bells and whistles in it, we should
be able to write them on top of Fortressas modules that can be combined freely.

For this to be achievable Fortress needed to allow for software composition in more flexible and expressive ways than

had been possible before. In particular the type system should not get in the way of composition — it should allows
as much safe composition as possible while warning against ambiguities.

Fortress

Object, Multiple inheritance & Traits Parallelism

Modules and separate compilation Mathematical notation
Symmetric multi methods Garbage collected
Polymorphic type inference Units and dimensions
Contracts and tests Performance

Fortress rethinks language design from the ground up. The team with some of the smartest language designers —
several of them from NEU.

Fortress innovated on many of the fronts listed here. The ones that we are most interested in are the interplay
between multi methods, type inference and separate compilation.

conjGrad[Elt extends Number, nat N,

Mat extends Matrix[Elt,NxN],

Vec extends Vector[Elt,N]

Ia: Mat, x: Vec): (Vec, Elt) = do
25

p: El1t = T r
for j < seq(l:cgit_max) do

q=APp
a=p/p"Tgq
z =z +0ap
r :=r -adgq
Po = P
p :=r*"T r
B=p/ pPo
p:=r+fp
end
(Z, ||x—Az||)
end

Notice 1) Code uses Unicode character set, typesetting can match a mathematical paper. Feels like writing LaTeX, for
good and ill.

Notice 2) Local variable types are inferred. As operations are overloaded, the compiler must statically determine the
type signature of the applicable function at any call, infer the return type

Notice 3) Expressive parameterization over types and values (nat N capture matrix dimensions) for arguments and
return types

Notice 4) Combining type checking, multiple dispatch, separate compilation, multiple inheritance, how hard can that
be?

Fortress
o e ‘/r"’

Too hard. That is where Fortress got stuck. Guy Steele recounts in his 2016 Keynote at JuliaCon. See: https://
www.google.com/url?
sa=t&rct=j&g=&esrc=s&source=web&cd=1&ved=0ahUKEwjOzLb2viXXAhWI8YMKHdyFCKIQtwlIKDAA&url=https%3A%
2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEZD3Scuv02g&usg=A0vVawlGEHgOO Ygcwng]YIN8UfD

Getting any complex type system right is an extremely complex endeavor. The designers of Rust spent years on their
type system and, arguably, there may still be a few quirks.

Fortress was trying to push boundaries and solve open problems while designing a commercial language. (Contrast:
the myth of the design-in-a-week language such as JavaScript)

Cecll
object shape;
method draw(s) { .. }

object circle isa shape;
method draw(c@circle) { .. }

object rectangle isa shape;
method draw(r@rectangle) { .. }

object odd isa rectangle, circle;

circle.draw(circle)
circle.draw(rectangle)
odd.draw(odd)

‘Chambers Object-oriented multi-methods in Cecil. ECOOP92

Some background...

Multi-methods go way back. They appeared in variants of LISP, such as CLOS, that Guy Steele worked on in the 1980s.
They were used in experimental languages such as Craig Chambers’ Cecil.

This example shows three calls to draw. One dispatches to circle. Another to shape. And the last one is ambiguous.
How to disambiguate it? Especially in the presence of separate compilation and if the overloading method could be
introduced after object odd is created?

Fortress

f(a: Object,b:Z):Z = 1
f(a:Z,b: Object): Z = 2

£(2,2)?

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA |

Fortress supported symmetric multiple dispatch. Symmetry here means that the receiver of the method is treated as
any argument.

Examples from the paper.

In the above, the two methods definitions are such that it is possible to write a call that is ambiguous. Fortress
should rule this out.

Fortress

f(a: Object, b: Z
f(a:Z,b: Object

):
f(a:Z,b:Z):Z:

7
7

1
2
3

£(2,2)?

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA |

The solution here is to enforce the Meet Rule (from Guiseppe Castagna’s work) where you define a method that is the
greatest lower bound of the tuple of argument types that have a non-empty intersection and where they are not
directly related by subtyping.

Fortress

No Duplicates Rule For every dq,d> € Dy, if di = d2 and
do < dq then di = ds.

Meet Rule For every dq, d> € Dy, there exists a declaration
do € Dy (possibly dy or ds) such that, dy < d; and
dy = do and dj is applicable to any type T' € 7 to which
both d; and ds are applicable.

Return Type Rule For every di,d> € Dy with di =X do,
and every type T' # Bottom such that d; € Dy(T), if
an instance f Sy :7T5 of ds is applicable to T, then there
is an instance f .Sy :7} of d; that is applicable to T" with
Ty <:Ts.

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA| |

The key definition in the paper: what does it mean for a set of methods to be sound? They have to abide by the
following three rules. The more specific relation implies subtyping. Checking this can be quite expensive as alluded
to by Guy Steele in his JuliaCon talk.

Fortress

Failure |: Type soundness still elusive
Failure II: Performance goals unmet

Failure lll: Empirical validation not complete

The three failures of Fortress were that (1) the goal of a sound type system for separate compilation of multi methods
was never reached, (2) the implementation ran on top of a JVM but was never performant. [Aparte: my one
contribution to X10 was to argue to Vivek Sarkar in favor of a subset of C++ that aligned with Java and build the first

implementation of X10 on top of a JVM, but | digress.] Performance was just something the team did not get to. Due
to the time taken by (1).

Finally, and most important, the type system was designed based on a vision of what would be useful and what could
be adopted by users- Yet, since the language was not at a point where it could deliver the kind of performance that

users would find acceptable, Fortress could not be empirically evaluated. There was never feedback from users into
the design.

Now let’s turn our attention to Julia. A language designed to appeal to the same general audience. A language built
around the concept of multiple dispatch. But with much less ambitious goals. It has a vanilla syntax, no parallelism,
no objects, no type system.

My interest in Julia is accidental and geographic. | have been working on R for a few years. When | moved to Boston in
2014, | gave a talk at an R meetup and met the Julia team afterwards. Conversations led to a collaboration.

| promised to help with writing an overview paper on Julia. Our first step was to try to write down the couple of rules
needed to define the subtype relation. And six month later...

@
] I.O -
Ju Ia IS HENR
..a dynamic language for high-performance scientific computing

..0pen source since its inception by Jeff Bezanson circa 2012

R julia

Dynamic yes yes
Vectorized yes yes
Memory management automatic automatic
Implementation interpreted native
Type declarations% - user-defined generic types
Meta-programming substitute() macros
Parameter passing% by promise by value

Julia is a dynamic OO language for scientific computing; available since 2012; A quickly growing ecosystem with 6000+
packages, open source; Like R it is dynamic, it can operate on entire vectors and matrices, and is memory safe with a garbage
collector

juliais...

...surprisingly fast

«—Python
Julia

|

binary_trees
fannkuch
fasta
mandelbrot
nbody
pidigits
regex
revcomp
spectralnorm

These are numbers obtained by Ben Chung on the Language Benchmark Game. These are small programs that are not
necessarily representative of the targets of various languages, but they do give a first approximation of language
implementations. The Julia code was not overly optimized. The results are normalized to the performance of Python
(dynamic and interpreted). These are the sequential benchmarks. Typically Julia runs <2x of C. The Julia compiler
represents a relatively small implementation effort compared to, e.g., Java or JavaScript. How is this possible?

juliais...

Focus on polymorphism and performance
Use R’s colMeans function as running example

Show same level of dynamism and
polymorphism without sacrificing performance

’ https://github.com/janvitek/can R learn from Julia.git ‘

While Julia does not target statistics, | will demonstrate that it is extensible in ways that permit it to solve the same problems as
R; To this end | will take an example, the colMeans function, which | will quickly review and then proceed to described two
implementations, one in R and one in C for efficiency. Then | will show you how to replicate colMeans in Julia with less code and
without having to switch languages; These practical example will highlight some of the key features of Julia. All code presented
today is on Github

x = 1:100
dim(x) = c(50,2) COlMeanS

colMeans (x)

[1] 25000.5 75000.5

x = complex(r=1:60,1i=1:60)
dim(x) = c¢(10,3,2)
colMeans (x)

[,1] [,2]
[1,] 5.5+ 5.5i 35.5+35.51
[2,] 15.5+15.5i 45.5+45.51
[3,] 25.5+25.51 55.5+55.51

The strengths of R lie in how easy it is for end-users to specify complex operations with small vocabulary of reusable
abstractions. colMeans is a good example, this function works just as well on two dimensional vectors of integer or three
dimensional vectors of complex values. polymorphism helps end users, as they don’t need to learn many different functions,

and library developers who can write a single version of any code regardless of the types being processed. We now turn to how
this is achieved in the library.

colMeans

colMeans function(x, na=FALSE, dims=1L) {

dn dim(x)

id l:dims

n prod(dn[id])

dn dn[-1id]

pdn prod(dn)

z if (is.complex(x))
.Internal(colMeans(Re(x),n,pdn,na))+(0+1i)*
.Internal(colMeans(Im(x),n,pdn,na))
else .Internal(colMeans(x,n,pdn,na))

VA

}

The default implementation of colMeans has a part that is truly polymorphic, where we compute how to traverse the vector and
which dimensions to aggregate; Already in the R code, a part that dispatch on the type of the vector. Complex or not. In either
case, bottoming out in an .Internal call.

SEXP attribute_hidden do_colsus(SEXP call, SEXP op, SEXP args, SEXP rho) {
SEXP x, ans = R_Nilvalue; for (Rxlent j = 0; § < p; 3++) {
int type; LDOUBLE *ra = rans;

Rboolean Nakm, keepNA; switch (type) {

checkarity(op, args); case REALSXP:

x = CAR(args); args = COR(args); {

Rxlen_t n = asvecSize(CAR(args)); args = COR(args);

double *rx = REAL(x) + (R_xlen_t)n *
Rxlen_t p = asvecSize(CAR(args)); args = CDR(args);

if (keepNA)
for (R_xlem t i = 0; i < n; it+) *ratt += trxit;
) else

for (Rxlen_t i = 0; i < n; it+, ravt, rxe)
if (IISNAN(*rx)) {

i€ (p == WA_TNTEGER || p < 0)
error(_("invalid ‘s’ argument’), “p");

NA_LOGICAL) orror(_("invalid 'is' argunent’), “ma.rm'); rx

if (0P == 3) Cnt[i]+t;
int 0P = PRINVAL (0p) ;
switch (type = TYPEOF(x)) { break;

¥

< o ;

case REALEXP: breaks case sz

datautts OS O e int *ix = INTEGER(X) + (Rxlen_t)n * 3;
ecvor(_(""x" must bo numeric™)); for (Rxlen_t i = 0; & <n; it+, rats, ixer)

)

if (keepNA) {
£ (o == 0 || OF == 1) { /* colusns */ if (+ix 1= NA_INTEGER) *ra += *ix;

PROTECT (ans = allocVector (REALSXP, p)); else *ra = NA_REAL;
for (Rxlen t 3 = 0; 3 < p; 3+

¥
Rslent et =n, i else if (*ix != NA_INTEGER) {

suitch (eype) { *ra 4= ix;

implemented e e

16 (keepun) break;

}
case LGLSXP:

L N C In (
break; int *ix = LOGICAL(x) + (R_xlen_t)n * j;

L for (R_xlen_t i = 0; i < n; i+, ratt, ixt+)
case INTSKP: xtent

«
int *ix = INTEGER(x) + (R_xlen_t)n*3; if (keepNn) {
for (ent = 0, sum = 0., &= 07 i< n; e, ixh) if (+ix = NA_LOGICAL) *ra += *ix;
Af (ix 1= NA_DITEGER) {ont++; sum += tixi) else *ra = NA_REAL;
$190 L8 (KoopA) (sum = WA_RENL; break) —_) -

bre:
N else if (*ix != NA_LOGICAL) {
case LoLsxP: (ra 4= rix;
int *ix = LOGICAL(x) + (R_xlen_t)nt3; if (0P == 3) Cnt[i]++;
for (cnt = 0, sum = 0., &= 0; i< ni it ixt)
if (vix = NA_LOGICAL) {entrt; sum 4= +ixi} .
olse if (keopWA) (sum = NA_REAL; breaks} break;
break; ¥
)
)
£f (OF == 1) sum /= cnt; /* gives NaN for cnt = 0 +/ 3 {
REAL(ans) (3] = (double) sum;
) if (keepNA)
) else { /1 rous +/ for (R_xlen_t i i<n; i+ rans(i)
PROTECT (ans = allocVector (REALSXP, m)) else

for (R_xlen_t i = 0; i < n; i++) rans(i] /= Cnt[i];

/+ allocate scrateh storage to allow sccumlating by colums
to improve cache hits */ }
int scnt o wOLL; for (R_xlen_t i =0; i < n; i++) REAL(ans)[i] = (double) rans[il;
se0n <= 10000) ¢ if (lkeepNA && OP == 3) Free(Cnt);
¥ if(n > 10000) Free(rans);

Memzero(rans, n);
} else rans = Calloc(n, LDOUBLE);
L€ (1keepha &4 0P == 3) Cat = Calloc(n, int); UNPROTECT(1) ;

return ans;

for (Rxlen t 3 <30 (

Performance concern force many R library developers to resort to C to write loopy code. This is challenging as C is more error
prone and is opaque to many end users. The do_colsum() function implements the behavior of colMeans and several related
functions. At a high level, the C code consist of three stylized parts

SEXP attribute_hidden
do_colsum(SEXP call, SEXP op,
SEXP args, SEXP rho) {
SEXP x, ans = R _NilValue;
int type;
Rboolean na;
checkArity(op, args);
X = CAR(args);
args = CDR(args);
R _xlen t n=asVecSize(CAR(args));
args = CDR(args);
R _xlen t p=asVecSize(CAR(args));
args = CDR(args);
na = lasLogical (CAR(args));

The first part is rather tedious as it must extract arguments passed by the caller in R. This is typically not performance critical —
at least for larger arrays.

if (n == NA_INTEGER || n < 0) P
error(_("invalid '%s' ") ’ "nll) ; l:\&

if (p == NA_INTEGER || p < 0)
error(_("invalid '%s'"), "p");
if (na == NA_LOGICAL)

o

error(_("invalid '%s'"), "na.rm");
int OP = PRIMVAL(op);

switch (type = TYPEOF (x)) {

case LGLSXP: break;

case INTSXP: break;

case REALSXP: break;

default:

error(_("'x' must be numeric"));

The second part implements sanity checks to prevent the C code from crashing and thus avoid vulnerabilities. Again not
performance critical. The switch statement makes sure that the argument is of one of the type for which this makes sense.

PROTECT(ans=allocVector(REALSXP,p));
(R_xlen t j=0; j<p; j++) {
R_xlen_t c¢nt=n, i;
LDOUBLE sum = 0.0;
(type) {
REALSXP: {
double *rx = REAL(x)+ n*j;
(na)
(sum=0,i=0;i<n;i++)
sum += *rx++;

(cnt=sum=i=0;i<n; i++,rx++)
(!ISNAN(*rx)){
cnt++; sum += *rx;

}

break;

The last part has a switch statement with a loop for computing the mean for each element type. This has to be fast. To sum up:

R solution is polymorphic in the end user code, but as we get deeper in, the library the code becomes less elegant due to the
special cases that have to be added for all variants.

The inner loop performs the type specific operations. Depending if the user has requested special handling of missing values or
not, the code iterates over the array summing values and possibly counting the number of non-NA observations.

julia

How can we do the same thing in Julia? One step at a time, by writing code that is obviously correct

function colMeans(x, na=true, dims=1)
dn = size(x)
id = [l:dims;] # 1l:dims
n = prod(dn[id])
dn = extract(dn,bid) # dn[-id]
pdn = prod(dn)
res = zeros(pdn) # 0
for j = 0:pdn-1 # for(j in O:pdn-1) {
sum = z(x[1]) # 0
cnt = 0
off = j*n
for i = 1l:n # for(i in 1l:n) {
v = x[i+off]
cnt += 1 # cnt = cnt + 1
sum += v # sum = sum + v
end
res[j+1] = sum/cnt
end R
res (] o0
end julia

The most straightforward Julia implementation is one that could be written in R/ It has the advantage of being elegant and not
requiring any special casing. But does it perform well enough? But is it as polymorphic? Let’s look at this in a Jupyter notebook.
DEMO!

Multi-Dispatch

z(x::AbstractFloat) = 0.0
z(x::Complex) = complex(0.0,0.0)
z(x) =0

sum = z(x[1]) # 0

Julia functions are multi-dispatched
Types part of language syntax

To avoid boxing, variables initialized with the “right” type .

julia

Julia uses a native compiler, it generates intermediate code compiled on the fly by LLVM. Speed comes from a combination of
specialization, for each call to a function with different argument types, a new version of the function is generated, and static
analysis, types are propagated through the function. This works extremely well. But static analysis can get confused. For
instance, if we assign our sum variable an initial value of a different type than the result of addition, the compiler will “box” the
variable, allocate it on the heap. To avoid this we specialize the initialization of the variable.

The z() function has different behavior depending on the type vector element. There is one result for all floating point types, one
for complex, and one for everything else.

Generics

{T}(x::T) =
x == typemin(T)

{T<:Complex} (::Type{T}) =
T (-NaN)

Julia lacks a builtin missing value; we steal
smallest member of each data type.

Generic functions can operate over types; type

variables can be bounded. o g
julia

Typemin is already defined for Integer and Float, we need to add one for Complex. The version for Complex returns one NaN.

The function is_na specializes on the type and compares the argument to the proper typemin.

if (!is_na(v))

elseif na_rm
sum = typemin(typeof(x[1]))

Other changes to support missing values are
straightforward.

Changes to the rest of the code to support NAs are minimal, we must check if an array element is missing and if it is either
ignore it or replace sum with the right kind of NA.

User Defined Types

primitive type ThreeWay 8 end
ThreeWay () = reinterpret (Threeway, O0xff)
ThreeWay(x::Bool) = reinterpret (ThreeWay, x)

const true3 = ThreeWay(true)
const false3 = ThreeWay(false)
const na3 = ThreeWay()

typemin(::Type{ThreeWay}) = na3

==(x::ThreeWay, y::Bool) =
ifelse(x==na3, false, Bool (x)==y)

+(x::Union{Int, ThreeWay}, y:: Threeway) =
Int(x) + Int(y) juﬁé

This leaves us with one challenge: how to deal with missing values for logical. Here we are going to use one of the rather
impressive capacities of Julia, we will define a primitive data type that extends Bool with a third value. To do the job we need to
define constants true, false and na, as well as define a typemin function. Lastly we need to add variants for the comparison and

addition. What is remarkable is that this type will be treated as a builtin type from now on. It can be compactly allocated in 8 bits
and does not require boxing.

Reinterpret turns a value of one type into a value of another type without any checking. Certainly not typesafe.

julia

Julia achieves polymorphism and performance with a
combination of three features

|. Specialization and runtime code generation
2. User defined generic data types

3. Efficient multi-dispatch

To sum up the DEMO. Is a bit slower than R/C for simple type but 2x faster for Complex. R is 60 times slower than C (and
without the bytecode compiler 600x).

Now back to what caused Fortress so much distress. Multi dispatch.

OVERLOADING * (SELECTED ENTRIES QUT OF 181 INSTANCES)

*(x::Bool,y::Bool) = x & y
*(x::Number,r::Range) = range(x*first(r),x*st..

*(x::T,y::T) where T<:Union{Intl28,UIntl28} = ..

julia

Three overloadings of the multiplication operator. The last one works only on either two signed or two unsigned values but not a
combination.

OVERLOADING * (SELECTED ENTRIES OUT OF 181 INSTANCES)

*(A::AbstractArray{T, 2},
B::AbstractArray{S,2}) where {T, S}) =

...matrix multiplication code...

*(A::AbstractArray{T,2} where T,
D::Diagonal) =

...clever diagonal matrix multiplication code...

*(A::Hermitian{Complex{Float64},
SparseMatrixCSC{Complex{Float64},Ti}},
B::Union{SparseMatrixCSC{Complex{Float64},Ti},
SparseVector{Complex{Float64},Ti}}) where Ti

.
...even fancier matrix multiplication code... JUI|

And some fancier overloadings...

OVERLOADING * (SELECTED ENTRIES OUT OF 181 INSTANCES)

*(X::Union{ReshapedArray{TX,2,A,MI} where
MI<:Tuple{Vararg{SignedMultInverse{Int64},N} where N} where
A<:DenseArray, DenseArray{TX,2}, SubArray{TX,2,A,I,L} where
L} where I<:Tuple{Vararg{Union{AbstCartesianIndex, Inté64,
Range{Int64}},N} where N} where
A<:Union{ReshapedArray{T,N,A,MI} where
MI<:Tuple{Vararg{SignedMultInverse{Int64},N} where N} where
A<:DenseArray where N where T, DenseArray},

A::SparseMatrixCSC{TvA,TiA}) where {TX, TvA, TiA}

...super fancy matrix multiplication code...

... all the way to the ridiculous.

STILL A DYNAMIC LANGUAGE

h(x::Int64, y::Any) =1

h(x::Any, y::Int64) = 2

h(3,4)

> ERROR: MethodError: h(::Int64, ::Int64) is ambiguous
> Candidates:

> h(x, y::Int64) in Main at REPL[7]:1

> h(x::Int64, y) in Main at REPL[6]:1

> Possible fix, define

> h(::Int64, ::Int64)
(] ...
julia

Instead of preventing ambiguities they are detected. This happens once per call-site/argument combination.

TYPES ARE NOMINAL

Relations between types are declared by the programmer and
not inferred from representation

Enables a function to behave differently on types even if these share the

same representation (e.g. Bool & Int8)

I No representation specified

abstract type Integer <: Real end
Abstract Type

primitive type Bool <: Integer 8 end

struct PointRB <: Any Representation specified
x::Real Concrete Type
y::Bool
end °
julia

And now a little bit about the type system. The only types that can be instantiated are concrete types. They are also the only
types that can have fields. To ease unboxing, concrete types have no subtypes.

TYPES ARE PARAMETRIC

Datatypes can be parametrized by types & values of primitive types

struct Point{T} <: Any
x::T
y::T

end

struct Rational{T<:Integer} <: Real
num: : T
den::T

end

abstract type Vector{T} <: Array{T,1l} end

UNION AND UNIONALL

Union is an abstract type which includes as objects all instances of

any of its components

Union{Point{Int64}, Point{Int32}, Point{Intl6}}

Union of types can be iterated:

Point{T} where T

possibly with lower and upper bounds:

Vector{T} where T <: Integer

UNIONALL refers to types with where clauses.

PARAMETRIC TYPES ARE INVARIANT

struct Point{T} <: Any Int64 <: Signed
xX::T
y::T

end

Point{Int64} </: Point{Signed}

Pragmatic design choice: values have different representation in memory
> the former can be represented as a pair of 64-bit values

> the latter is a pair of pointers to individually allocated Signed objects

All parametric types are invariant — again for unboxing.

TUPLES: ABSTRACTIONS OF FUNCTION PARAMETERS

Tuple{Int, Float, Any}

Subtyping is covariant for tuples:

> enables sorting of method interfaces according to <:

Tuples are only used for function arguments — they cannot be created by user code.

-

e e e o b e e s i o B B A . S e s s e s e

- o

o R P SPT SER R e S

We wanted to convince ourselves that going through the pain of formalizing the relation was worthwile. I.e. this was something
that reflected actual needs rather than over engineering.

METHODOLOGY

Take the 100 most starred Julia packages on GitHub

Parse source code of each package, and extract:
> the method signatures

> the declared types

DO PROGRAMMERS DECLARE THEIR OWN TYPES?

Al Types
[Parametric Types

. Bounded Parametric Types

- suoenbaenusIoNa
- esepy

= S4aH

=300

- esegsiers

|- uoozjUENY
Far

| Sluawainseapy
- sisassisayiodiy
F vw

- oleiid

k- sninajes

- iIngojoid

F sheuvoneis

L sawessereq

F massieney

- 1eohd

|- saouejsig

|= S1eAj0SaARRIBY
Fusbs

- 1eispeay

- sondownjuenp
Fdwnr

-Nosr

L ageine

F desmxxo

L. suopesedouosuay.
- sieIseuuo

- 10es01U|

- siopessy

- Ape

- ;euawnoog

|- 1066eq

- sweisks|onuon
- onnoeay

)

- Aze7

- epuog

- ore

- siolowered

- mojgerea

- sudesowbry

= jedwon

- srinoid

- sioopstrewyoUsg

L ueig
+ 1d3gAnuo

- punoibieid

|- esegboiduieny
F1dosoa

F anHuo

L Joxn

Fwn

L sieipung

- dddea

L ainespenpssnesisey
- 1eN[eineNdoidyoRg
Fwod

- apnjoulgN

L syorisniy

- abesanod

- ipueno

- siooL o0y

- siesereqy

l- s1ex008g9M
F1don

k xniy

- ssiepssaiboig

- JeniasdnH

-ennry

004 05
sadA} paulep Jasn ()

ol=—=

arations

1920 type decl

Total

1al bounds Ju

v

ith non tr

1cw

784 parametric, and 369 parametr

of which

NO OF METHOD DECLARATIONS

590 963

L

1387

"

Fundo

N ﬁm:(:mw

[unaxoiddy

- suonoajjo0euolo
i sfenyeleq

- suonnquysig

- sabew|

= Inun

- Aienp

- suopenb3[enualse,
- aunjeqny

- ey

- S4aH

=3d0

- asegsiels

|- sainjonJjsereq
- Ileoener
l-asegn

-9

- uodzUEND
=air

- SiuswaINsEay
- sysay s1sayjodfH
= VN

Foleid

- snjnajen

- ;ngojoid

l- skeuyoneis

- sowe.jereq

- ygesionay

- 11e9Ad

- saouelsig

- s1onj0S8ANRIR)
- 14bs

- 1E1spROY

|- sondowmueny
-dwnr

-Nosr

- ageinr

=dsd

- deimxxo

|- estedbiy

- suonesedQiosual
F sieisauuo

- esR|

- siojesay

- Aypes

- 18)ustunooq

|- 1e66eQg

[swayskgjonuon
- onnoeay

OJ

[siojowesrey
- molJereq
- sydeiniybry

- Sjoop i ewyouag
- oWz

-d49

L ueig

- 1d3HANUO

|- punoibAelq

|- asegboiduien
[1dosoa

F anHuo

- 1oxn

Fun

- sieipung

[dddap

- sjox00508M

- sjesereqy

- 1puenp

- Jeje|yssaiboid

= WOd

|-1doIN

- apnjoulgN

F xnpy

- ayoeisniy

- sj00L 00BN

e

- sonsosdnH

- ainjelpenpssnenise
- ebeionon

d

300

2001
100 4

SjueLBA

ARE TYPED METHODS COMMON?

65% of method signatures are fully typed 9235
20% are partly typed
15% have no types ?]

5

g3

53

3

[S

Zg

21 2183

1113

I m
.

.
0%-20% 20%-40% 40%-60% 60%-80% 80%-100%
% of arguments with declared types

julia

So is Julia a dynamic language or a static one? The question is how much pain would it be to get to 100%

Also — a real type system would force users to deal with ambiguities ... as in Fortress.

HOW COMPLEX ARE METHOD SIGNATURES

Is Complex

. Contain Where Type
75 . Contains Nontrivially Bounded Where Type

suopejodsa
sweangeleq
SISPOPAXIN

feunciogiouoion @

a4 uoIs195q

SUOIJoUN 4SS0
SieISORLRANINN
sjojdapooiun
slelenBM
1000

i

wndg
skeuyndo
unJxoiddy
SUOIBOD[EUOOUN
skeiiyeleq
suonnquIsia
sabeuw]

ngun

Kionp
suoienb3enueIaNa
ainjeang

asegsiers
sanpnaiserea
IleQEner
aseg

w1
uoozIUEND

ar
Siuswainseayy
sisay ssay10dAH
1YW

olaiig

snnajeo
jngojoid
skeuyoilels
sawelfeleq
Jigesionay
11e2Ad
sadulsIg
sienjogenesel
udbsy

leiSpeaty
sondouwinjuenp

sieISaUuIUQ
ey

siojesa))

Apen
JalualiNo0g
Jabbeq
sweisAg[oAU0D
anproeay

Azeq

€puoy

orey
sislowesey
molfereq
sydeioiybry
1eduiod
srénoid
SiooptewILOURE
oWz

g9

uBlg
Td3uAnuo
punoibeid
asegboidUIEN

- siepung

[dddex

F siewo0sqem

- sieseieqy
Fipuenp
Floionsseiboid
F Wod

FidoIN

- apniduIaN
Fxnw

F ayorisniy

F sjootos0em
nei

[seniegdny

- aimespenpssneisey
|- ebeienon

T
Q
re)

SJUBLIEA JO %

25+

o

t :== Any | name | Union{ti..t,} | Tuple{ti..tn}
| H{t1..tn} | twhere ti<T<itn | T | Type{t}
| DataType | Union | UnionAll

We ignore:
> Val: singleton types, would be easy to add

» VarArgs: add a lot of machinery (e.g. to count no of
arguments) without introducing new interesting features

SUBTYPING: STARTING POINTS

Parametric type application is invariant:
Foo{ti..tn} <: Foo{t'i..t'} iff foralli, ti<:ti and ti<:t

Tuples are covariant:

Tuplefts..ta} <: Tuple{t's..t'h} iff foralli, ti <: t'

Subtyping union types, following types as set of values idea:

forall i, tj <z t' existsi, t'<:
Union{ti..tn} <: t' t' <: Union{ts..tn}

The empty union plays the role of the Bottom type juh.a

DISTRIBUTIVITY OF TUPLE WRT UNION

Tuple{Union{Int, String}, Int} <:
Union{Tuple{Int,Int},
Tuple{String,Int}}

Cannot be derived from the previous rules.

Only UnionRight applies but neither
Tuple{Union{Int, String}, Int} <: Tuple{Int, Int}
Tuple{Union{Int, String}, Int} <: Tuple{String, Int}
hold.

DISTRIBUTIVITY OF TUPLE WRT UNION

Tuple{Union{Int, String}, Int} <:
Union{Tuple{Int,Int},
Tuple{String,Int}}

Castagna & Frisch: rewrite types in disjunctive normal form

Unsound for Julia due to invariance of type application:
Vector{Union{Int, String}}
Union{Vector{Int},Vector{String}}

are unrelated.

DISTRIBUTIVITY OF TUPLE WRT UNION

Tuple{Union{Int, String}, Int} <:
Union{Tuple{Int,Int}, Tuple{String,Int}}

Julia implementation relies on complex backtracking algorithm

Poor man solution: rewrite
Tuple{Union{t..tn}, t}
into
Union{Tuple{ti,t}.. Tuple{tn,t}}

for tuples at top-level o
o

SUBTYPING UNIONALL

UnionAll types obey a forall /exists semantics as well

t where ti<T<it> <: t'

> forall types t", ti<:t"<:to, it holds that t[t"/T] <: t'

t' <: twhere ti<:T<:t2

> exists a type t", ti<it'<:itz, such thatt'<:t[t"/T]

TYPE VARIABLES AND INVARIANCE

Foo{Int} <: Foo{T}where T

Invariance requires to check Int<: T and T <: Int

> in both cases T must have exists (right) semantics

For each variable, an environment keeps track
> the name
> the left or right semantics (L / R)

> the lower and upper bounds

FROM FORALL/EXISTS TO EXISTS/FORALL

+ Vector{Vector{T} where T} </: Vector{Vector{S}} where S

But the rules we have until now do derive this judgment.

Semantics of the judgment:

exists one S such that forall T, Vector{Vector{T}} <: Vector{Vector{S}}

Tracking L/R is not enough: it misses

the relative order of type application wrt variable introduction.

Idea: environment is kept sorted wrt order of introduction of variables

whenever enter an invariant constructor, add a marker to the environment

[unton_LEFT] [unton_riGHT]
[ror] Evrty <:t:E .. merge(En-1,E)Ft, <:t:E, djErt <t : E
Ert <: Any : E E+ Union{ty, .., t,} <: t :E, Ert <: Union{ty, .., t,} : E
[TupLE_LIFT_UNION] [app_supEr]
[rupLE] t' = lift_union(Tuple{t,, ... t,}) tds £ name(Ty, .., Tp, ..} <t t”
Erty <t t] tEy .. Enoq bty <ty 1 Ey Ert <:t:F Ert'[t)Tyotm/Tm] < t/ 1 E
E v+ Tuple{t;, ... t,} <: Tuple{t], ... t;} : E, E+ Tuple{t;, ...t} <: t : E E+ namelty, .., tp) <: t' : E'
[app_1nv]
n<m E,= add(Barrier, E)
VOo<i<n Eigvt <it]:E A E/rt < t:FE [BETA_LEFT]
E’ = del(Barrier, E,) Evrt[ti/Tty, oo ty) <2t/ : E
E v+ namelty, .., tyn) <: name(t], ...t} : E Er (t where t;<T<:t)){t;, ty, .., ta} <: t' 1 E
[BETA_RIGHT] [Type_TypE]
Ert < t{t/Ti{tz, .., ta} 1 E add(Barrier, E) vt <: t, :E' E'vt, < t; : E’
Ert <: (twhere t;<T<it)){ti, ta, ... t,} : E’ E v+ Type{t;} <: Type{t,} : del(Barrier, E"")
[R_inTRO]
(L_ivtro] add®T2E)rt <: t' 1 E'
add(LTg,E) bt <t E cunsistelnt(T, E’) (rere]
E+ t where j<T<it <: t’ : del(T,E’) Er+t <: t' where 1<T<:ty : del(T,E") Ev+t<:t:E
[R_ricuT]
[L_rerr] [L_ricHT] [R_EFT] search(T,E) = RT;‘
search(T,E) = LT;‘ search(T,E) = I‘T;‘ search(T,E) = RT;‘ —is_var(t) V search(t, E) = RT'}‘,/
Eru<:t:F Evrt<:1:F Erl<:t:FE Evrt<:u:F
ErT<:t:E Ert < T:E ErT <t :upd(RT;,E) Ert<T :upd(RTﬁnion(“),E)
[R_L]
search(Ty, E) = kT, ;“‘ search(Ty, E) = "TZZ2 [Type_rerT] [Type_ricur]
outside(T1, T3, E) = Ev up <: L : E —is_var(t) is_kind(t)) is_var(ty)
Evru <L :E” E v typeofit;) <: t, : E E v+ Type{T} where T <: Type(ty} : E
ErTy < T, :upd(RTlg‘mDnm_m,E) Ev+ Typelti} <: tp : E/ Ert; <: Typeltp} : E’

The complete system is fiendishly complicated... there is much more to say... it took six months to get it right.

VALIDATION

NEVER TRUST RULES

» Implemented a subtyping algorithm for Julia types
> one-to-one mapping of rules to Julia code
» add a search strategy on top of it
» ~1kloc of Julia

> Passes the subtype regression tests from Julia distribution

VALIDATE ON REAL CODE

> Modify Julia VM to log all calls to the subtype function

> removing duplicates

> Log importing and running the test suite of 50 packages

> We validate all the logged subtype tests (~1,000,000)

> And one mysterious test

THE MYSTERIOUS SUBTYPE TEST

Ref(Pair{Pair{T, R}, R} where R) where T <:
Ref(Pair{A, B} where B) where A

> Julia says true, we say false

> After a long investigation, consensus that false is correct

> Jeff patched Julia 0.7-dev 15 days ago

CONCLUSIONS .~

4 A
’ g .. . ki

AN ORIGINAL POINT IN THE DESIGN SPACE

> Compare with the Fortress experience (Steele talk at JuliaCon'16)
> Fortress supported multiple dispatch and a rich type system
> Fortress failed due to difficulty of defining a sound semantics

» Unsoundness simplifies the design

> Julia provides a gradual typing system
> users encouraged to write types

» Compiler does not trust type annotation

WHY DOES THE COMPILER WORK SO WELL?

» Scientific code has some regularity that can be exploited

» Multi-dispatch encourages a style where all the type tests on
the data are at method entry, body does not need checks

> Programmers have learned how to avoid boxing

» Methods can be monomorphized

Potential pathology is code size explosion but has not happened in our examples

CAN WE REGAIN SOUNDNESS?

> Given usage data, how much do we give up to get soundness?

> Subtype algorithm overly complex but data suggests every type
rule is used by someone

> Can we evaluate the “cost” of simplifying it?

> Paley Li and Ben Chung are working on this, see NOOL17 paper.

BOTTOM UP VS TOP DOWN LANGUAGE DESIGN

» How should we design languages, in particular languages for
“new” domains?

» Pragmatic view: start with something that provides value to
users, incrementally improve and evolve design in response to
demand

> Leads to warty designs

> Purist view: design an entire solution that provides the right
answer from day one.

> Leads to never-ending designs

