
The Beauty and the Beast
An Exercise in Comparative Computational Linguistics

collaboration with F. Zappa Nardelli, A. Pelenitsyn J. Belyakova, B. Chung

Speaker’s note: I have great affection for both languages. Neither title/contents should be construed negatively.

My goal is to make points about language design and, perhaps, meta-points about how we approach it.

Warning: You are going see code written in Fortress, Cecil, Julia, R, and C. And some reduction rules if we get around
to it. And a demo.

Warning: The research part is work in progress…

DARPA HPCS was to be the Manhattan project of parallel computing. Initially modest funding (~$12m for Cray, IBM,
Sun, SGI); ballooning to $500m for IBM and Cray. HPCS started in ~02 and ran until ~10. Sw. outcomes were Chapel
from Cray, X10 from IBM and Fortress. X10 was an ambitious but stuck to the Java/C++ mold for adoption.

Fortress was a wildly ambitious. One can’t do the language justice in the time, read the papers.

Speaker’s note: neither associated with Fortress nor the Julia team. Some here is speculation and post hoc
reconstruction. Shortly part of the IBM’s X10, very shortly.

Don’t
build

a
language,

grow
it

Guy Steele’s slogan.

One of the aim of Fortress was to be an extensible rather than building all possible bells and whistles in it, we should
be able to write them on top of Fortressas modules that can be combined freely.

For this to be achievable Fortress needed to allow for software composition in more flexible and expressive ways than
had been possible before. In particular the type system should not get in the way of composition — it should allows
as much safe composition as possible while warning against ambiguities.

Fortress

Object, Multiple inheritance & Traits

Modules and separate compilation

Symmetric multi methods

Polymorphic type inference

Contracts and tests

Parallelism

Mathematical notation

Garbage collected

Units and dimensions

Performance

Fortress rethinks language design from the ground up. The team with some of the smartest language designers —
several of them from NEU.

Fortress innovated on many of the fronts listed here. The ones that we are most interested in are the interplay
between multi methods, type inference and separate compilation.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

32© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (Unicode)
conjGrad
Elt extends Number, nat N,

Mat extends Matrix
Elt,N×N�,
Vec extends Vector
Elt,N�
�(A: Mat, x: Vec): (Vec, Elt) = do

cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
ρ: Elt = r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ

ρ := r^T r
β = ρ / ρ₀

p := r + β p
end
(z, ‖x - A z‖)

end

This would be considered entirely
equivalent to the previous
version. You might think of this as
an abbreviated form of the ASCII
version, or you might think of the
ASCII version as a way to
conveniently enter this version on
a standard keyboard.

Notice 1) Code uses Unicode character set, typesetting can match a mathematical paper. Feels like writing LaTeX, for
good and ill.
Notice 2) Local variable types are inferred. As operations are overloaded, the compiler must statically determine the
type signature of the applicable function at any call, infer the return type
Notice 3) Expressive parameterization over types and values (nat N capture matrix dimensions) for arguments and
return types
Notice 4) Combining type checking, multiple dispatch, separate compilation, multiple inheritance, how hard can that
be?

Fortress

Too hard. That is where Fortress got stuck. Guy Steele recounts in his 2016 Keynote at JuliaCon. See: https://
www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjOzLb2vrXXAhWI8YMKHdyFCKIQtwIIKDAA&url=https%3A%
2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEZD3Scuv02g&usg=AOvVaw1GEHgOO_YqcwngJYlN8UfD

Getting any complex type system right is an extremely complex endeavor. The designers of Rust spent years on their
type system and, arguably, there may still be a few quirks.

Fortress was trying to push boundaries and solve open problems while designing a commercial language. (Contrast:
the myth of the design-in-a-week language such as JavaScript)

Cecil
object shape;
 method draw(s) { … }

object circle isa shape;
 method draw(c@circle) { … }

object rectangle isa shape;
 method draw(r@rectangle) { … }

object odd isa rectangle, circle;

circle.draw(circle)

circle.draw(rectangle)

odd.draw(odd)

Chambers Object-oriented multi-methods in Cecil. ECOOP92

Some background…

Multi-methods go way back. They appeared in variants of LISP, such as CLOS, that Guy Steele worked on in the 1980s.
They were used in experimental languages such as Craig Chambers’ Cecil.

This example shows three calls to draw. One dispatches to circle. Another to shape. And the last one is ambiguous.
How to disambiguate it? Especially in the presence of separate compilation and if the overloading method could be
introduced after object odd is created?

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA11

Fortress

Type Checking Modular Multiple Dispatch with Parametric
Polymorphism and Multiple Inheritance

Eric Allen
Oracle Labs

eric.allen@oracle.com

Justin Hilburn
Oracle Labs

justin.hilburn@oracle.com

Scott Kilpatrick
University of Texas

at Austin
scottk@cs.utexas.edu

Victor Luchangco
Oracle Labs

victor.luchangco@oracle.com

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

David Chase
Oracle Labs

david.r.chase@oracle.com

Guy L. Steele Jr.
Oracle Labs

guy.steele@oracle.com

Abstract
In previous work, we presented rules for defining overloaded
functions that ensure type safety under symmetric multiple
dispatch in an object-oriented language with multiple inher-
itance, and we showed how to check these rules without
requiring the entire type hierarchy to be known, thus sup-
porting modularity and extensibility. In this work, we extend
these rules to a language that supports parametric polymor-
phism on both classes and functions.

In a multiple-inheritance language in which any type may
be extended by types in other modules, some overloaded
functions that might seem valid are correctly rejected by our
rules. We explain how these functions can be permitted in
a language that additionally supports an exclusion relation
among types, allowing programmers to declare “nominal
exclusions” and also implicitly imposing exclusion among
different instances of each polymorphic type. We give rules
for computing the exclusion relation, deriving many type
exclusions from declared and implicit ones.

We also show how to check our rules for ensuring the
safety of overloaded functions. In particular, we reduce the
problem of handling parametric polymorphism to one of
determining subtyping relationships among universal and
existential types. Our system has been implemented as part
of the open-source Fortress compiler.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—classes
and objects, inheritance, modules, packages, polymorphism

General Terms Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’11 October 22–27, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Keywords object-oriented programming, multiple dispatch,
symmetric dispatch, multiple inheritance, overloading, mod-
ularity, methods, multimethods, static types, run-time types,
ilks, components, separate compilation, Fortress, meet rule

1. Introduction
A key feature of object-oriented languages is dynamic dis-
patch: there may be multiple definitions of a function (or
method) with the same name—we say the function is over-
loaded—and a call to a function of that name is resolved at
run time based on the “run-time types”—we use the term
ilks—of the arguments, using the most specific definition
that is applicable to arguments having those particular ilks.
With single dispatch, a particular argument is designated as
the receiver, and the call is resolved only with respect to that
argument. With multiple dispatch, the ilks of all arguments
to a call are used to resolve the call. Symmetric multiple dis-
patch is a special case of multiple dispatch in which all ar-
guments are considered equally when resolving a call.

Multiple dispatch provides a level of expressivity that
closely models standard mathematical notation. In particu-
lar, mathematical operators such as + and and [and es-
pecially · and ⇥ have different definitions depending on the
“types” (or even the number) of their operands; in a language
with multiple dispatch, it is natural to define these operators
as overloaded functions. Similarly, many operations on col-
lections such as append and zip have different definitions
depending on the ilks of two or more arguments.

In an object-oriented language with symmetric multiple
dispatch, some restrictions must be placed on overloaded
function definitions to guarantee type safety. For example,
consider the following overloaded function definitions:

f(a: Object, b: Z): Z = 1

f(a: Z, b: Object): Z = 2

To which of these definitions ought we dispatch when f is
called with two arguments of ilk Z ? (We assume that Z is
a subtype of Object , written Z <: Object .)f(Z,Z)?

Fortress supported symmetric multiple dispatch. Symmetry here means that the receiver of the method is treated as
any argument.

Examples from the paper.

In the above, the two methods definitions are such that it is possible to write a call that is ambiguous. Fortress
should rule this out.

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA11

Fortress

Type Checking Modular Multiple Dispatch with Parametric
Polymorphism and Multiple Inheritance

Eric Allen
Oracle Labs

eric.allen@oracle.com

Justin Hilburn
Oracle Labs

justin.hilburn@oracle.com

Scott Kilpatrick
University of Texas

at Austin
scottk@cs.utexas.edu

Victor Luchangco
Oracle Labs

victor.luchangco@oracle.com

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

David Chase
Oracle Labs

david.r.chase@oracle.com

Guy L. Steele Jr.
Oracle Labs

guy.steele@oracle.com

Abstract
In previous work, we presented rules for defining overloaded
functions that ensure type safety under symmetric multiple
dispatch in an object-oriented language with multiple inher-
itance, and we showed how to check these rules without
requiring the entire type hierarchy to be known, thus sup-
porting modularity and extensibility. In this work, we extend
these rules to a language that supports parametric polymor-
phism on both classes and functions.

In a multiple-inheritance language in which any type may
be extended by types in other modules, some overloaded
functions that might seem valid are correctly rejected by our
rules. We explain how these functions can be permitted in
a language that additionally supports an exclusion relation
among types, allowing programmers to declare “nominal
exclusions” and also implicitly imposing exclusion among
different instances of each polymorphic type. We give rules
for computing the exclusion relation, deriving many type
exclusions from declared and implicit ones.

We also show how to check our rules for ensuring the
safety of overloaded functions. In particular, we reduce the
problem of handling parametric polymorphism to one of
determining subtyping relationships among universal and
existential types. Our system has been implemented as part
of the open-source Fortress compiler.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—classes
and objects, inheritance, modules, packages, polymorphism

General Terms Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’11 October 22–27, 2011, Portland, Oregon, USA.
Copyright c� 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Keywords object-oriented programming, multiple dispatch,
symmetric dispatch, multiple inheritance, overloading, mod-
ularity, methods, multimethods, static types, run-time types,
ilks, components, separate compilation, Fortress, meet rule

1. Introduction
A key feature of object-oriented languages is dynamic dis-
patch: there may be multiple definitions of a function (or
method) with the same name—we say the function is over-
loaded—and a call to a function of that name is resolved at
run time based on the “run-time types”—we use the term
ilks—of the arguments, using the most specific definition
that is applicable to arguments having those particular ilks.
With single dispatch, a particular argument is designated as
the receiver, and the call is resolved only with respect to that
argument. With multiple dispatch, the ilks of all arguments
to a call are used to resolve the call. Symmetric multiple dis-
patch is a special case of multiple dispatch in which all ar-
guments are considered equally when resolving a call.

Multiple dispatch provides a level of expressivity that
closely models standard mathematical notation. In particu-
lar, mathematical operators such as + and and [and es-
pecially · and ⇥ have different definitions depending on the
“types” (or even the number) of their operands; in a language
with multiple dispatch, it is natural to define these operators
as overloaded functions. Similarly, many operations on col-
lections such as append and zip have different definitions
depending on the ilks of two or more arguments.

In an object-oriented language with symmetric multiple
dispatch, some restrictions must be placed on overloaded
function definitions to guarantee type safety. For example,
consider the following overloaded function definitions:

f(a: Object, b: Z): Z = 1

f(a: Z, b: Object): Z = 2

To which of these definitions ought we dispatch when f is
called with two arguments of ilk Z ? (We assume that Z is
a subtype of Object , written Z <: Object .)f(Z,Z)?

Castagna et al. [4] address this problem in the context of
a type system without parametric polymorphism or multiple
inheritance by requiring every pair of overloaded function
definitions to satisfy the following properties: (i) whenever
the domain type1 of one is a subtype of the domain type
of the other, the return type of the first must also be a
subtype of the return type of the second; and (ii) whenever
the domain types of the two definitions have a common
lower bound (i.e., a common nontrivial2 subtype), there is
a unique definition for the same function whose domain
type is the greatest lower bound of the domain types of
the two definitions. Thus, to satisfy the latter property for
the example above, the programmer must provide a third
definition, such as:

f(a: Z, b: Z): Z = 3

We call this latter property the Meet Rule because it is
equivalent to requiring that the definitions for each over-
loaded function form a meet semilattice partially ordered by
the subtype relation on their domain types, which we call the
more specific than relation.3 The Meet Rule guarantees that
there are no ambiguous function calls at run time.

We call the first property above the Return Type Rule (or
Subtype Rule). It ensures type preservation when a function
call is resolved at run time (based on the ilks of the argument
values) to a different (and more specific) definition than the
most specific one that could be determined at compile time
(based on the types of the argument expressions).

In this paper, we give new Meet and Return Type Rules
that ensure safe overloaded functions in a language that sup-
ports symmetric multiple dispatch, multiple inheritance, and
parametric polymorphism for both types and functions (i.e.,
generic types and generic functions), as does the Fortress
language we are developing [1]. We prove that these rules
guarantee type safety. This extends previous work [2] in
which we gave analogous rules, and proved the analogous
result, for a core of Fortress that does not support generics.

To handle parametric polymorphism, it is helpful to have
an intuitive interpretation for generic types and functions.
One way to think about a generic type such as ListJT K (a list
with elements of type T —type parameter lists in Fortress
are delimited by white square brackets) is that it represents
an infinite set of ground types: ListJObjectK (lists of ob-
jects), ListJStringK (lists of strings), ListJZK (lists of inte-
gers), and so on. An actual type checker must have rules for
working with uninstantiated (non-ground) generic types, but
for many purposes this model of “an infinite set of ground

1 The “domain type” of a function definition is the type of its parameter.
Hereafter we consider every function to have a single parameter; the ap-
pearance of multiple parameters denotes a single tuple parameter.
2 A type is a nontrivial subtype of another type if it is not the trivial “bottom”
type defined in the next section.
3 Despite its name, this relation, like the subtype relation, is reflexive: two
function definitions with the same domain type are each more specific than
the other. In that case, we say the definitions are equally specific.

types” is adequate for explanatory purposes. Not so, how-
ever, for generic functions.

For some time during the development of Fortress, we
considered an interpretation of generic functions analogous
to the one above for generic types; that is, the generic func-
tion definition:4

tailJXK
`
x: ListJXK

´
: ListJXK = e

should be understood as if it denoted an infinite set of
monomorphic definitions:

tail

`
x: ListJObjectK

´
: ListJObjectK = e

tail

`
x: ListJStringK

´
: ListJStringK = e

tail

`
x: ListJZK

´
: ListJZK = e

. . .

The intuition was that for any specific function call, the usual
rule for dispatch would then choose the appropriate most
specific definition for this (infinitely) overloaded function.

Although that intuition worked well enough for a sin-
gle polymorphic function definition, it failed utterly when
we considered multiple function definitions. For example, a
programmer might want to provide definitions for specific
monomorphic special cases, as in:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tail

`
x: ListJZK

´
: ListJZK = e3

If the interpretation above is taken seriously, this would be
equivalent to:

tail

`
x: ListJObjectK

´
: ListJObjectK = e1

tail

`
x: ListJStringK

´
: ListJStringK = e1

tail

`
x: ListJZK

´
: ListJZK = e1

. . .

tail

`
x: ListJZK

´
: ListJZK = e3

which is ambiguous for calls in which the argument is of
type ListJZK .

It gets worse if the programmer wishes to handle an
infinite set of cases specially. It would seem natural to write:

tailJXK
`
x: ListJXK

´
: ListJXK = e1

tailJX <: NumberK
`
x: ListJXK

´
: ListJXK = e2

to handle specially all cases where X is a subtype of
Number . But the model would regard this as an overloaded
function with an infinite number of ambiguities.

It does not suffice to “break ties” by choosing the instan-
tiation of the more specific generic definition. Consider the
following overloaded definitions:

quuxJXK(x: X): Z = 1

quux (x: Z): Z = 2

Intuitively, we might expect that the call quux (x) evaluates
to 2 whenever the ilk of x is a subtype of Z , and to 1

4 The first pair of white square brackets delimits the type parameter decla-
rations, but the other pairs of white brackets provide the type arguments to
the generic type List .

The solution here is to enforce the Meet Rule (from Guiseppe Castagna’s work) where you define a method that is the
greatest lower bound of the tuple of argument types that have a non-empty intersection and where they are not
directly related by subtyping.

Allen, Hilburn, Kilpatrick, Luchangco, Ryu, Chase, Steele: Type checking modular multiple
dispatch with parametric polymorphism and multiple inheritance. OOPSLA11

Fortress

3. Overloading Rules and Resolution
In this section, we define the “meaning” of overloaded
generic functions; that is, we define how a call to such a
function is dispatched, and we give rules for overloaded
declarations that ensure that our dispatch procedure is well-
defined, as Castagna et al. do for overloaded monomorphic
functions [4]. The basic idea is simple: For any set of over-
loaded function declarations, we define a partial order on the
declarations—we call this order the specificity relation—and
dispatch any call to the most specific declaration applicable
to the call, based on the ilks of the arguments. The rules for
valid overloading ensure that the most specific declaration is
well-defined (i.e., unique) for any call (assuming that some
declaration is applicable to the arguments), and that the re-
turn type of a declaration is a subtype of the return type of
any less specific declaration. The latter property is necessary
for type preservation for dynamic dispatch: a more specific
declaration may be applicable to the ilks of the arguments
than the most specific declaration applicable to the static
types of the argument expressions, so we must ensure that
the return type of this more specific declaration is a subtype
of the return type used to type check the program (i.e., at
compile time).

Specifically, we define three rules:9 the No Duplicates
Rule ensures that no two declarations are equally specific;
the Meet Rule ensures that the set of overloaded declarations
form a meet semilattice under the specificity relation; and
the Return Type Rule ensures type preservation for dynamic
dispatch. We prove that any set of overloaded function dec-
larations satisfying these three properties is safe, even if the
class table is extended (Theorem 1).

3.1 Specificity of Generic Function Declarations
For monomorphic function declarations, the specificity rela-
tion is just subtyping on their domain types. However, the
domain type of a generic function declaration may include
type parameters of the declaration, and type parameters of
distinct declarations bear no particular relation to each other.
Furthermore, the subtyping relation between their domain
types of may depend on the instantiation of their type pa-
rameters, as illustrated by foo and quux in the introduction.

Instead of using subtyping, we adopt the following intu-
itive notion of specificity: One declaration is more specific
than another if the second is applicable to every argument
that the first is applicable to. That is, for any d1, d2 2 D

f

,
d1 is more specific than d2 (written d1 � d2) if d1 2 Df

(T)
implies d2 2 D

f

(T) for every well-formed type T . Neatly,
this turns out to be equivalent subtyping over domain types
where the domain type of a generic function declaration is
interpreted as an existential type [3]; we use that formulation
to mechanically check the overloading rules (see Section 6).

9 The meet rule of Castagna et al. requires the existence and uniqueness of
the meet. We split these into two rules.

This definition of specificity introduces a type inference
problem for dynamic dispatch: If d2 is the most specific dec-
laration applicable to the static types of the argument expres-
sions, and d1 � d2 is the most specific declaration applicable
to the ilks of the arguments, then the type parameter instanti-
ations derived by static type inference are relevant to d2, but
not to d1. Because the call is dispatched to d1, we require
type parameters for d1 to be inferred dynamically. Showing
how to do so is beyond the scope of this paper.

3.2 Overloading Rules
Given a class table T , a set D of generic function declara-
tions for T , and a function name f , the set D

f

is valid (or is
a valid overloading) if it satisfies the following three rules:

No Duplicates Rule For every d1, d2 2 Df

, if d1 � d2 and
d2 � d1 then d1 = d2.

Meet Rule For every d1, d2 2 Df

, there exists a declaration
d0 2 D

f

(possibly d1 or d2) such that, d0 � d1 and
d0 � d2 and d0 is applicable to any type T 2 T to which
both d1 and d2 are applicable.

Return Type Rule For every d1, d2 2 D
f

with d1 � d2,
and every type T 6⌘ Bottom such that d1 2 D

f

(T), if
an instance f S2 :T2 of d2 is applicable to T , then there
is an instance f S1 :T1 of d1 that is applicable to T with
T1 <: T2.

The No Duplicates Rule forbids distinct declarations
from being equally specific (i.e., each more specific than
the other).

The Meet Rule requires every pair of declarations to have
a disambiguating declaration, which is more specific than
both and applicable whenever both are applicable. (If one
of the pair is more specific than the other, then it is the
disambiguating declaration.)

The Return Type Rules guarantees that whenever the type
checker might have used an instance of a declaration d2 to
check a program, and then a more specific declaration d1 is
selected by dynamic dispatch, then there is some instance of
d1 that is applicable to the argument and whose return type
is a subtype of the return type of the instance of d2 the type
checker used, which is necessary for type preservation, as
discussed above.

SinceBottom is well-formed, and tuple types with differ-
ent numbers of arguments have no common subtype other
than Bottom , the Meet Rule requires that an overloaded
function with declarations that take different numbers of
arguments have a declaration applicable only to Bottom .
Such a declaration would never be applied (because no value
belongs to Bottom), and it cannot be written in Fortress
(because Bottom is not first-class). To avoid this technical-
ity, we implicitly augment every set D

f

with a declaration
f Bottom:Bottom. This declaration is strictly more specific
than any declaration that a programmer can write, and its re-

The key definition in the paper: what does it mean for a set of methods to be sound? They have to abide by the
following three rules. The more specific relation implies subtyping. Checking this can be quite expensive as alluded
to by Guy Steele in his JuliaCon talk.

Qui embrasse trop, mal étreint

Failure 1: Type soundness still elusive
Failure II: Performance goals unmet
Failure III: Empirical validation not complete

Fortress

The three failures of Fortress were that (1) the goal of a sound type system for separate compilation of multi methods
was never reached, (2) the implementation ran on top of a JVM but was never performant. [Aparte: my one
contribution to X10 was to argue to Vivek Sarkar in favor of a subset of C++ that aligned with Java and build the first
implementation of X10 on top of a JVM, but I digress.] Performance was just something the team did not get to. Due
to the time taken by (1).

Finally, and most important, the type system was designed based on a vision of what would be useful and what could
be adopted by users- Yet, since the language was not at a point where it could deliver the kind of performance that
users would find acceptable, Fortress could not be empirically evaluated. There was never feedback from users into
the design.

Now let’s turn our attention to Julia. A language designed to appeal to the same general audience. A language built
around the concept of multiple dispatch. But with much less ambitious goals. It has a vanilla syntax, no parallelism,
no objects, no type system.

My interest in Julia is accidental and geographic. I have been working on R for a few years. When I moved to Boston in
2014, I gave a talk at an R meetup and met the Julia team afterwards. Conversations led to a collaboration.

I promised to help with writing an overview paper on Julia. Our first step was to try to write down the couple of rules
needed to define the subtype relation. And six month later…

…a dynamic language for high-performance scientific computing

…open source since its inception by Jeff Bezanson circa 2012

is…

Dynamic yes yes
Vectorized yes yes

Memory management automatic automatic
Implementation interpreted native

Type declarations — user-defined generic types

Meta-programming substitute() macros
Parameter passing by promise by value

Julia is a dynamic OO language for scientific computing; available since 2012; A quickly growing ecosystem with 6000+
packages, open source; Like R it is dynamic, it can operate on entire vectors and matrices, and is memory safe with a garbage
collector

0

25

50

75

100

bi
na
ry
_t
re
es

fa
nn
ku
ch

fa
st
a

m
an
de
lb
ro
t

nb
od
y

pi
di
gi
ts

re
ge
x

re
vc
om

p

sp
ec
tra
ln
or
m

lang
C
Julia
PythonPython
Julia

C

is…
…surprisingly fast

These are numbers obtained by Ben Chung on the Language Benchmark Game. These are small programs that are not
necessarily representative of the targets of various languages, but they do give a first approximation of language
implementations. The Julia code was not overly optimized. The results are normalized to the performance of Python
(dynamic and interpreted). These are the sequential benchmarks. Typically Julia runs <2x of C. The Julia compiler
represents a relatively small implementation effort compared to, e.g., Java or JavaScript. How is this possible?

Focus on polymorphism and performance

Use R’s colMeans function as running example

Show same level of dynamism and
polymorphism without sacrificing performance

https://github.com/janvitek/can_R_learn_from_Julia.git

is…

While Julia does not target statistics, I will demonstrate that it is extensible in ways that permit it to solve the same problems as
R; To this end I will take an example, the colMeans function, which I will quickly review and then proceed to described two
implementations, one in R and one in C for efficiency. Then I will show you how to replicate colMeans in Julia with less code and
without having to switch languages; These practical example will highlight some of the key features of Julia. All code presented
today is on Github

x = 1:100
dim(x) = c(50,2)
colMeans(x)
[1] 25000.5 75000.5

x = complex(r=1:60,i=1:60)
dim(x) = c(10,3,2)
colMeans(x)
 [,1] [,2]
[1,] 5.5+ 5.5i 35.5+35.5i
[2,] 15.5+15.5i 45.5+45.5i
[3,] 25.5+25.5i 55.5+55.5i

colMeans

The strengths of R lie in how easy it is for end-users to specify complex operations with small vocabulary of reusable
abstractions. colMeans is a good example, this function works just as well on two dimensional vectors of integer or three
dimensional vectors of complex values. polymorphism helps end users, as they don’t need to learn many different functions,
and library developers who can write a single version of any code regardless of the types being processed. We now turn to how
this is achieved in the library.

colMeans = function(x, na=FALSE, dims=1L) {  
 dn = dim(x)
 id = 1:dims
 n = prod(dn[id])
 dn = dn[-id]
 pdn = prod(dn)
 z = if (is.complex(x))
 .Internal(colMeans(Re(x),n,pdn,na))+(0+1i)*  
 .Internal(colMeans(Im(x),n,pdn,na))
 else .Internal(colMeans(x,n,pdn,na))
 z
}

colMeans

The default implementation of colMeans has a part that is truly polymorphic, where we compute how to traverse the vector and
which dimensions to aggregate; Already in the R code, a part that dispatch on the type of the vector. Complex or not. In either
case, bottoming out in an .Internal call.

SEXP attribute_hidden do_colsum(SEXP call, SEXP op, SEXP args, SEXP rho) {

 SEXP x, ans = R_NilValue;

 int type;

 Rboolean NaRm, keepNA;

 checkArity(op, args);

 x = CAR(args); args = CDR(args);

 R_xlen_t n = asVecSize(CAR(args)); args = CDR(args);

 R_xlen_t p = asVecSize(CAR(args)); args = CDR(args);

 NaRm = asLogical(CAR(args));
 if (n == NA_INTEGER || n < 0)

 error(_("invalid '%s' argument"), "n");

 if (p == NA_INTEGER || p < 0)

 error(_("invalid '%s' argument"), "p");

 if (NaRm == NA_LOGICAL) error(_("invalid '%s' argument"), "na.rm");
 keepNA = !NaRm;

 int OP = PRIMVAL(op);

 switch (type = TYPEOF(x)) {

 case LGLSXP: break;
 case INTSXP: break;

 case REALSXP: break;

 default:

 error(_("'x' must be numeric"));

 }

 if (OP == 0 || OP == 1) { /* columns */

 PROTECT(ans = allocVector(REALSXP, p));

 for (R_xlen_t j = 0; j < p; j++) {

 R_xlen_t cnt = n, i;

 LDOUBLE sum = 0.0;
 switch (type) {

 case REALSXP: {

 double *rx = REAL(x) + (R_xlen_t)n*j;

 if (keepNA)

 for (sum = 0., i = 0; i < n; i++) sum += *rx++;
 else

 for (cnt = 0, sum = 0., i = 0; i < n; i++, rx++)

 if (!ISNAN(*rx)) {cnt++; sum += *rx;}

 break;

 }
 case INTSXP: {

 int *ix = INTEGER(x) + (R_xlen_t)n*j;

 for (cnt = 0, sum = 0., i = 0; i < n; i++, ix++)

 if (*ix != NA_INTEGER) {cnt++; sum += *ix;}

 else if (keepNA) {sum = NA_REAL; break;}
 break;

 }

 case LGLSXP: {

 int *ix = LOGICAL(x) + (R_xlen_t)n*j;

 for (cnt = 0, sum = 0., i = 0; i < n; i++, ix++)
 if (*ix != NA_LOGICAL) {cnt++; sum += *ix;}

 else if (keepNA) {sum = NA_REAL; break;}

 break;

 }

 }

 if (OP == 1) sum /= cnt; /* gives NaN for cnt = 0 */
 REAL(ans)[j] = (double) sum;

 }

 } else { /* rows */

PROTECT(ans = allocVector(REALSXP, n));

/* allocate scratch storage to allow accumulating by columns

 to improve cache hits */

int *Cnt = NULL;

LDOUBLE *rans;

if(n <= 10000) {
 R_CheckStack2(n * sizeof(LDOUBLE));

 rans = (LDOUBLE *) alloca(n * sizeof(LDOUBLE));

 Memzero(rans, n);

} else rans = Calloc(n, LDOUBLE);

if (!keepNA && OP == 3) Cnt = Calloc(n, int);

for (R_xlen_t j = 0; j < p; j++) {

for (R_xlen_t j = 0; j < p; j++) {
 LDOUBLE *ra = rans;

 switch (type) {

 case REALSXP:
 {

double *rx = REAL(x) + (R_xlen_t)n * j;

if (keepNA)
 for (R_xlen_t i = 0; i < n; i++) *ra++ += *rx++;

else

 for (R_xlen_t i = 0; i < n; i++, ra++, rx++)

if (!ISNAN(*rx)) {
 *ra += *rx;

 if (OP == 3) Cnt[i]++;

}
break;

 }

 case INTSXP: {
int *ix = INTEGER(x) + (R_xlen_t)n * j;

for (R_xlen_t i = 0; i < n; i++, ra++, ix++)

 if (keepNA) {
if (*ix != NA_INTEGER) *ra += *ix;

else *ra = NA_REAL;

 }
 else if (*ix != NA_INTEGER) {

*ra += *ix;

if (OP == 3) Cnt[i]++;
 }

break;

 }
 case LGLSXP:

 {

int *ix = LOGICAL(x) + (R_xlen_t)n * j;
for (R_xlen_t i = 0; i < n; i++, ra++, ix++)

 if (keepNA) {

if (*ix != NA_LOGICAL) *ra += *ix;

else *ra = NA_REAL;
 }

 else if (*ix != NA_LOGICAL) {

*ra += *ix;
if (OP == 3) Cnt[i]++;

 }

break;
 }

 }

}
if (OP == 3) {

 if (keepNA)

for (R_xlen_t i = 0; i < n; i++) rans[i] /= p;
 else

for (R_xlen_t i = 0; i < n; i++) rans[i] /= Cnt[i];

}
for (R_xlen_t i = 0; i < n; i++) REAL(ans)[i] = (double) rans[i];

if (!keepNA && OP == 3) Free(Cnt);
if(n > 10000) Free(rans);

 }

 UNPROTECT(1);

 return ans;

}

colMeans
Most of the
behavior

implemented
in C in

do_colsum()

Performance concern force many R library developers to resort to C to write loopy code. This is challenging as C is more error
prone and is opaque to many end users. The do_colsum() function implements the behavior of colMeans and several related
functions. At a high level, the C code consist of three stylized parts

SEXP attribute_hidden
do_colsum(SEXP call, SEXP op,
 SEXP args, SEXP rho) {
 SEXP x, ans = R_NilValue;
 int type;
 Rboolean na;
 checkArity(op, args);
 x = CAR(args);
 args = CDR(args);
 R_xlen_t n=asVecSize(CAR(args));
 args = CDR(args);
 R_xlen_t p=asVecSize(CAR(args));
 args = CDR(args);
 na = !asLogical(CAR(args));

The first part is rather tedious as it must extract arguments passed by the caller in R. This is typically not performance critical —
at least for larger arrays.

 if (n == NA_INTEGER || n < 0)
 error(_("invalid '%s'"), "n");
 if (p == NA_INTEGER || p < 0)
 error(_("invalid '%s'"), "p");
 if (na == NA_LOGICAL)

 error(_("invalid '%s'"), "na.rm");

 int OP = PRIMVAL(op);
 switch (type = TYPEOF(x)) {
 case LGLSXP: break;
 case INTSXP: break;
 case REALSXP: break;
 default:
 error(_("'x' must be numeric"));
 }

The second part implements sanity checks to prevent the C code from crashing and thus avoid vulnerabilities. Again not
performance critical. The switch statement makes sure that the argument is of one of the type for which this makes sense.

 PROTECT(ans=allocVector(REALSXP,p));
 for(R_xlen_t j=0; j<p; j++) {
 R_xlen_t cnt=n, i;
 LDOUBLE sum = 0.0;
 switch (type) {
 case REALSXP: {
 double *rx = REAL(x)+ n*j;
 if(na)
 for(sum=0,i=0;i<n;i++)
 sum += *rx++;
 else
 for(cnt=sum=i=0;i<n;i++,rx++)
 if(!ISNAN(*rx)){
 cnt++; sum += *rx;
 }
 break;

The last part has a switch statement with a loop for computing the mean for each element type. This has to be fast. To sum up:
R solution is polymorphic in the end user code, but as we get deeper in, the library the code becomes less elegant due to the
special cases that have to be added for all variants.

The inner loop performs the type specific operations. Depending if the user has requested special handling of missing values or
not, the code iterates over the array summing values and possibly counting the number of non-NA observations.

How can we do the same thing in Julia? One step at a time, by writing code that is obviously correct

function colMeans(x, na=true, dims=1)
 dn = size(x)
 id = [1:dims;] # 1:dims
 n = prod(dn[id])
 dn = extract(dn,id) # dn[-id]
 pdn = prod(dn)
 res = zeros(pdn) # 0
 for j = 0:pdn-1 # for(j in 0:pdn-1) {
 sum = z(x[1]) # 0
 cnt = 0
 off = j*n
 for i = 1:n # for(i in 1:n) {
 v = x[i+off]
 cnt += 1 # cnt = cnt + 1
 sum += v # sum = sum + v  
 end
 res[j+1] = sum/cnt
 end
 res
end

The most straightforward Julia implementation is one that could be written in R/ It has the advantage of being elegant and not
requiring any special casing. But does it perform well enough? But is it as polymorphic? Let’s look at this in a Jupyter notebook.

DEMO!

z(x::AbstractFloat) = 0.0
z(x::Complex) = complex(0.0,0.0)
z(x) = 0

sum = z(x[1]) # 0

Julia functions are multi-dispatched
Types part of language syntax
To avoid boxing, variables initialized with the “right” type

Multi-Dispatch

Julia uses a native compiler, it generates intermediate code compiled on the fly by LLVM. Speed comes from a combination of
specialization, for each call to a function with different argument types, a new version of the function is generated, and static
analysis, types are propagated through the function. This works extremely well. But static analysis can get confused. For
instance, if we assign our sum variable an initial value of a different type than the result of addition, the compiler will “box” the
variable, allocate it on the heap. To avoid this we specialize the initialization of the variable.

The z() function has different behavior depending on the type vector element. There is one result for all floating point types, one
for complex, and one for everything else.

is_na{T}(x::T) =
 x == typemin(T)

typemin{T<:Complex}(::Type{T}) =
 T(-NaN)

Julia lacks a builtin missing value; we steal
smallest member of each data type.
Generic functions can operate over types; type
variables can be bounded.

Generics

Typemin is already defined for Integer and Float, we need to add one for Complex. The version for Complex returns one NaN.

The function is_na specializes on the type and compares the argument to the proper typemin.

 if (!is_na(v))
 …
 elseif na_rm
 sum = typemin(typeof(x[1]))

Other changes to support missing values are
straightforward.

Changes to the rest of the code to support NAs are minimal, we must check if an array element is missing and if it is either
ignore it or replace sum with the right kind of NA.

primitive type ThreeWay 8 end
ThreeWay() = reinterpret(ThreeWay, 0xff)
ThreeWay(x::Bool) = reinterpret(ThreeWay, x)

const true3 = ThreeWay(true)
const false3 = ThreeWay(false)
const na3 = ThreeWay()

typemin(::Type{ThreeWay}) = na3

==(x::ThreeWay, y::Bool) =
 ifelse(x==na3, false, Bool(x)==y)

+(x::Union{Int, ThreeWay}, y:: ThreeWay) =
 Int(x) + Int(y)

User Defined Types

This leaves us with one challenge: how to deal with missing values for logical. Here we are going to use one of the rather
impressive capacities of Julia, we will define a primitive data type that extends Bool with a third value. To do the job we need to
define constants true, false and na, as well as define a typemin function. Lastly we need to add variants for the comparison and
addition. What is remarkable is that this type will be treated as a builtin type from now on. It can be compactly allocated in 8 bits
and does not require boxing.

Reinterpret turns a value of one type into a value of another type without any checking. Certainly not typesafe.

Julia achieves polymorphism and performance with a
combination of three features

1. Specialization and runtime code generation

2. User defined generic data types

3. Efficient multi-dispatch

To sum up the DEMO. Is a bit slower than R/C for simple type but 2x faster for Complex. R is 60 times slower than C (and
without the bytecode compiler 600x).

MULTIPLE
DISPATCH

Now back to what caused Fortress so much distress. Multi dispatch.

OVERLOADING * (SELECTED ENTRIES OUT OF 181 INSTANCES)

*(x::Bool,y::Bool) = x & y

*(x::Number,r::Range) = range(x*first(r),x*st…

*(x::T,y::T) where T<:Union{Int128,UInt128} = …

Three overloadings of the multiplication operator. The last one works only on either two signed or two unsigned values but not a
combination.

OVERLOADING * (SELECTED ENTRIES OUT OF 181 INSTANCES)

*(A::AbstractArray{T,2},

 B::AbstractArray{S,2}) where {T, S}) =

 …matrix multiplication code…  

*(A::AbstractArray{T,2} where T,

 D::Diagonal) =

 …clever diagonal matrix multiplication code…

*(A::Hermitian{Complex{Float64},
 SparseMatrixCSC{Complex{Float64},Ti}},
 B::Union{SparseMatrixCSC{Complex{Float64},Ti},
 SparseVector{Complex{Float64},Ti}}) where Ti

 …even fancier matrix multiplication code…

And some fancier overloadings…

OVERLOADING * (SELECTED ENTRIES OUT OF 181 INSTANCES)

*(X::Union{ReshapedArray{TX,2,A,MI} where
MI<:Tuple{Vararg{SignedMultInverse{Int64},N} where N} where
A<:DenseArray, DenseArray{TX,2}, SubArray{TX,2,A,I,L} where
L} where I<:Tuple{Vararg{Union{AbstCartesianIndex, Int64,
Range{Int64}},N} where N} where
A<:Union{ReshapedArray{T,N,A,MI} where
MI<:Tuple{Vararg{SignedMultInverse{Int64},N} where N} where
A<:DenseArray where N where T, DenseArray},

 A::SparseMatrixCSC{TvA,TiA}) where {TX, TvA, TiA}

 …super fancy matrix multiplication code…

… all the way to the ridiculous.

h(x::Int64, y::Any) = 1

h(x::Any, y::Int64) = 2

h(3,4)

STILL A DYNAMIC LANGUAGE

> ERROR: MethodError: h(::Int64, ::Int64) is ambiguous.

> Candidates:

> h(x, y::Int64) in Main at REPL[7]:1

> h(x::Int64, y) in Main at REPL[6]:1

> Possible fix, define

> h(::Int64, ::Int64)

Instead of preventing ambiguities they are detected. This happens once per call-site/argument combination.

TYPES ARE NOMINAL

Relations between types are declared by the programmer and
not inferred from representation

Enables a function to behave differently on types even if these share the
same representation (e.g. Bool & Int8)

 abstract type Integer <: Real end

 primitive type Bool <: Integer 8 end

 struct PointRB <: Any
 x::Real
 y::Bool
 end

No representation specified

Representation specified

Abstract Type

Concrete Type

And now a little bit about the type system. The only types that can be instantiated are concrete types. They are also the only
types that can have fields. To ease unboxing, concrete types have no subtypes.

TYPES ARE PARAMETRIC

Datatypes can be parametrized by types & values of primitive types

struct Point{T} <: Any
 x::T
 y::T
end

struct Rational{T<:Integer} <: Real
 num::T
 den::T
end

abstract type Vector{T} <: Array{T,1} end

UNION AND UNIONALL

Union is an abstract type which includes as objects all instances of
any of its components

Union of types can be iterated:

 possibly with lower and upper bounds:

Union{Point{Int64}, Point{Int32}, Point{Int16}}

Point{T} where T

Vector{T} where T <: Integer

UNIONALL refers to types with where clauses.

PARAMETRIC TYPES ARE INVARIANT

Int64 <: Signed

Pragmatic design choice: values have different representation in memory

➤ the former can be represented as a pair of 64-bit values
➤ the latter is a pair of pointers to individually allocated Signed objects

Point{Int64} </: Point{Signed}

struct Point{T} <: Any
 x::T
 y::T
end

All parametric types are invariant — again for unboxing.

TUPLES: ABSTRACTIONS OF FUNCTION PARAMETERS

Tuple{Int, Float, Any}

Subtyping is covariant for tuples:
➤ enables sorting of method interfaces according to <:

Tuples are only used for function arguments — they cannot be created by user code.

CORPUS
ANALYSIS

We wanted to convince ourselves that going through the pain of formalizing the relation was worthwile. I.e. this was something
that reflected actual needs rather than over engineering.

METHODOLOGY

Take the 100 most starred Julia packages on GitHub

Parse source code of each package, and extract:

➤ the method signatures

➤ the declared types

DO PROGRAMMERS DECLARE THEIR OWN TYPES?

Total: 1920 type declarations

 of which: 784 parametric, and 369 parametric with non trivial bounds

0
50

10
0

15
0

IJ
ul
ia

H
ttp

Se
rv

er
Pr

og
re

ss
M

et
er

M
ux

N
Lo

pt
W

eb
So

ck
et

s
R

D
at

as
et

s
M

ac
ro

To
ol

s
Q

ua
nd

l
Co
ve
ra
ge

M
us

ta
ch

e
N

BI
nc

lu
de

PG
M

Ba
ck

pr
op

N
eu

ra
lN

et
Fa

st
G

au
ss

Q
ua

dr
at

ur
e

Ye
pp

p
Su

nd
ia

ls
Li

nt
Lu

xo
r

G
itH

ub
D

oc
O

pt
M

at
hP

ro
gB

as
e

Pl
ay

gr
ou

nd
O

hM
yR

EP
L

St
an G
R

ZM
Q

Be
nc

hm
ar

kT
oo

ls
Pl

ot
ly

JS
C

om
pa

t
Li

gh
tG

ra
ph

s
D

at
aF

lo
w

Pa
ra

m
et

er
s

Ta
ro

C
on

da
La
zy C
xx

Re
ac
tiv
e

C
on

tro
lS

ys
te

m
s

D
ag

ge
r

D
oc

um
en

te
r

G
ad

fly
Ite

ra
to

rs
In

te
ra

ct
O

nl
in

eS
ta

ts
Te

ns
or

O
pe

ra
tio

ns
Ar

gP
ar

se
DS
P

C
xx

W
ra

p
Ju

lia
D

B
JS
O
N

Ju
M
P

Q
ua
nt
um

O
pt
ic
s

R
ea

dS
ta

t
Ls

qF
it

Ite
ra

tiv
eS

ol
ve

rs
Di
st
an
ce
s

Py
Ca
ll

R
ev

er
se

D
iff

Da
ta
Fr
am

es
St

at
ic

Ar
ra

ys
Pr

ot
oB

uf
Ca
lc
ul
us

Fi
le

IO
M

AT
Hy
po
th
es
is
Te
st
s

M
ea

su
re

m
en

ts
JL

D
Q
ua
nt
Ec
on

G
LM

M
LB
as
e

Ja
va

C
al

l
Da
ta
St
ru
ct
ur
es

St
at
sB
as
e

O
D

E
H

D
F5

Kl
ar
a

D
iff

er
en

tia
lE

qu
at

io
ns

C
ub

at
ur

e
Q

ue
ry

Un
itf
ul

Im
ag
es

Di
st
rib
ut
io
ns

D
at

aA
rra

ys
Fu

nc
tio

na
lC

ol
le

ct
io

ns
Ap

pr
ox

Fu
n

G
PU

Ar
ra

ys
O

pt
im

C
ol

or
s

W
av

el
et

s
U

ni
co

de
Pl

ot
s

M
ul

tiv
ar

ia
te

St
at

s
Lo

ss
Fu

nc
tio

ns
De
ci
si
on
Tr
ee

Fo
rw
ar
dD
iff

Ax
is

Ar
ra

ys
Vo
ro
no
iD
el
au
na
y

M
ix
ed
M
od
el
s

D
at

aS
tre

am
s

In
te
rp
ol
at
io
ns

(a
) U

se
r d

ef
in

ed
 ty

pe
s

All Types

Parametric Types

Bounded Parametric Types

NO OF METHOD DECLARATIONS
590 9631387

0

100

200

300

B
ac
kp
ro
pN
eu
ra
lN
et

C
ov
er
ag
e

Fa
st
G
au
ss
Q
ua
dr
at
ur
e

H
ttp
Se
rv
er

IJ
ul
ia

M
ac
ro
To
ol
s

M
us
ta
ch
e

M
ux

N
BI
nc
lu
de

N
Lo
pt

PG
M

Pr
og
re
ss
M
et
er

Q
ua
nd
l

R
D
at
as
et
s

W
eb
So
ck
et
s

Ye
pp
p

Su
nd
ia
ls

Li
nt

Lu
xo
r

G
itH
ub

D
oc
O
pt

M
at
hP
ro
gB
as
e

Pl
ay
gr
ou
nd

O
hM

yR
EP

L
St
an G
R

ZM
Q

Be
nc
hm

ar
kT
oo
ls

Pl
ot
ly
JS

C
om

pa
t

Li
gh
tG
ra
ph
s

D
at
aF
lo
w

Pa
ra
m
et
er
s

Ta
ro

C
on
da

La
zy C
xx

R
ea
ct
iv
e

C
on
tro
lS
ys
te
m
s

D
ag
ge
r

D
oc
um

en
te
r

G
ad
fly

Ite
ra
to
rs

In
te
ra
ct

O
nl
in
eS
ta
ts

Te
ns
or
O
pe
ra
tio
ns

Ar
gP
ar
se

C
xx
W
ra
p

D
SP

Ju
lia
D
B

JS
O
N

Ju
M
P

Q
ua
nt
um

O
pt
ic
s

R
ea
dS
ta
t

Ls
qF
it

Ite
ra
tiv
eS
ol
ve
rs

D
is
ta
nc
es

Py
C
al
l

R
ev
er
se
D
iff

D
at
aF
ra
m
es

St
at
ic
Ar
ra
ys

Pr
ot
oB
uf

C
al
cu
lu
s

Fi
le
IO

M
AT

H
yp
ot
he
si
sT
es
ts

M
ea
su
re
m
en
ts

JL
D

Q
ua
nt
Ec
on

G
LM

M
LB
as
e

Ja
va
C
al
l

D
at
aS
tr
uc
tu
re
s

St
at
sB
as
e

O
D
E

H
D
F5

K
la
ra

C
ub
at
ur
e

D
iff
er
en
tia
lE
qu
at
io
ns

Q
ue
ry

U
ni
tfu
l

Im
ag
es

D
is
tr
ib
ut
io
ns

D
at
aA
rra
ys

Fu
nc
tio
na
lC
ol
le
ct
io
ns

Ap
pr
ox
Fu
n

G
PU

Ar
ra
ys

O
pt
im

C
ol
or
s

W
av
el
et
s

U
ni
co
de
Pl
ot
s

M
ul
tiv
ar
ia
te
St
at
s

Lo
ss
Fu
nc
tio
ns

D
ec
is
io
nT
re
e

Fo
rw
ar
dD
iff

Ax
is
Ar
ra
ys

Vo
ro
no
iD
el
au
na
y

M
ix
ed
M
od
el
s

D
at
aS
tre
am

s
In
te
rp
ol
at
io
ns

Va
ria
nt
s

2183

624
1113

807

9235

0
25

00
50

00
75

00

0%−20% 20%−40% 40%−60% 60%−80% 80%−100%
% of arguments with declared types

N
um

be
r o

f v
ar

ia
nt

s

ARE TYPED METHODS COMMON?

65% of method signatures are fully typed

20% are partly typed

15% have no types

So is Julia a dynamic language or a static one? The question is how much pain would it be to get to 100%

Also — a real type system would force users to deal with ambiguities … as in Fortress.

HOW COMPLEX ARE METHOD SIGNATURES

0

25

50

75

B
ac
kp
ro
pN
eu
ra
lN
et

C
ov

er
ag

e
Fa

st
G

au
ss

Q
ua

dr
at

ur
e

H
ttp

Se
rv

er
IJ

ul
ia

M
ac

ro
To

ol
s

M
us

ta
ch

e
M

ux
N

BI
nc

lu
de

N
Lo
pt

PG
M

Pr
og

re
ss

M
et

er
Q
ua
nd
l

R
D

at
as

et
s

W
eb

So
ck

et
s

Ye
pp

p
Su

nd
ia

ls
Li

nt
Lu

xo
r

G
itH

ub
D

oc
O

pt
M

at
hP

ro
gB

as
e

Pl
ay

gr
ou

nd
O

hM
yR

EP
L

St
an G
R

ZM
Q

Be
nc

hm
ar

kT
oo

ls
Pl

ot
ly

JS
C

om
pa

t
Li

gh
tG

ra
ph

s
D

at
aF

lo
w

Pa
ra

m
et

er
s

Ta
ro

C
on

da
La
zy C
xx

R
ea
ct
iv
e

C
on

tro
lS

ys
te

m
s

D
ag

ge
r

D
oc

um
en

te
r

G
ad

fly
Ite

ra
to

rs
In

te
ra

ct
O

nl
in

eS
ta

ts
Te

ns
or

O
pe

ra
tio

ns
Ar

gP
ar

se
C
xx
W
ra
p

D
SP

Ju
lia

D
B

JS
O
N

Ju
M
P

Q
ua
nt
um

O
pt
ic
s

R
ea

dS
ta

t
Ls

qF
it

Ite
ra

tiv
eS

ol
ve

rs
D
is
ta
nc
es

Py
C
al
l

R
ev

er
se

D
iff

D
at
aF
ra
m
es

St
at

ic
Ar

ra
ys

Pr
ot

oB
uf

C
al
cu
lu
s

Fi
le

IO
M

AT
H
yp
ot
he
si
sT
es
ts

M
ea

su
re

m
en

ts
JL

D
Q
ua
nt
Ec
on

G
LM

M
LB
as
e

Ja
va

C
al

l
D
at
aS
tr
uc
tu
re
s

St
at
sB
as
e

O
D

E
H

D
F5

K
la
ra

C
ub

at
ur

e
D

iff
er

en
tia

lE
qu

at
io

ns
Q

ue
ry

U
ni
tfu
l

Im
ag
es

D
is
tr
ib
ut
io
ns

D
at

aA
rra

ys
Fu

nc
tio

na
lC

ol
le

ct
io

ns
Ap

pr
ox

Fu
n

G
PU

Ar
ra

ys
O

pt
im

C
ol

or
s

W
av

el
et

s
U

ni
co

de
Pl

ot
s

M
ul

tiv
ar

ia
te

St
at

s
Lo

ss
Fu

nc
tio

ns
D
ec
is
io
nT
re
e

Fo
rw
ar
dD
iff

Ax
is

Ar
ra

ys
Vo
ro
no
iD
el
au
na
y

M
ix
ed
M
od
el
s

D
at

aS
tre

am
s

In
te
rp
ol
at
io
ns

%
 o

f v
ar

ia
nt

s

Is Complex

Contain Where Type

Contains Nontrivially Bounded Where Type

RECONSTRUCTING
THE SUBTYPE

RELATION

TYPES

t ::= Any | name | Union{t1..tn} | Tuple{t1..tn}
 | t{t1..tn} | t where t1<:T<:tn | T | Type{t}
 | DataType | Union | UnionAll

We ignore:

➤ Val: singleton types, would be easy to add

➤ VarArgs: add a lot of machinery (e.g. to count no of
arguments) without introducing new interesting features

SUBTYPING: STARTING POINTS

Parametric type application is invariant:

Tuples are covariant:

Subtyping union types, following types as set of values idea:

The empty union plays the role of the Bottom type

Foo{t1..tn} <: Foo{t'1..t'n} iff forall i, ti <: t’i and t’i <: ti

Tuple{t1..tn} <: Tuple{t'1..t'n} iff forall i, ti <: t'i

forall i, ti <: t'
Union{t1..tn} <: t'

exists i, t' <: ti
t' <: Union{t1..tn}

DISTRIBUTIVITY OF TUPLE WRT UNION

Cannot be derived from the previous rules.

 Only UnionRight applies but neither

 Tuple{Union{Int, String}, Int} <: Tuple{Int, Int}

 Tuple{Union{Int, String}, Int} <: Tuple{String, Int}

hold.

Tuple{Union{Int, String}, Int} <:
 Union{Tuple{Int,Int},

Tuple{String,Int}}

DISTRIBUTIVITY OF TUPLE WRT UNION

Castagna & Frisch: rewrite types in disjunctive normal form

Unsound for Julia due to invariance of type application:

 Vector{Union{Int, String}}

 Union{Vector{Int},Vector{String}}

 are unrelated.

Tuple{Union{Int, String}, Int} <:
 Union{Tuple{Int,Int},

Tuple{String,Int}}

DISTRIBUTIVITY OF TUPLE WRT UNION

Julia implementation relies on complex backtracking algorithm

Poor man solution: rewrite
 Tuple{Union{t1..tn}, t}
 into
 Union{Tuple{t1,t}..Tuple{tn,t}}

 for tuples at top-level

Tuple{Union{Int, String}, Int} <:
 Union{Tuple{Int,Int}, Tuple{String,Int}}

SUBTYPING UNIONALL

UnionAll types obey a forall /exists semantics as well

➤ forall types t'', t1<:t''<:t2, it holds that t[t''/T] <: t'

➤ exists a type t'', t1<:t''<:t2, such that t' <: t[t''/T]

t where t1<:T<:t2 <: t'

t' <: t where t1<:T<:t2

TYPE VARIABLES AND INVARIANCE

Invariance requires to check Int <: T and T <: Int

➤ in both cases T must have exists (right) semantics

For each variable, an environment keeps track

➤ the name

➤ the left or right semantics (L / R)

➤ the lower and upper bounds

Foo{Int} <: Foo{T} where T

FROM FORALL/EXISTS TO EXISTS/FORALL

Semantics of the judgment:

 exists one S such that forall T, Vector{Vector{T}} <: Vector{Vector{S}}

Tracking L/R is not enough: it misses

 the relative order of type application wrt variable introduction.

⊢ Vector{Vector{T} where T} </: Vector{Vector{S}} where S

But the rules we have until now do derive this judgment.

Idea: environment is kept sorted wrt order of introduction of variables

 whenever enter an invariant constructor, add a marker to the environment

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PLDI, 2018, For review Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

[���]

E ` t <: Any : E

[�����_����]
E ` t1 <: t : E1 .. merge(En�1, E) ` tn <: t : En

E ` Union{t1, .. , tn} <: t : En

[�����_�����]
9 j. E ` t <: tj : E0
E ` t <: Union{t1, .. , tn} : E0

[�����]
E ` t1 <: t 01 : E1 .. En�1 ` tn <: t 0n : En
E ` Tuple{t1, .. , tn} <: Tuple{t 01, .. , t 0n} : En

[�����_����_�����]
t 0 = lift_union(Tuple{t1, .. , tn})
E ` t 0 <: t : E0

E ` Tuple{t1, .. , tn} <: t : E0

[���_�����]
tds , name{T1, .. , Tm, .. } <: t 00
E ` t 00[t1/T1 .. tm/Tm] <: t 0 : E0
E ` name{t1, .. , tm} <: t 0 : E0

[���_���]
n m E0 = add(Barrier, E)
8 0 < i n. Ei�1 ` ti <: t 0i : E0i ^ E0i ` t 0i <: ti : Ei
E0 = del(Barrier, En)

E ` name{t1, .. , tm} <: name{t 01, .. , t 0n} : E0

[����_����]
E ` t[t1/T]{t2, .. , tn} <: t 0 : E0

E ` (t where t 01<:T<:t 02){t1, t2, .. , tn} <: t 0 : E0

[����_�����]
E ` t 0 <: t[t1/T]{t2, .. , tn} : E0
E ` t 0 <: (t where t 01<:T<:t 02){t1, t2, .. , tn} : E0

[T���_T���]
add(Barrier, E) ` t1 <: t2 : E0 E0 ` t2 <: t1 : E00

E ` Type{t1} <: Type{t2} : del(Barrier, E00)

[L_�����]
add(LTt2t1 , E) ` t <: t 0 : E0
E ` t where t1<:T<:t2 <: t 0 : del(T, E0)

[R_�����]
add(RTt2t1 , E) ` t <: t 0 : E0
consistent(T, E0)

E ` t <: t 0 where t1<:T<:t2 : del(T, E0)

[����]

E ` t <: t : E

[L_����]
search(T, E) = LTul
E ` u <: t : E0

E ` T <: t : E

[L_�����]
search(T, E) = LTul
E ` t <: l : E0

E ` t <: T : E

[R_����]
search(T, E) = RTul
E ` l <: t : E0

E ` T <: t : upd(RTtl , E)

[R_�����]
search(T, E) = RTul
¬is_var(t) _ search(t, E) = RT0u

0
l0

E ` t <: u : E0

E ` t <: T : upd(RTuUnion{l, t }, E)

[R_L]
search(T1, E) = RT1

u1
l1

search(T2, E) = LT2
u2
l2

outside(T1, T2, E)) E ` u2 <: l2 : E0
E ` u1 <: l2 : E00

E ` T1 <: T2 : upd(RT1u1Union{T1, l1 }, E)

[T���_����]
¬is_var(t1)
E ` typeof(t1) <: t2 : E0

E ` Type{t1} <: t2 : E0

[T���_�����]
is_kind(t1) is_var(t2)
E ` Type{T} where T <: Type{t2} : E0

E ` t1 <: Type{t2} : E0

Figure 4. The subtype relation.

We assume that types appearing in a judgment are well-
formed, as checked by the typeof relation. We comment the
subtyping rules. The type Any is super-type of all types,
as captured by the rule A��. The rule T���� checks the
covariant subtyping of the tuple elements. The constraints
generated by each subtype check are assumed by each sub-
sequent subtype check. The rule T����_L���_U���� allows
rewriting in disjunctive normal forms tuple types on the left-
hand-side of the judgment, making the distributivity rule
of unions with respect to tuples derivable. Since this rule
can be invoked multiple times in a subtyping derivation, it

is possible to rewrite tuples in disjunctive normal form even
if they appear under invariant constructors. The rewriting
is performed by the auxiliary function lift_union(t).

Rules �����_���� and �����_����� implement the forall
and exist semantics for union types on the left and on the
right of the subtyping judgment. �����_���� relies on the
merge auxiliary function described above to discard updates
to constraints of variables unless they have been introduced
outside an enclosing invariant constructor. From�����_����
it is straightforward to derive that Union{ } is subtype of all

10

The complete system is fiendishly complicated… there is much more to say… it took six months to get it right.

VALIDATION

NEVER TRUST RULES

➤ Implemented a subtyping algorithm for Julia types

➤ one-to-one mapping of rules to Julia code

➤ add a search strategy on top of it

➤ ~1kloc of Julia

➤ Passes the subtype regression tests from Julia distribution

VALIDATE ON REAL CODE

➤ Modify Julia VM to log all calls to the subtype function

➤ removing duplicates

➤ Log importing and running the test suite of 50 packages

➤ We validate all the logged subtype tests (~1,000,000)

➤ And one mysterious test

THE MYSTERIOUS SUBTYPE TEST

➤ Julia says true, we say false

Ref(Pair{Pair{T, R}, R} where R) where T <:
Ref(Pair{A, B} where B) where A

➤ After a long investigation, consensus that false is correct

➤ Jeff patched Julia 0.7-dev 15 days ago

CONCLUSIONS

AN ORIGINAL POINT IN THE DESIGN SPACE

➤ Compare with the Fortress experience (Steele talk at JuliaCon'16)

➤ Fortress supported multiple dispatch and a rich type system

➤ Fortress failed due to difficulty of defining a sound semantics

➤ Unsoundness simplifies the design

➤ Julia provides a gradual typing system

➤ users encouraged to write types

➤ Compiler does not trust type annotation

WHY DOES THE COMPILER WORK SO WELL?

➤ Scientific code has some regularity that can be exploited

➤ Multi-dispatch encourages a style where all the type tests on
the data are at method entry, body does not need checks

➤ Programmers have learned how to avoid boxing

➤ Methods can be monomorphized

Potential pathology is code size explosion but has not happened in our examples

CAN WE REGAIN SOUNDNESS?

➤ Given usage data, how much do we give up to get soundness?  

➤ Subtype algorithm overly complex but data suggests every type
rule is used by someone 

➤ Can we evaluate the “cost” of simplifying it? 
 
 

➤ Paley Li and Ben Chung are working on this, see NOOL17 paper.

BOTTOM UP VS TOP DOWN LANGUAGE DESIGN

➤ How should we design languages, in particular languages for
“new” domains?

➤ Pragmatic view: start with something that provides value to
users, incrementally improve and evolve design in response to
demand

➤ Leads to warty designs

➤ Purist view: design an entire solution that provides the right
answer from day one.

➤ Leads to never-ending designs

