
dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 87

Doi:10.1145/1409360.1409382

abstract
Programs written in C and C++ are susceptible to memory
errors, including buffer overflows and dangling pointers.
These errors, which can lead to crashes, erroneous execution,
and security vulnerabilities, are notoriously costly to repair.
Tracking down their location in the source code is difficult,
even when the full memory state of the program is available.
Once the errors are finally found, fixing them remains chal-
lenging: even for critical security-sensitive bugs, the average
time between initial reports and the issuance of a patch is
nearly 1 month.

We present Exterminator, a system that automatically
corrects heap-based memory errors without programmer
intervention. Exterminator exploits randomization to pin-
point errors with high precision. From this information,
Exterminator derives runtime patches that fix these errors
both in current and subsequent executions. In addition,
Exterminator enables collaborative bug correction by merg-
ing patches generated by multiple users. We present analyti-
cal and empirical results that demonstrate Exterminator’s
effectiveness at detecting and correcting both injected and
real faults.

1. intRoDuction
The use of manual memory management and unchecked
memory accesses in C and C++ leaves applications written
in these languages susceptible to a range of memory errors.
These include buffer overruns, where reads or writes go
beyond allocated regions, and dangling pointers, when a pro-
gram deallocates memory while it is still live. Memory errors
can cause programs to crash or produce incorrect results.
Worse, attackers are frequently able to exploit these memory
errors to gain unauthorized access to systems.

Debugging memory errors is notoriously difficult.
Reproducing the error requires an input that exposes it.
Since inputs are often unavailable from deployed programs,
developers must either concoct such an input or find the
problem via code inspection. Once a test input is available,
software developers typically execute the application with
heap debugging tools like Purify7 and Valgrind,10 which may
slow execution by an order of magnitude. When the bug
is ultimately discovered, developers must construct and
carefully test a patch to ensure that it fixes the bug without
introducing any new ones. This process can be costly and
time-consuming. For example, according to Symantec, the
average time between the discovery of a critical, remotely

exploitable memory error and the release of a patch for enter-
prise applications is 28 days.17

Because memory errors are so difficult to find and fix,
researchers have proposed many solutions that fall roughly
into two categories: detection, which prevents errors from
being exploited and potentially allows them to be debugged
more easily; and toleration, where the effects of errors are mit-
igated. Fail-stop systems are compiler-based approaches that
may require access to source code, and abort programs when
they perform illegal operations like buffer overflows.1,2,6,9

Fault-tolerant runtime systems, which attempt to hide
the effect of errors, have also been proposed. Rinard’s
 failure-oblivious systems are also compiler-based, but manu-
facture read values and drop or cache illegal writes for later
reuse.13,14 The Rx system12 uses logging and replay, with
potential perturbation, to provide fault tolerance. Our pre-
vious work, DieHard,3,4 uses heap over-provisioning, layout
randomization, and optional voting-based replication to
reduce the likelihood that an error will have any effect (see
Section 3.1 for an overview). DieHard provides probabilistic
memory safety, giving the application the illusion of having
an infinite heap with a well-defined probability.
contributions: This paper presents exterminator, a runtime
system that not only tolerates but also detects, isolates, and
corrects two classes of heap-based memory errors with high
probability. Exterminator requires neither source code nor
programmer intervention, and fixes existing errors without
introducing new ones. To our knowledge, this system is the
first of its kind.

Exterminator relies on an efficient probabilistic debugging
allocator that we call DieFast. DieFast is based on DieHard’s
allocator, which ensures that heaps are independently ran-
domized. However, while DieHard can only probabilistically
tolerate errors, DieFast probabilistically detects them.

When Exterminator discovers an error, it dumps a
heap image that contains the complete state of the heap.
Exterminator’s probabilistic error isolation algorithm pro-
cesses one or more heap images to try to locate the source
of the error. This error isolation algorithm has provably low
false-positive and false-negative rates. Buffer overflows and
dangling pointer errors can be distinguished because they
tend to produce distinct patterns of heap corruption.

Exterminator: Automatically
Correcting Memory Errors with
High Probability
by Gene novark, Emery d. berger, and benjamin G. Zorn

A previous version of this article appeared in Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM, NY, pp. 1–11.

88 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

Once Exterminator locates a buffer overflow, it determines
the allocation site of the overflowed object, and the size of the
overflow. For dangling pointer errors, Exterminator deter-
mines both the allocation and deletion sites of the dangled
object, and computes how prematurely the object was freed.

With this information in hand, Exterminator corrects the
errors by generating runtime patches. These patches operate
in the context of a correcting allocator. The correcting alloca-
tor prevents overflows by padding objects, and prevents dan-
gling pointer errors by deferring object deallocations. These
actions impose little space overhead because Exterminator’s
runtime patches are tailored to the specific allocation and
deallocation sites of each error.

After Exterminator completes patch generation, it both
stores the patches to correct the bug in subsequent execu-
tions, and triggers a patch update in the running program to
fix the bug in the current execution. Exterminator’s patches
also compose straightforwardly, enabling collaborative bug
correction: users running Exterminator can automatically
merge their patches, thus systematically and continuously
improving application reliability.

Exterminator can operate in three distinct modes: an iter-
ative mode for runs over the same input, a replicated mode
that can correct errors on the fly, and a cumulative mode that
corrects errors across multiple runs of the same application.

We experimentally demonstrate that, in exchange for
modest runtime overhead (around 25%), Exterminator effec-
tively isolates and corrects both injected and real memory
errors, including buffer overflows in the Squid Web cache
server and the Mozilla Web browser.

2. memoRy eRRoRs
Incorrect programs exhibit a variety of errors related to heap
objects, including dangling pointers, where a heap object is
freed while it is still live; invalid frees, where a program deallo-
cates an object that was never returned by the allocator; dou-
ble frees, where a heap object is deallocated multiple times
without an intervening allocation; uninitialized reads, where
the program, despite using all pointers correctly, reads mem-
ory that has never been initialized; and out-of-bound writes,
where the memory address to be written is computed by using
a valid pointer to an object but an incorrect offset or index, so
that the address computed lies outside the object. We use the
term buffer overflow to refer to an out-of-bound write whose
offset from a base pointer is positive and too large. (Out-of-
bound writes where the offset is negative appear to be rather
less common in practice.)

Errors such as double frees and invalid frees, if not prop-
erly handled, can result in inconsistent allocator metadata
and are a potential security vulnerability. These errors can
lead to heap corruption or abrupt program termination.
Out-of-bound writes and dangling pointers may result in cor-
ruption of either allocator metadata or application objects.
Uninitialized reads, because the values read are not specified
by the language semantics, can affect application execution
in arbitrary ways. Because good allocator design can mitigate
the effect of double frees and invalid frees, buffer overruns
and dangling pointer errors are currently the most com-

monly exploited heap errors, and hence the most important
to address.

While DieHard probabilistically tolerates dangling point-
ers and buffer overflows of heap objects, Exterminator both
detects and permanently corrects them. Exterminator’s allo-
cator (DieFast) shares DieHard’s immunity from double frees
and invalid frees. Exterminator does not currently address
uninitialized reads, reads outside the bounds of an object, or
out-of-bound writes with negative offsets.

3. softWaRe aRchitectuRe
Exterminator’s software architecture extends and modi-
fies DieHard to enable its error isolating and correcting
properties. This section first describes DieHard, and then
shows how Exterminator augments its heap layout to track
information needed to identify and remedy memory errors.
Second, it presents DieFast, a probabilistic debugging alloca-
tion algorithm that exposes errors to Exterminator. Finally, it
describes Exterminator’s three modes of operation.

3.1. Diehard overview
The DieHard system includes a bitmap-based, fully ran-
domized memory allocator that provides probabilistic
memory safety.3 The latest version of DieHard, upon which
Exterminator is based, adaptively sizes its heap to be M times
larger than the maximum needed by the application4 (see
Figure 1). This version of DieHard allocates memory from
increasingly large chunks that we call miniheaps. Each mini-
heap contains objects of exactly one size. DieHard allocates
new miniheaps to ensure that, for each size, the ratio of allo-
cated objects to total objects is never more than 1/M. Each
new miniheap is twice as large, and thus holds twice as many
objects, as the previous largest miniheap.

Allocation randomly probes a miniheap’s bitmap for the
given size class for a 0 bit, indicating a free object available
for reclamation, and sets it to 1. This operation takes O(1)
expected time. Freeing a valid object resets the appropriate
bit, which is also a constant-time operation. DieHard’s use
of randomization across an over-provisioned heap makes it
probabilistically likely that buffer overflows will land on free
space, and unlikely that a recently freed object will be reused
soon.

figure 1: the adaptive (new) Diehard heap layout, used by
exterminator. objects in the same size class are allocated randomly
from separate miniheaps, which combined hold M times more
memory than required (here, M = 2).

4 3 6 521
8

16

Allocation space

Bitmap

1

Object size

2
inUse

4
inUse

1
inUse

6
inUse

1
inUse

Miniheaps

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 89

DieHard optionally uses replication to increase the prob-
ability of successful execution. In this mode, it broadcasts
inputs to a number of replicas of the application process,
each initialized with a different random seed. A voter inter-
cepts and compares outputs across the replicas, and only
actually generates output agreed on by a plurality of the rep-
licas. The independent randomization of each replica’s heap
makes the probabilities of memory errors independent.
Replication thus exponentially decreases the likelihood of
a memory error affecting output, since the probability of an
error corrupting a majority of the replicas is low.

3.2. exterminator’s heap layout
Figure 2 presents Exterminator’s heap layout, which includes
five fields per object for error isolation and correction: an
object id, allocation and deallocation sites, deallocation
time, which records when the object was freed, and a canary
bit.

An object id of n means that the object is the nth object
allocated. Exterminator uses object ids to identify objects
across heaps in multiple program executions. These ids are
needed because object addresses cannot be used to identify
them across differently randomized heaps. The site infor-
mation fields capture the calling context for allocations and
deallocations: a 32-bit hash of the least significant bytes of
the five most-recent return addresses. The canary bit indi-
cates if the object was filled with canaries (see Section 3.3).
All of these metadata are initialized when an object is allo-
cated and persist after the object is freed until a new object is
allocated in its place.

The space overhead of this out-of-band metadata plus the
allocation bit is 16 bytes plus 2 bits of space overhead per
object. This amount is comparable to that of typical freelist-
based memory managers like the Lea allocator, which
prepend an 8- or 16-byte header (on 32- or 64-bit systems) to
each object.8

3.3. a probabilistic debugging allocator
Exterminator uses a new, probabilistic debugging allocator
that we call DieFast. DieFast uses the same randomized heap
layout as DieHard, but extends its allocation and dealloca-
tion algorithms to detect and expose errors. Unlike previous
debugging allocators, DieFast has a number of unusual char-
acteristics tailored for its use in the context of Exterminator.

3.3.1. Implicit Fence-Posts
Many existing debugging allocators pad allocated objects with
fence-posts (filled with canary values) on both sides. They can
thus detect out-of-bound writes that are just beyond the start
or end of an object by checking the integrity of these fence-
posts. This approach has the disadvantage of increasing space
requirements. Combined with the already-increased space
requirements of a DieHard-based heap, the additional space
overhead of padding may be unacceptably large.

DieFast exploits two facts to obtain the effect of fence-
posts without any additional space overhead. First, because
its heap layout is headerless, one fence-post serves double
duty: a fence-post following an object acts as the one preced-
ing the next object. Second, because allocated objects are
separated by (on average) M − 1 freed objects on the heap, we
use freed space to act as fence-posts.

3.3.2. Random Canaries
Traditional debugging canaries include values, such as the
hexadecimal value OxDEADBEEF, that are readily distin-
guished from normal program data in a debugging session.
However, one drawback of a deterministically chosen canary
is that it is always possible for the program to use the canary
pattern as a data value. Because DieFast uses canaries located
in freed space rather than in allocated space, a fixed canary
would lead to a high false-positive rate if that data value were
common in allocated objects.

DieFast instead uses a random 32-bit value set at startup.
Since both the canary value and heap addresses are random
and differ on every execution, any fixed data value (likewise,
any given pointer) has a low probability of colliding with the
canary; this ensures a low false-positive rate (see Theorem
2). To increase the likelihood of detecting an error, DieFast
always sets the last bit of the canary value to 1. Setting this bit
will cause an alignment error if the canary is dereferenced,
but still keeps the probability of an accidental collision with
the canary low (1/231).

3.3.3. Probabilistic Fence-Posts
Intuitively, the most effective way to expose a dangling
pointer error is to fill all freed memory with canary values.
For example, dereferencing a canary value as a pointer will
likely trigger a segmentation violation or alignment error.

Unfortunately, reading random values does not neces-
sarily cause programs to fail. For example, in the espresso
benchmark, some objects hold bitsets. Filling a freed bitset
with a random value does not cause the program to termi-
nate but may affect the correctness of the computation.

When reading from a canary-filled dangled object causes
a program to run awry, it can become difficult to isolate the
error. In the worst case, half of the heap could be filled with

figure 2: an abstract view of exterminator’s heap layout. metadata
below the horizontal line contains information used for error
isolation and correction (see section 3.2).

00000001 10 . . . Allocation bitmap

3 5 Object id

Heap

00100000 00…

D3D2D2

A4 A2 A3 A1 A9

421

Canary bitset

Alloc site

Dealloc site

Dealloc time

DieHard

Exterminator

90 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

freed objects, all overwritten with canary values. All of these
objects would then be potential sources of dangling pointer
errors.

In cumulative mode, Exterminator prevents this scenario
by making a random choice every time an object is freed;
rather than always filling the freed object with canaries and
setting the associated canary bit, it performs this filling
and bit-setting action with probability p. This probabilis-
tic approach may seem to degrade Exterminator’s ability to
find errors. However, it is required to isolate read-only dan-
gling pointer errors, where the canary itself remains intact.
Because it would take an impractically large number of itera-
tions or replicas to isolate these errors, Exterminator always
fills freed objects with canaries when not running in cumula-
tive mode (see Sections 5.2 and 7.2 for discussion).

3.3.4. Probabilistic Error Detection
Whenever DieFast allocates memory, it examines the mem-
ory to be returned to verify that any canaries it is supposed to
contain (as indicated by the canary bitset) are intact. If not, in
addition to signaling an error (see Section 3.4), DieFast sets
the allocated bit for this chunk of memory. This “bad object
isolation” ensures that the object will not be reused for
future allocations, preserving its contents for Exterminator’s
subsequent use. By checking canary integrity on each allo-
cation, DieHard can be expected to detect heap corruption
within approximately h allocations, where h is the number
of objects on the heap.

After every deallocation, DieFast checks both the preceding
and subsequent objects. For each of these, DieFast checks if
they are free. If so, it performs the same canary check as above.
Recall that because DieFast’s allocation is random, the identity
of these adjacent objects will differ from run to run. Checking
both the subsequent and the preceding objects on each free
allows DieFast to perform an inexpensive check for any nearby
out-of-bound writes, including “strided” object writes (e.g.,
a [i + 32]) that might jump over a subsequent object.

3.4. modes of operation
Exterminator can be used in three modes of operation: an
iterative mode suitable for testing or whenever all program
inputs can be made available for repeated execution, a repli-
cated mode that is suitable both for testing and for restricted
deployment scenarios, and a cumulative mode that is suit-
able for broad deployment. All of these rely on the genera-
tion of heap images, which Exterminator examines to isolate
errors and compute runtime patches.

If Exterminator discovers an error when executing a pro-
gram, or if DieFast signals an error, Exterminator forces the
process to emit a heap image file. This file is akin to a core
dump, but contains less data (e.g., no code) and is organized
to simplify processing. In addition to the full heap contents
and heap metadata, the heap image includes the current
allocation time (i.e., the number of allocations to date).

3.4.1. Iterative Mode
Exterminator’s iterative mode operates without replication.
To find a single bug, Exterminator is initially invoked via a
command-line option that directs it to stop as soon as it

detects an error. Exterminator then re-executes the program
in “replay” mode over the same input (but with a new ran-
dom seed). In this mode, Exterminator reads the allocation
time from the initial heap image to abort execution at that
point; we call this a malloc breakpoint. Exterminator then
begins execution and ignores DieFast error signals that are
raised before the malloc breakpoint is reached.

Once it reaches the malloc breakpoint, Exterminator trig-
gers another heap image dump. This process can be repeated
multiple times to generate independent heap images.
Exterminator then performs postmortem error isolation and
runtime patch generation. A small number of iterations usu-
ally suffices for Exterminator to generate runtime patches
for an individual error, as we show in Section 7.2. When run
with a correcting memory allocator that incorporates these
changes (described in detail in Section 6.3), these patches
automatically fix the isolated errors.

3.4.2. Replicated Mode
The iterated mode described above works well when all
inputs are available so that rerunning an execution is feasible.
However, when applications are deployed in the field, such
inputs may not be available, and replaying may be imprac-
tical. The replicated mode of operation allows Exterminator
to correct errors while the program is running, without the
need for multiple iterations.

As Figure 3 shows, Exterminator (like DieHard) can run a
number of differently randomized replicas simultaneously
(as separate processes), broadcasting inputs to all and voting
on their outputs. However, Exterminator uses DieFast-based
heaps, each with a correcting allocator. This organization
lets Exterminator discover and fix errors.

In replicated mode, when DieFast signals an error or
the voter detects divergent output, Exterminator sends a
signal that triggers a heap image dump for each replica.
Exterminator also dumps heap images if any replica crashes
because of a segmentation fault.

If DieFast signals an error, the replicas that dump a
heap image do not have to stop executing. If their output

figure 3: exterminator’s replicated architecture (section 3.4).
Replicas are equipped with different seeds that fully randomize their
Diefast-based heaps (section 3.3), input is broadcast to all replicas,
and output goes to a voter. a crash, output divergence, or signal
from Diefast triggers the error isolator (section 4), which generates
runtime patches. these patches are fed to correcting allocators
(section 6), which fix the bug for current and subsequent executions.

seed

VoteBroadcast

Input
Output

DieFast replica1seed

DieFast replica2seed

Error isolator

correcting allocator

correcting allocator

correcting allocator

Runtime
patches

DieFast replica3

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 91

continues to be in agreement, they can continue executing
concurrently with the error isolation process. Once the run-
time patch generation process has completed, it signals the
running replicas to reload their runtime patches. Thus, sub-
sequent allocations in the same process will be patched on
the fly without interrupting execution.

3.4.3. Cumulative Mode
While the replicated mode can isolate and correct errors on
the fly in deployed applications, it may not be practical in all
situations. For example, replicating applications with high
resource requirements may cause unacceptable overhead.
In addition, multithreaded or nondeterministic applications
can exhibit different allocation activity and so cause object
ids to diverge across replicas. To support these applications,
Exterminator uses its third mode of operation, cumulative
mode, which isolates errors without replication or multiple
identical executions.

When operating in cumulative mode, Exterminator rea-
sons about objects grouped by allocation and deallocation
sites instead of individual objects, since objects are no longer
guaranteed to be identical across different executions.

Because objects from a given site only occasionally cause
errors, often at low frequencies, Exterminator requires more
executions than in replicated or iterative mode in order to
identify these low-frequency errors without a high false-posi-
tive rate. Instead of storing heap images from multiple runs,
Exterminator computes relevant statistics about each run
and stores them in its patch file. The retained data are on the
order of a few kilobytes per execution, compared to tens or
hundreds of megabytes for each heap image.

4. iteRative anD RePLicateD eRRoR isoLation
Exterminator employs two different families of error isola-
tion algorithms: one set for replicated and iterative modes,
and another for cumulative mode.

When operating in its replicated or iterative modes,
Exterminator’s probabilistic error isolation algorithm oper-
ates by searching for discrepancies across multiple heap
images. Exterminator relies on corrupted canaries stored
in freed objects to indicate the presence of an error. A cor-
rupted canary (one that has been overwritten) can mean two
things. If the same object (identified by object id) across all
heap images has the same corruption, then the error is likely
to be a dangling pointer. If canaries are corrupted in multiple
freed objects, then the error is likely to be a buffer overflow.
Exterminator limits the number of false positives for both
overflows and dangling pointer errors.

4.1. Buffer overflow detection
Exterminator examines heap images looking for discrepancies
across the heaps, both in overwritten canaries and in live objects.
If an object is not equivalent across the heaps, Exterminator
considers it to be a candidate victim of an overflow.

To identify victim objects, Exterminator compares the
contents of equivalent objects, as identified by their object
id across all heaps. Exterminator builds an overflow mask
that comprises the discrepancies found across all heaps.
However, because the same logical object may legitimately

differ across multiple heaps, Exterminator must take care
not to consider these occurrences as overflows.

First, a freed object may differ across heaps because it was
filled with canaries only in some of the heaps. Exterminator
uses the canary bitmap to identify this case.

Second, an object can contain pointers to other objects,
which are randomly located on their respective heaps.
Exterminator uses both deterministic and probabilistic
techniques to distinguish integers from pointers. Briefly, if
a value interpreted as a pointer points inside the heap area
and points to the same logical object across all heaps, then
Exterminator considers it to be the same logical pointer, and
thus not a discrepancy. Exterminator also handles the case
where pointers point into dynamic libraries, which newer
versions of Linux place at pseudorandom base addresses.

Finally, an object can contain values that legitimately dif-
fer from process to process. Examples of these values include
process ids, file handles, pseudorandom numbers, and point-
ers in data structures that depend on addresses (e.g., some
red-black tree implementations). When Exterminator exam-
ines an object and encounters any word that differs at the
same position across all the heaps, it considers it to be legiti-
mately different, and not an indication of buffer overflow.

For small overflows, the risk of missing an overflow by
ignoring overwrites of the same objects across multiple
heaps is low:

Theorem 1. Let k be the number of heap images, S the length
(in number of objects) of the overflow string, and h the number
of objects on the heap. Then the probability of an overflow over-
writing an object on all k heaps is

P(identical overflow) v h × (S/h)k.

Proof. This result holds for a stronger adversary than
usual—rather than assuming a single contiguous overflow,
we allow an attacker to arbitrarily overwrite any S distinct
objects. Consider a given object a. On each heap, S objects
are corrupted at random. The probability that object i is cor-
rupted on a single heap is (S/h). Call Ei the event that object
i is corrupted across all heaps; the probability P(Ei) is (S/h)k.
The probability that at least one object is corrupted across all
the heaps is P(∪i Ei), which by a straightforward union bound
is at most ΣiP(Ei) = h × (S/h)k. □

We now bound the worst-case false-negative rate for buf-
fer overflows; that is, the odds of not finding a buffer overflow
because it failed to overwrite any canaries.

Theorem 2. Let M be the heap multiplier, so a heap is never
more than 1/M full. The likelihood that an overflow of length b
bytes fails to be detected by comparison against a canary is at
most:

1 1
() 1 .

2 256

k

b

M
P missed overflow

M
− ≤ − +  

Proof. Each heap is at least (M − 1)/M free. Since DieFast fills
free space with canaries with P = 1/2, the fraction of each heap
filled with canaries is at least (M − 1)/2M. The likelihood of a

92 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

random write not landing on a canary across all k heaps is
thus at most (1 − (M − 1)/2M)k. The overflow string could also
match the canary value. Since the canary is randomly chosen,
the odds of this are at most (1/256)b. □

4.2. culprit identification
At this point, Exterminator has identified the possible victims
of overflows. For each victim, it scans the heap images for a
matching culprit, the object that is likely to be the source of
the overflow into a victim. Because Exterminator assumes
that overflows are deterministic when operating in iterative
or replicated mode, the culprit must be the same distance d
bytes away from the victim in every heap image. In addition,
Exterminator requires that the overflowed values have some
bytes in common across the images, and ranks them by their
similarity. Note that, while Exterminator only considers posi-
tive values of d, these values may be arbitrarily large.

Exterminator checks every other heap image for the candi-
date culprit, and examines the object that is the same d bytes
forward. If that object is free and should be filled with canar-
ies but they are not intact, then it adds this culprit– victim
pair to the candidate list.

We now bound the false-positive rate. Because buffer
overflows can be discontiguous, every object in the heap that
precedes an overflow is a potential culprit. However, each
additional heap dramatically lowers this number.

Theorem 3. The expected number of objects (possible culprits)
the same distance d from any given victim object across k heaps is

2

1
() .

(1)k
E possible culprits

h −=
−

Proof. Without loss of generality, assume that the victim
object occupies the last slot in every heap. An object can thus
be in any of the remaining n = h − 1 slots. The odds of it being
in the same slot in k heaps is p = 1/ (h − 1)k−1. This is a bino-
mial distribution, so E(possible culprits) = np= 1/(h − 1)k−2. □

With only one heap image, all (h − 1) objects are poten-
tial culprits, but one additional image reduces the expected
number of culprits for any victim to just 1 (1/(h − 1)0), effec-
tively eliminating the risk of false positives.

Once Exterminator identifies a culprit–victim pair, it
records the overflow size for that culprit as the maximum of
any observed d to a victim. Exterminator also assigns each cul-
prit–victim pair a score that corresponds to its confidence that
it is an actual overflow. This score is 1 − (1/256)S, where S is the
sum of the length of detected overflow strings across all pairs.
Intuitively, small overflow strings (e.g., 1 byte) detected in only
a few heap images are given lower scores, and large overflow
strings present in many heap images get higher scores.

After overflow processing completes and at least one cul-
prit has a nonzero score, Exterminator generates a runtime
patch for an overflow from the most highly ranked culprit.

4.3. Dangling pointer isolation
Isolating dangling pointer errors falls into two cases: a pro-
gram may read and write to the dangled object, leaving it par-
tially or completely overwritten, or it may only read through

the dangling pointer. Exterminator does not handle read-
only dangling pointer errors in iterative or replicated mode
because it would require too many replicas (e.g., around 20;
see Section 7.2). However, it handles overwritten dangling
objects straightforwardly.

When a freed object is overwritten with identical values
across multiple heap images, Exterminator classifies the
error as a dangling pointer overwrite. (As Theorem 1 shows,
this situation is highly unlikely to occur for a buffer overflow.)
Exterminator then generates an appropriate runtime patch,
as Section 6.2 describes.

5. cumuLative eRRoR isoLation
Unlike iterative and replicated mode, cumulative mode
focuses on detecting, isolating, and correcting errors that
happen in the field. In this context, replication, identical
inputs, and deterministic execution are infeasible. Worse,
program errors may manifest themselves in ways that are
inherently hard to detect. For example, a program that reads
a canary written into a free object may fail immediately, or
may execute incorrectly for some time.

Our approach to error detection in this mode is to consider
exceptional program events, such as premature termination,
raising unexpected signals, etc., to be evidence that memory
was corrupted during execution. We counter the lack of error
reproducibility in these cases with statistical accumulation
of evidence before assuming an error needs to be corrected.
Exterminator isolates memory errors in cumulative mode by
computing summary information accumulated over mul-
tiple executions, rather than by operating over multiple heap
images.

5.1. Buffer overflow detection
Exterminator’s buffer overflow isolation algorithm proceeds
in three phases. First, it identifies heap corruption by look-
ing for overwritten canary values. Second, for each allocation
site, it computes an estimate of the probability that an object
from that site could be the source of the corruption. Third, it
combines these independent estimates from multiple runs
to identify sites that consistently appear as candidates for
causing the corruption.

Exterminator’s randomized allocator allows us to com-
pute the probability of certain properties in the heap. For
example, the probability of an object occurring on a given
miniheap can be estimated given the miniheap size and the
number of miniheaps. If objects from some allocation site
are sources of overflows, then those objects will occur on
miniheaps containing corruptions more often than expected.
Exterminator tracks how often objects from each allocation
site occur on corrupted miniheaps across multiple runs.
Using this information, it uses a statistical hypothesis test
that identifies sites that occur with corruption too often to be
random chance, and identifies them as overflow culprits (see
Novark11 for more details).

Once Exterminator identifies an erroneous allocation
site, it produces a runtime patch that corrects the error. To
find the correct pad size, it searches backward from the cor-
ruption found during the current run until it finds an object

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 93

allocated from the site. It then uses the distance between that
object and the end of the corruption as the pad size.

5.2. Dangling pointer isolation
As with buffer overflows, Exterminator’s dangling pointer
isolator computes summary information over multiple runs.
To force each run to have a different effect, Exterminator fills
freed objects with canaries with some probability p, turning
every execution into a series of Bernoulli trials. In this sce-
nario, if the program reads canary data through the dangling
pointer, the program may crash. Thus writing the canary for
that object increases the probability that the program will
later crash. Conversely, if an object is not freed prematurely,
then overwriting it with canaries has no influence on the fail-
ure or success of the program. Exterminator then uses the
same hypothesis testing framework as its buffer overflow
algorithm to identify sources of dangling pointer errors.

The choice of p reflects a trade-off between the preci-
sion of the buffer overflow algorithm and dangling pointer
isolation. Since overflow isolation relies on detecting cor-
rupt canaries, low values of p increase the number of runs
(though not the number of failures) required to isolate over-
flows. However, lower values of p increase the precision of
dangling pointer isolation by reducing the risk that certain
allocation sites (those that allocate large numbers of objects)
will always observe one canary value. We currently set p = 1/2,
though some dangling pointer errors may require lower val-
ues of p to converge within a reasonable number of runs.

Exterminator then estimates the required lifetime exten-
sion by locating the oldest canaried object from an identified
allocation site, and computing the number of allocations
between the time it was freed and the time that the program
failed. The correcting allocator then extends the lifetime of
all objects corresponding to this allocation/deallocation site
by twice this number.

6. eRRoR coRRection
We now describe how Exterminator uses the information
from its error isolation algorithms to correct specific errors.
Exterminator first generates runtime patches for each error.
It then relies on a correcting allocator that uses this informa-
tion, padding allocations to prevent overflows, and deferring
deallocations to prevent dangling pointer errors.

Exterminator’s ability to correct memory errors has sev-
eral inherent limitations. Exterminator can only correct
finite overflows, because it tries to contain any given over-
flow by finite over-allocation. Similarly, Exterminator cor-
rects dangling pointer errors by inserting finite delays before
freeing particular objects. Finally, Exterminator cannot cor-
rect memory errors when the evidence it uses to locate these
errors is destroyed, such as when an overflow overwrites most
of the heap, or when a program with a dangling pointer error
runs long enough to reallocate the dangled object.

6.1. Buffer overflow correction
For every culprit–victim pair that Exterminator encounters, it
generates a runtime patch consisting of the allocation site hash
and the amount of padding needed to contain the overflow (d +
the size of the overflow string). If a runtime patch has already

been generated for a given allocation site, Exterminator uses
the maximum padding value encountered so far.

6.2. Dangling pointer correction
The runtime patch for a dangling pointer consists of the com-
bination of its allocation site hash and an amount of time by
which to delay its deallocation. Exterminator computes this
delay as follows. Let t be the recorded deallocation time of
the dangled object, and T be the allocation time at which the
program crashed or Exterminator detected heap corruption.
Exterminator has no way of knowing how long the object is
supposed to live, so computing an exact delay is impossible.
Instead, it extends the object’s lifetime (delays its freeing)
by twice the distance between its premature freeing and the
time of crashing or detection, plus one: 2 × (T − t) + 1.

It is important to note that this deallocation deferral does
not multiply object lifetimes but rather their drag.15 To illus-
trate, an object might live for 1000 allocations and then be
freed just 10 allocations too soon. If the program immedi-
ately crashes, Exterminator will extend its lifetime by 21 allo-
cations, increasing its correct lifetime (1010 allocations) by
less than 1% (1021/1010).

6.3. the correcting memory allocator
The correcting memory allocator incorporates the run-
time patches described above and applies them when
appropriate.

At start-up, or upon receiving a reload signal (Section 3.4),
the correcting allocator loads the runtime patches from a
specified file. It builds two hash tables: a pad table mapping
allocation sites to pad sizes, and a deferral table mapping
pairs of allocation and deallocation sites to a deferral value.
Because it can reload the runtime patch file and rebuild these
tables on the fly, Exterminator can apply patches to running
programs without interrupting their execution. This aspect
of Exterminator’s operation may be especially useful for sys-
tems that must be kept running continuously.

On every deallocation, the correcting allocator checks to
see if the object to be freed needs to be deferred. If it finds
a deferral value for the object’s allocation and deallocation
site, it pushes onto the deferral priority queue the pointer
and the time to actually free it (the current allocation time
plus the deferral value).

The correcting allocator checks the deferral queue on every
allocation to see if any object should now be freed. It then
checks whether the current allocation site has an associated
pad size. If so, it adds the pad size to the allocation request, and
forwards the allocation request to the underlying allocator.

6.4. collaborative correction
Each individual user of an application is likely to experience
different errors. To allow an entire user community to auto-
matically improve software reliability, Exterminator provides
a simple utility that supports collaborative correction. This
utility takes as input a number of runtime patch files. It then
combines these patches by computing the maximum pad
size required for any allocation site, and the maximal defer-
ral amount for any given allocation site/deallocation site pair.
The result is a new runtime patch file that covers all observed

94 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

errors. Because the size of patch files is limited by the num-
ber of allocation sites in a program, we expect these files to be
compact and practical to transmit. For example, the size of
the runtime patches that Exterminator generates for injected
errors in espresso was just 130K (17K when compressed
with gzip).

7. ResuLts
Our evaluation answers the following questions: (1) What is
the runtime overhead of using Exterminator? (2) How effec-
tive is Exterminator at finding and correcting memory errors,
both for injected and real faults?

7.1. exterminator runtime overhead
We evaluate Exterminator’s performance with the
SPECint2000 suite16 running reference workloads, as well as
a suite of allocation-intensive benchmarks. We use the latter
suite of benchmarks both because they are widely used in
memory management studies and because their high alloca-
tion-intensity stresses memory management performance.
For all experiments, we fix Exterminator’s heap multiplier
(value of M) at 2.

All results are the average of five runs on a quiescent, dual-
processor Linux system with 3GB of RAM, with each 3.06 GHz
Intel Xeon processor (hyperthreading active) equipped with
512K L2 caches. Our observed experimental variance is below
1%.

We focus on the nonreplicated mode (iterative/cumulative),
which we expect to be a key limiting factor for Exterminator’s
performance and the most common usage scenario.

We compare the runtime of Exterminator (DieFast plus the
correcting allocator) to the GNU libc allocator. This allocator
is based on the Lea allocator,8 which is among the fastest avail-
able.5 Figure 4 shows that, versus this allocator, Exterminator
degrades performance by from 0% (186.crafty) to
132% (cfrac), with a geometric mean of 25.1%. While
Exterminator’s overhead is substantial for the allocation-

intensive suite (geometric mean: 81.2%), for which the cost of
computing allocation and deallocation contexts dominates,
its overhead is significantly less pronounced across the SPEC
benchmarks (geometric mean: 7.2%).

7.2. memory error correction
7.2.1. Injected Faults
To measure Exterminator’s effectiveness at isolating and
correcting bugs, we used the fault injector that accompanies
the DieHard distribution to inject buffer overflows and dan-
gling pointer errors. For each data point, we run the injector
using a random seed until it triggers an error or divergent
output. We next use this seed to deterministically trigger a
single error in Exterminator, which we run in iterative mode.
We then measure the number of iterations required to iso-
late and generate an appropriate runtime patch. The total
number of images (iterations plus the first run) corresponds
to the number of replicas that would be required when run-
ning Exterminator in replicated mode.

Note that Exterminator’s approach to correcting memory
errors does not impose additional execution time overhead
in the presence of patches. However, it can consume addi-
tional space, either by padding allocations or by deferring
deallocations.
Buffer overflows: We triggered 10 different buffer overflows
each of three different sizes (4, 20, and 36 bytes) by intention-
ally undersizing objects in the espresso benchmark. In every
case, three images were required to isolate and correct these
errors. Notice that this result is substantially better than the
analytical worst case: for three images, Theorem 2 bounds the
worst-case likelihood of missing an overflow to 42% (Section
4.1), but we observed a 0% false-negative rate. The most space
overhead we observe is a total increase of 2816 bytes.
Dangling pointer errors: We then triggered 10 dangling pointer
faults in espresso with Exterminator running in itera-
tive and in cumulative modes. Recall that in iterative mode,
Exterminator always fills freed objects with canaries, while it
does so probabilistically when running in cumulative mode
(see Section 3.3).

In iterative mode, Exterminator succeeds in isolating the
error in only four runs. In another four runs, espresso does
not write through the dangling pointer. Instead, it reads a
canary value through the dangled pointer, treats it as valid data,
and either crashes or aborts. Since no corruption is present in
the heap, Exterminator cannot isolate the source of the error.
In the remaining two runs, writing canaries into the dangled
object triggers a cascade of errors that corrupt large segments
of the heap. In these cases, the corruption destroys the infor-
mation that Exterminator requires to isolate the error.

However, in cumulative mode, probabilistic canary-filling
enables Exterminator to isolate all injected errors, includ-
ing the read-only dangling pointer errors. For runs where no
large-scale heap corruption occurs, Exterminator requires
between 22 and 30 executions to isolate and correct the
errors. In each case, 15 failures must be observed before the
erroneous site pair crosses the likelihood threshold. Because
objects are overwritten randomly, the number of runs
required to yield 15 failures varies. Where writing canaries
corrupts a large fraction of the heap, Exterminator requires

figure 4: Runtime overhead for exterminator across a suite of
benchmarks, normalized to the performance of Gnu libc (Linux)
allocator.

0

cf
ra

c

esp
re

ss
o

lin
dsa

y
p2c

ro
boop

164.gzip

175.vp
r

176.gcc

181.m
cf

186.cr
afty

197.pars
er

252.eon

253.perlb
m

k

254.gap

255.vo
rte

x

256.bzip
2

300.tw
olf

Geom
etri

c m
ean

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Exterminator overhead

GNU libc Exterminator

Allocation-intensive SPECint2000

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 95

18 failures and 34 total runs. In some of the runs, execution
continues long enough for the allocator to reuse the culprit
object, preventing Exterminator from observing that it was
overwritten.

The space overhead of the derived runtime patches ranges
from 32 to 1024 bytes (one 256-byte object is deferred for four
deallocations). This amount constitutes less than 1% of the
maximum memory consumed by the application.

7.2.2. Real Faults
We also tested Exterminator with actual bugs in two appli-
cations: the Squid Web cache server and the Mozilla Web
browser.
Squid Web cache: Version 2.3s5 of Squid has a buffer overflow;
certain inputs cause Squid to crash with either the GNU libc
allocator or the Boehm–Demers–Weiser collector.

We run Squid three times under Exterminator in itera-
tive mode with an input that triggers a buffer overflow.
Exterminator continues executing correctly in each run, but
the overflow corrupts a canary. Exterminator’s error isolation
algorithm identifies a single allocation site as the culprit and
generates a pad of exactly 6 bytes, fixing the error.
Mozilla Web browser: We also tested Exterminator’s cumula-
tive mode on a known heap overflow in Mozilla 1.7.3/Firefox
1.0.6 and earlier. This overflow (bug 307259) occurs because
of an error in Mozilla’s processing of Unicode characters in
domain names. Not only is Mozilla multithreaded, leading
to nondeterministic allocation behavior, but even slight dif-
ferences in moving the mouse cause allocation sequences
to diverge. Thus, neither replicated nor iterative modes can
identify equivalent objects across multiple runs.

We perform two case studies that represent plausible sce-
narios for using Exterminator’s cumulative mode. In the first
study, the user starts Mozilla and immediately loads a page
that triggers the error. This scenario corresponds to a testing
environment where a proof-of-concept input is available. In
the second study, the user first navigates through a selection
of pages (different on each run), and then visits the error-trig-
gering page. This scenario approximates deployed use where
the error is triggered in the wild.

In both cases, Exterminator correctly identifies the overflow
with no false positives. In the first case, Exterminator requires
23 runs to isolate the error. In the second, it requires 34 runs.
We believe that this scenario requires more runs because the
site that produces the overflowed object allocates more correct
objects, making it harder to identify it as erroneous.

8. concLusion
This paper presents Exterminator, a system that automatically
corrects heap-based memory errors in C and C++ programs
with high probability. Exterminator operates entirely at the
runtime level on unaltered binaries, and consists of three key
components: (1) DieFast, a probabilistic debugging allocator,
(2) a probabilistic error isolation algorithm, and (3) a correct-
ing memory allocator. Exterminator’s probabilistic error iso-
lation isolates the source and extent of memory errors with
provably low false-positive and false-negative rates. Its correct-
ing memory allocator incorporates runtime patches that the
error isolation algorithm generates to correct memory errors.

Exterminator not only is suitable for use during testing, but
also can automatically correct deployed programs.

acknowledgments
We thank Sam Guyer, Mike Hicks, Erik Learned-Miller,
Sarah Osentoski, Martin Rinard, and Guy Steele for their
valuable feedback. This material is based upon work sup-
ported by Intel, Microsoft Research, and the National
Science Foundation under CAREER Award CNS-0347339
and CNS-0615211. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

 1. austin, T.m., breach, s.E., and sohi, g.s.
Efficient detection of all pointer and
array access errors. in Proceedings of
the 1994 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, acm Press, june
1994, 290–301.

 2. avots, d., dalton, m., Livshits, v.b.,
and Lam, m.s. improving software
security with a c pointer analysis.
in Proceedings of the 27th International
Conference on Software Engineering,
acm Press, may 2005, 332–341.

 3. berger, E.d. and zorn, b.g. diehard:
Probabilistic memory safety for unsafe
languages. in Proceedings of the
2006 ACM SIGPLAN Conference
on Programming Language Design
and Implementation, acm Press,
june 2006, 158–168.

 4. berger, E.d. and zorn, b.g. Efficient
probabilistic memory safety.
Technical report umcs Tr-2007-17,
department of computer science,
university of massachusetts amherst,
mar. 2007.

 5. berger, E.d. zorn, b.g., and mckinley,
k.s. composing high-performance
memory allocators. in Proceedings
of the 2001 ACM SIGPLAN
Conference on Programming
Language Design and Implementation,
acm Press, june 2001, 114–124.

 6. dhurjati, d., kowshik, s., and adve, v.
safEcode: Enforcing alias analysis
for weakly typed languages. in
Proceedings of the 2006 ACM
SIGPLAN Conference on Programming
Language Design and Implementation,
acm Press, june 2006, 144–157.

 7. hastings, r. and joyce, b. Purify:
fast detection of memory leaks and
access errors. in Proceedings of the
Winter 1992 USENIX Conference,
usENiX, jan. 1992, 125–138.

 8. Lea, d. a memory allocator. http://
gee.cs.oswego.edu/dl/html/malloc.
html, 1997.

 9. Necula, g.c., mcPeak, s., and Weimer,
W. ccured: Type-safe retrofitting
of legacy code. in Proceedings of
the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of
Programming Languages, acm Press,
jan. 2002, 128–139.

 10. Nethercote, N. and seward,
j. valgrind: a framework for
heavyweight dynamic binary
instrumentation. in Proceedings of
2007 ACM SIGPLAN Conference on
Programming Language Design and
Implementation, acm Press, june
2007, 89–100.

 11. Novark, g., berger, E.d., and zorn,
b.g. Exterminator: automatically
correcting memory errors with high
probability. in Proceedings of the
2007 ACM SIGPLAN Conference on
Programming Language Design and
Implementation, acm Press, june
2007, 1–11.

 12. Qin, f., Tucek, j., sundaresan, j.,
and zhou, y. rx: Treating bugs as
allergies—a safe method to survive
software failures. in Proceedings
of the Twentieth Symposium on
Operating Systems Principles, vol. XX
of Operating Systems Review, acm
Press, oct. 2005, 235–248.

 13. rinard, m., cadar, c., dumitran, d.,
roy, d.m., and Leu, T. a dynamic
technique for eliminating buffer
overflow vulnerabilities (and
other memory errors). in Proceedings
of the 20th Annual Computer Security
Applications Conference, iEEE
computer society, dec. 2004, 82–90.

 14. rinard, m., cadar, c., dumitran, d.,
roy, d.m., Leu, T., and beebee, W.s.
jr. Enhancing server availability and
security through failure-oblivious
computing. in Sixth Symposium
on Operating Systems Design and
Implementation, usENiX, dec. 2004,
303–316.

 15. röjemo, N. and runciman, c. Lag,
drag, void, and use: heap profiling and
space-efficient compilation revisited.
in Proceedings of First International
Conference on Functional
Programming, acm Press, may 1996,
34–41.

 16. standard Performance Evaluation
corporation. sPEc2000. http://www.
spec.org.

 17. symantec. internet security threat
report. http://www.symantec.com/
enterprise/threatreport/index.jsp,
sept. 2006.

© acm 0001-0782/08/1200 $5.00

Gene Novark (gnovark@cs.umass.
edu) department of computer science,
university of massachusetts, amherst, ma.

Emery D. Berger (emery@cs.umass.
edu) department of computer science,
university of massachusetts, amherst, ma.

Benjamin G. Zorn (zorn@microsoft.com)
microsoft research, redmond, Wa.

