
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

CHECKCELL: Data Debugging for Spreadsheets

Daniel W. Barowy Dimitar Gochev Emery D. Berger
School of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

{dbarowy,gochev,emery}@cs.umass.edu

Abstract
Testing and static analysis can help root out bugs in programs,
but not in data. This paper introduces data debugging, an
approach that combines program analysis and statistical
analysis to automatically find potential data errors. Since it is
impossible to know a priori whether data are erroneous, data
debugging instead locates data that has a disproportionate
impact on the computation. Such data is either very important
or wrong. Data debugging is especially useful in the context
of data-intensive programming environments that intertwine
data with programs in the form of queries or formulas.

We present the first data debugging tool, CHECKCELL, an
add-in for Microsoft Excel. CHECKCELL identifies cells that
have an unusually high impact on the spreadsheet’s compu-
tations. We show that CHECKCELL is both analytically and
empirically fast and effective. We show that it successfully
finds injected typographical errors produced by a genera-
tive model trained with data entry from 169,112 Mechanical
Turk tasks. CHECKCELL is more precise and efficient than
standard outlier detection techniques. CHECKCELL also au-
tomatically identifies a key flaw in the infamous Reinhart and
Rogoff spreadsheet.

1. Introduction
Program correctness has been an important programming
language research topic for many years. Techniques to reduce
program errors range from testing and runtime assertions
to dynamic and static analysis tools that can discover a
wide range of bugs. These tools enable programmers to find
programming errors and to reduce their impact, improving
overall program quality.

Nonetheless, a computation is not likely to be correct if the
input data are not correct. The phrase “garbage in, garbage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
OOPSLA ’14, October 19 - 21 2014, Portland, OR, USA
Copyright 2014 ACM 978-1-4503-2585-1/14/10...$15.00.
http://dx.doi.org/10.1145/2660193.2660207

out,” long known to programmers, describes the problem of
producing incorrect outputs even when the program is known
to be correct. Consequently, the automatic detection of incor-
rect inputs is at least as important as the automatic detection
of incorrect programs. Unlike programs, data cannot be easily
tested or analyzed for correctness.

Input data errors can arise in a variety of ways [24]:

• Data entry errors, including typographical errors and
transcription errors from illegible text.

• Measurement errors, when the data source itself, such
as a disk or a sensor, is faulty or corrupted (unintentionally
or not).

• Data integration errors, where inconsistencies arise
due to the mixing of different data, including unit of
measurement mismatches.

By contrast with the proliferation of tools at a program-
mer’s disposal to find programming errors, few tools exist
to help find data errors. Traditionally, programmers validate
inputs by writing validation routines that mechanically check
that inputs match a specification. Precise specifications are
difficult to define, but more importantly, this technique fails
to capture an entire class of subtle errors: inputs that pass val-
idation but that nonetheless cause unusual program behavior.

Existing automatic approaches to finding data errors in-
clude data cleaning and statistical outlier detection. Data
cleaning primarily copes with errors via cross-validation with
ground truth data, which may not be present. Statistical outlier
detection typically reports data as outliers based on their re-
lationship to a given distribution (e.g., Gaussian). Providing
a valid input distribution is at least as difficult as design-
ing a correct validator, but even when the input distibution
is known, outlier analysis often is not an appropriate error-
finding method. The reason is that it is neither necessary nor
sufficient that a data input error be an outlier for it to cause
program errors.

Depending on the computation, an input could be an
outlier that has no effect (e.g., MIN() of a set of inputs
containing an erroneously large value), or a non-outlier that
affects a computation dramatically (e.g., IF A1 = 0, "All

is Well", "Fire Missiles"). Furthermore, like regular
programs, spreadsheets are often a mix of functions that
consume and produce both numbers and strings. Traditional
outlier analysis is incapable of handling such a wide variety
of data types.

Even when the input distribution is known, it is often
difficult to automatically decide whether a given input is
actually an error. For example, the number 1234 might be
correct, or the correct value might be 12.34.

The key insight in this paper is that, with respect to a
computation, whether an error is an outlier in the program’s
input distribution is not necessarily relevant. Rather, potential
errors can be spotted by their effect on a program’s output
distribution. An important input error causes a program’s
output to diverge dramatically from that distribution. This
statistical approach can be used to rank inputs by the degree
to which they drive the anomalousness of the program.

Data Debugging. This paper presents data debugging, an
automated technique for locating potential data errors. Since
it is impossible to know a priori whether data are erroneous
or not, data debugging does the next best thing: locating data
that have an unusual impact on the computation. Intuitively,
data that have an inordinate impact on the final result are
either very important or wrong. By contrast, wrong data
whose presence have no particularly unusual effect on the
final result do not merit special attention.

Data debugging combines data dependence analysis and
statistical analysis to find and rank data errors in proportion
to their severity with respect to the result of a computation.
Data debugging works by first building a data dependence
graph of the computations. It then measures data impact
by randomly resampling data items with data chosen from
the same group (e.g., a range in a spreadsheet formula)
and observing the resulting changes in computations that
depend on that data. This nonparametric approach allows data
debugging to find errors in both numeric and non-numeric
data, without any requirement that data follow any particular
statistical distribution.

By calling attention to data with unusual impact, data
debugging can provide insights into both the data and the
computation and reveal errors.

Spreadsheet Programs. While data errors pose a threat
to the correctness of any computation, they are especially
problematic in data-intensive programming environments
like spreadsheets. In this setting, data correctness can be
as important as program correctness. The results produced
by the computations—formulas, charts, and other analyses—
may be rendered invalid by data errors. These errors can be
costly: errors in spreadsheet data have led to losses of millions
of dollars [39, 40].

CHECKCELL. We present CHECKCELL, a data debugging
tool designed as an add-in for Microsoft Excel and for Google
Spreadsheets (Figure 3). Spreadsheets are one of the most

Im
pa

ct
 o

f e
rro

rs
	

Size of spreadsheet	

important,	

hard-to-find	

Figure 1. CHECKCELL is designed to find important errors
in spreadsheets that would otherwise be too large to audit
manually.

Figure 2. A typical gradesheet. The formula in E6 is IF(E5
> 85, "Pass", "Fail"). The transposition typo in B11
changes this student’s grade from passing to failing. Gaussian
outlier analysis fails to detect this error, but CHECKCELL
does.

widely-used programming environments, and this domain has
recently attracted renewed academic attention [20, 23, 41].
In addition, spreadsheet errors are common, and have led
to significant monetary losses in the past, making them an
excellent first target for data debugging. CHECKCELL is
best suited for large spreadsheets where manual auditing
is onerous and error-prone (see Fig. 1).

CHECKCELL highlights all inputs whose presence causes
function outputs to be dramatically different than the function
output were those outputs excluded. CHECKCELL guides the
user through an audit one cell at a time. The order that the
audit visits suspected outliers depends on their severity in a
total order established by a ranking metric (Section 2).

CHECKCELL is empirically and analytically efficient and
effective, as we show in Sections 3 and 4. The current
prototype is untuned but analysis time is generally low, taking
a median of 2.98 seconds to run on most of the spreadsheets
we examine. By employing human workers via Amazon’s
Mechanical Turk crowdsourcing platform to generate errors,
we show that CHECKCELL is effective at finding actual data

Figure 3. CHECKCELL only requires that a user specify
the maximum percentage of spreadsheet inputs to audit. It
then guides a user through an audit of highest-ranked error
suspects.

entry errors in a random selection of spreadsheets from the
EUSES corpus [16]. We also apply CHECKCELL to a real-
world spreadsheet, automatically identifying a key flaw in the
now-infamous Reinhart-Rogoff spreadsheet [26].

Example Workflow with CHECKCELL

Consider the example spreadsheet in Figure 2, a typical grade
sheet for a university course. Grade averages for different
curricular activities (homework, quizzes, exams) are weighted
according a table and then summed to obtain a final grade.
Finally, if the grade crosses a threshold (in this case, 85), then
the student is considered to have passed the course. Otherwise,
the student receives a failing grade (here, a “grad fail”).

In this example, the error is a transposition of the value in
cell B11 from an 87 to a 78. Since this grade is an exam, it
is weighted more heavily than the grades for homework and
quizzes. Note that a two-sided parametric outlier test based on
the Gaussian distribution (α = 0.05, two standard deviations)
does not find this error. This is despite the fact that grades are
often normally distributed, and thus the Gaussian distribution
should be an appropriate fit. In fact, the error is not even one
of the most extreme values, which are actually the values in
cells B3 (77) and B5 (93). 78 is not just a valid grade, but in
general, a common one. Nonetheless, this error changes this
student’s final outcome from Pass to Fail.

CHECKCELL is designed to find precisely this kind of
subtle error. First, the user must decide k%, the proportion of
input values that they want to inspect (“% Most Unusual to
Show”). By default, this value is set to 5%, which is based on
our empirical observation that users tend to mistype strings at
this rate (See Section 4). After clicking the “Analyze” button,
CHECKCELL computes likely errors and ranks them by their
hypothesized severity.

Each error is presented to the user one-at-a-time. Upon
being presented an error, the user must either mark the cell
as correct (“Mark as OK”) or fix the error (“Fix Error”).
The auditing procedure terminates when either the user has
examined at most k% of the inputs, or when CHECKCELL
determines that none of the remaining inputs are likely errors,
whichever is smaller. By increasing k%, users may increase
accuracy for a greater expenditure in effort. For this example,
after a single iteration CHECKCELL finds only this single
error, then it terminates.

Contributions
The contributions of this paper are the following:

1. We introduce data debugging, an approach aimed at
identifying data that has an unusual impact on the final
computation, indicating that the data is either extremely
important or wrong.

2. We describe novel algorithms to implement data debug-
ging that combine program analysis and nonparametric
statistical analysis to identify potential data errors.

3. We present a prototype data debugging tool for spread-
sheets, CHECKCELL, and demonstrate its effectiveness at
finding errors and identifying highly important data.

Outline
The remainder of this paper is organized as follows. Sec-
tion 2 describes the algorithms that data debugging employs.
Section 3 derives analytical results that demonstrate data
debugging’s runtime efficiency and effectiveness. Section 4
presents an empirical evaluation of data debugging in the
form of CHECKCELL, measuring its runtime performance
and its effectiveness at finding errors. Section 5 discusses
related work. Section 6 describes directions for future work,
and Section 7 concludes.

2. Data Debugging: Algorithms
This section describes data debugging’s algorithms in de-
tail. Section 3 includes a formal analysis of its asymptotic
performance and statistical effectiveness.

2.1 Dependence Analysis
CHECKCELL’s statistical analysis is guided by the structure
of the program present in a worksheet. CHECKCELL’s first
step is to identify the inputs and outputs of those compu-
tations. CHECKCELL scans the open Excel workbook and
collects all formula strings. Formulas are parsed using an
Excel grammar expressed with the FParsec parser combi-
nator library. CHECKCELL uses the Excel formula’s syntax
tree to extract references to input vectors and other formulas.
CHECKCELL resolves references to local, cross-worksheet,
and cross-workbook cells.

Spreadsheet programs are always strictly directed acyclic
graphs. A formula is a node in a computation tree, and this
formula’s leaves are input values. Both the root and all the
intermediate nodes of the tree are pure functions. Since any
cell in a spreadsheet may be used as an input to a formula,
formulas may be used as inputs to other formulas. Taken
together, these computation trees form a computation forest.
The purpose of CHECKCELL is to determine the effect of a
particular input on the formulas in the computation forest.
CHECKCELL uses techniques similar to past work to identify
dependencies in spreadsheets [17].

CHECKCELL’s statistical analysis depends on the ability
of the analysis to replace input values with other represen-

tative values. When a function has only a scalar argument,
namely a single cell or a constant, CHECKCELL does not
have enough information to reliably generate other represen-
tative values. Therefore, CHECKCELL limits its analysis to
vector inputs.

2.2 Impact Analysis
CHECKCELL operates under the premise that the value of
a function changes significantly when an erroneous input
value is corrected. More precisely, CHECKCELL poses the
(null) hypothesis that the removal of a value will not cause a
large change in function output. CHECKCELL then gathers
statistical evidence in an attempt to reject this hypothesis.

Removing an input value requires replacing it with another
representative value. Since CHECKCELL never knows the
true value of the erroneous input, it must choose from among
the only other replacement candidates it can justify, namely
other values in the same input vector as the suspected outlier.

Function Classes
CHECKCELL limits its analysis to formula inputs that are
justifiably homogeneous, i.e., that input values can be con-
sidered as a sample vector drawn from an unknown distri-
bution and that their order does not matter. Our analysis of
frequently-used vector functions shows that the most widely-
used functions in Excel satisfy this assumption.

CHECKCELL does not directly perturb the inputs to vector
functions that do not satisfy the homogeneity requirement.
Figure 4 shows the relative frequency of the ten most common
vector functions in the EUSES corpus. Of the 5,606 spread-
sheets in the EUSES spreadsheet corpus [16], 4,038 contain
formulas for a total of 730,765 formulas. Our comprehensive
analysis of these spreadsheets showed that vector functions
that do not satisfy this assumption, such as HLOOKUP, IN-
DEX, VLOOKUP, and OFFSET, are dominated by homoge-
neous vector functions, notably SUM. Thus CHECKCELL is
useful for a most existing spreadsheets.

Non-Parametric Methods: The Bootstrap
Standard approaches to outlier rejection generally depend
on the shape of the distribution. These so-called paramet-
ric methods require data analysts to parameterize their hy-
pothesis tests with a known parametric form. The normal
distribution is most often assumed for outlier rejection. This
assumption is justified primarily when a distribution is known
to be the result of a summing or averaging of values, since
these values will converge in the limit to the normal distri-
bution according to the Central Limit Theorem. Given that
CHECKCELL needs to perform statistical tests on any func-
tion and over unknown data distributions, parametric methods
are inappropriate.

Instead, CHECKCELL’s input analysis incorporates an
adaptation of Efron’s bootstrap procedure, a non-parametric
(distribution-free) statistical method [12]. We use the boot-
strap to estimate the distribution of a function output, given

only an approximation of the true distribution of inputs (in
this case, a sample input vector). This distribution allows one
to measure the variability of the test statistic, allowing for
reliable inference even when the following conditions hold:

• The sample size is small, i.e., under 30 elements, or
• The distribution is either difficult to compute or is com-

pletely unknown.

In particular, CHECKCELL uses an adaptation of Efron’s
basic bootstrap procedure. The procedure works as follows:

1. Draw a random sample, Xi = (x0, . . . , xm−1), with
replacement, from the input vector of interest. This new
vector is referred to as a resample. Note that m must be
the size of the original sample.

2. Compute the function output for sample i, namely θ̂i(Xi).

3. Repeat this process n times. In the statistical literature, the
number of bootstraps typically is between 1000 and 2500;
CHECKCELL uses n = 1000 · e, which is approximately
2800 (see Section 3.1).

The resulting distribution θ̂ = (θ̂i, . . . , θ̂n−1) gives an
approximation of θ, the true distribution of function outputs.
This distribution can now be used for inference, because the
bootstrap procedure gives an indication of the variability of
θ, i.e., we know which values of θ are unlikely.

Hypothesis test. In order to determine whether an input, x,
is likely to be an error, CHECKCELL conditions the output
distribution θ̂ on the absence of x in the data. We call
this conditional distribution θ̂e. The conditional distribution
approximates the effect of correcting the input error. If
the original function output, θorig, is highly unusual when
compared to the θ̂e, the input x is either a very important
input or a likely error. CHECKCELL performs two variants of
the hypothesis test, depending on whether the output of the
function of interest is numeric or string-valued.

Numeric function outputs. For numeric outputs, the boot-
strap distribution is sorted in ascending order, and the quantile
function is applied to determine the confidence bound of in-
terest. CHECKCELL uses α = 0.05, which is a standard
confidence bound in the statistical literature, corresponding
to a 95% confidence interval. The original function output is
compared with the distribution θ̂e. If θorig falls to the left of
the 2.5th percentile or to the right of the 97.5th percentile, we
reject the null hypothesis and declare x an outlier.

String-valued function outputs. For string-valued function
outputs, the bootstrap distribution becomes a multinomial.
The multinomial is parameterized by a vector of probabilities,
p0, . . . , pk−1, where k is the number of output categories
(in our case, distinct strings), and where

∑k−1
i=0 pi = 1.

CHECKCELL calculates pi from the observed frequency of
category i from θ̂e. The null hypothesis is then rejected if the
probability of observing the original function output, θorig,

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

SU
M	

OF
FS
ET
	

VL
OO
KU
P	

MI
N	

AV
ER
AG
E	

MA
X	

IN
DE
X	

PR
OD
UC
T	

CO
NC
AT
EN
AT
E	

MA
TC
H	

Top 10 Most Common Vector Functions in EUSES Corpus	

Figure 4. A frequency count of the 10 most common vector functions in the EUSES spreadsheet corpus. The SUM,
MIN, AVERAGE, MAX, PRODUCT, MATCH functions are order-independent while OFFSET, VLOOKUP, INDEX, and
CONCATENATE are not.

is less than α. The accuracy of the multinomial hypothesis-
testing procedure depends on the number of bootstraps, n,
since if n� k then θ̂e is guaranteed to be sparse and incorrect
inferences may be drawn. In principle, n can be adjusted such
that we are unlikely to observe a pi = 0 when the true value
of pi = 0 + ε.

2.3 Impact Scoring
Finally, all inputs that failed at least one hypothesis test
are highlighted in red and presented to the user. There are
O(i · f) hypothesis tests, one for each (input,output) pair,
where i is the total number of inputs in the spreadsheet
and f is the number of function outputs. Brightly-colored
outputs indicate likely severe outliers while dimly-colored
outputs indicate less severe outliers. Input cells that failed no
hypothesis test retain their original color (typically black text
on a white background). Inputs that do not participate in any
computations have no chance of being flagged as potential
errors.

CHECKCELL cannot know a priori which function outputs
are the most important to the end-users. However, inputs that
have large effects on large-scale computations are arguably
more important to find than inputs that have large effects on
small-scale computations. The total impact of the error is thus
defined as

∑
i,f si,f · wf where si,f is the impact score for

input i and function f , and wherewf is the weight of function
f determined by the size of the computation tree (the number
of input leaves) for that function. Weighting helps distinguish
between inputs that participate in small computations and
those that participate in large ones. The brightness of the
highlighting is (si,f − smin)/(smax − smin) where 0 is no
highlighting and 1 is the brightest highlight.

2.4 Optimizations
CHECKCELL’s runtime is O(i ·n), or linear in the number of
recalculations required (see Section 3), where i is the number

of input vectors and n is the number of bootstraps required.
Our system uses a configurable default of n = 1000 · e (see
Section 3.1).

As n grows larger than m, the length of an input vector,
the probability that a given resample will again appear
during the bootstrapping procedure increases substantially.
CHECKCELL makes use of this fact to save on recalculation
cost by caching the output of functions whose input values
have been previously calculated.

CHECKCELL calculates a fingerprint for each resample
that lets it identify duplicate resamples. Since the inputs to
vector functions are order-invariant, CHECKCELL only needs
to track the number of appearances of a particular input value
in a resample. The fingerprint is a vector of counters, one
for each index in the input. CHECKCELL keeps a dictionary
of previously-calculated values of θ̂i, where the key is the
aforementioned fingerprint.

For example, given the input vector (1, 2, 3, 4), one possi-
ble resample, X = (x0, x1, x2, x3), is (1, 4, 4, 3). The finger-
print counter would then be c0 = 1, c1 = 0, c2 = 1, c3 = 2.
Section 3.2 analyzes the efficiency of this mechanism.

3. Data Debugging: Analysis
This section presents an analysis of data debugging’s domi-
nant contributor to the cost of accurate inference: the number
of resamples required to perform the bootstrapping method.
A mechanism for significantly mitigating this cost is also
discussed.

3.1 Number of Resamples
For an input vector of length m and a given value from that
vector, x, the probability of randomly selecting a value that
is not x is m−1

m . The probability of selecting m such values
is therefore (m−1m)m. As m grows, we obtain the following
identity:

Lemma 3.1. limm→∞
(m− 1

m

)m
=

1

e

Statistical literature suggests that the number of bootstraps
be at least 1000 when the computational cost is tolerable. For
efficiency, we perform our bootstrapping procedure once
for each input range, and then partition the resulting θ̂
distributions according to the value x of interest. We set
n = 1000 · e. Lemma 3.1 ensures that, on average, there are
1000 resamples in the bootstrap distribution for θ̂e.

For i input ranges and a bootstrap size of n, CHECKCELL
requires O(i · n) time to analyze a spreadsheet. In practice,
the caching feature described in Section 2.4 makes observing
even this modest linear cost highly unlikely.

3.2 Efficiency of Caching
For an input vector of length m and a resample X , it must
be the case that the sum of the fingerprint counter’s values
equals m. There are only f =

(
2m−1

m

)
ways to sum to m for

a fingerprint vector of length m. There are only f possible
fingerprints for an input vector of length m. Input vectors
are resampled uniformly randomly, thus the probability of
choosing a particular fingerprint is 1

f . We expect to see a
particular fingerprint with a frequency of n

f for a bootstrap of
size n. Clearly, for n > f , we are likely to observe a repeated
fingerprint. As n grows larger than f in the limit, observing a
repeated fingerprint is guaranteed.

For example, suppose we have the following vector: ABC.
While there are 33 possible ways to resample from this
vector, a large number of those combinations are not unique
when we ignore the ordering of the elements. The complete
set of distinct order-independent combinations are: AAA,
AAB, AAC, ABB, ACC, ABC, BBB, BBC, BCC, CCC.(
2·3−1

3

)
= 10.

4. Evaluation
We evaluate CHECKCELL across three dimensions: its ability
to reduce input errors, its ability to reduce end-user effort in
fixing errors, and its execution time. We also use CHECK-
CELL to examine the now-infamous Reinhart and Rogoff
spreadsheet [26, 35, 36].

Our evaluation answers the following questions:

1. Does CHECKCELL identify important data errors?

2. Does using CHECKCELL reduce user effort to identify
and correct errors?

3. Is CHECKCELL efficient?

Experimental Methodology
To verify that CHECKCELL is effective at finding important
data errors, we run CHECKCELL on a random selection of
61 benchmarks from the EUSES spreadsheet corpus. For
each spreadsheet, we randomly select and perturb a single
input value with a representative error drawn from an error
generator (see Sec 4.1, “Error Generator”).

We simulate a user who examines flagged cells as
prompted by CHECKCELL. If the simulated user is prompted
to inspect a cell that contained a real error, we mark the cell
as a true positive and correct the error using the value from
the original spreadsheet. If the simulated user is prompted to
inspect a cell that did not contain an error, we mark the cell
as a false positive.

After CHECKCELL identifies all of the errors at the
significance level indicated by the user, all remaining errors
are considered to be false negatives. For each error-injected
spreadsheet, we compute the remaining error and relative
user effort at the end of the procedure. We repeat this process
100 times for each spreadsheet.

Choice of Baselines. We measure CheckCell’s ability to
accurately identify errors and the user effort required to
find them. Since CHECKCELL is the first fully-automated
tool for finding data errors, the baseline for CHECKCELL’s
effort reduction is the requirement to manually inspect every
formula input cell.

To demonstrate CHECKCELL’s error-finding performance,
we compare CHECKCELL against a variety of alternative
error-finding procedures. We report CHECKCELL’s perfor-
mance against the best performing of these methods. We also
compare CHECKCELL against a random-flagging procedure
to demonstrate that CHECKCELL’s results are not simply
the result of random chance. We report CHECKCELL’s re-
sults with its single parameter, % Most Unusual to Show,
set at 10%. Empirically, this setting provides the best bal-
ance of precision and recall. Note that this parameter means
that CHECKCELL may report up to 10% of the values in the
spreadsheet. In practice, this rarely occurs.

Gaussian outlier procedures are fundamentally different
from CHECKCELL: Gaussian analysis looks for outliers in
the input given a set of inputs, while CHECKCELL looks for
outliers in the input given a set of outputs. Furthermore, all
Gaussian-based procedures are parametric, meaning that they
assume data are normally distributed. CHECKCELL is non-
parametric, which means that it makes no such assumption
about the data’s distribution.

Our chosen Gaussian procedure, which we refer to as
NAll, differs from CHECKCELL in several respects. First,
NAll flags inputs as likely outliers based on their z-scores,
a normalized distance from the mean based on standard
deviation. CHECKCELL uses nonparametric tests based on
quantiles (for continuous and ordinal data) and histograms
(for nominal data). Second, NAll considers all of the inputs
in the spreadsheet together; all inputs are concatenated into
a single input vector. By contrast, CHECKCELL considers
inputs one input vector at a time.

Counterintuitively, we found that considering all inputs
together boosts the performance of Gaussian methods sub-
stantially over those that considered input vectors one at
a time. We hypothesize that this change benefits Gaussian
procedures because important errors tend to be large in mag-

nitude. By including all inputs, Gaussian procedures can infer
more appropriate rejection criteria for the spreadsheet being
analyzed.

To keep the comparison straightforward, our evaluation
introduces only a single outlier into each spreadsheet (i.e.,
there is at most one true positive). Furthermore, while input
perturbations are drawn from a typo model, we make no effort
to ensure that such errors are important. This design lets us
compare the sensitivity of the two different techniques across
two dimensions: (1) the magnitude of the input error, and
(2) the magnitude of the output error. Finally, to simplify the
comparison, we limited the experiment to input errors for
only numerical functions.

It should be noted that limiting the experiment to numeri-
cal functions biases the experiment in favor of NAll. CHECK-
CELL’s approach is strictly more powerful than Gaussian
outlier detection methods since it can work with both numeri-
cal and string data. This extra power is needed since Excel is
sometimes insensitive to changes in input data type. For exam-
ple, Excel silently coerces non-numeric inputs into numbers
(e.g., =TRUE+2). Excel also silently drops nonconforming in-
puts (SUM of a vector of strings and numbers), obscuring the
effect of obvious typographical errors.

Since all inputs in this experiment are numerical, measur-
ing the magnitude of an input perturbation is straightfoward.
Measuring the magnitude of a spreadsheet’s change in out-
puts is more complicated, as even simple spreadsheets often
contain multiple outputs. We use a total output error metric
to measure the magnitude of an output change relative to
other output values in the spreadsheet (see Section 4.1).

After each run, we classify the performance of the two
procedures with one of four possible outcomes: (1) CC10
finds the error, (2) NAll finds the error, (3) both procedures
find the error, or (4) neither procedure finds the error. Our
hypothesis is that CC10 finds input errors that cause outliers
in the output while NAll finds errors that cause outliers in the
input. More importantly, we hypothesize that CHECKCELL
finds a different class of errors, which we term subtle errors:
small-magnitude input errors that cause large-magnitude
output errors. This class of errors is elusive and is therefore
most important for automatic tools to be able to find.

Latent Errors. Our benchmarks are drawn from the EU-
SES spreadsheet corpus, a collection of representative spread-
sheets scraped from the Internet. Our experience building an
error generator suggests that users make input errors at a rate
of roughly 5% per string (see Section 4.1). Thus, it is likely
that these spreadsheets already contain errors. Since we do
not know whether unusual inputs in unperturbed spreadsheets
are correct, we conservatively assume that they are correct.
When latent errors are present, our analysis will artifically
inflate CHECKCELL’s false positive rate (CHECKCELL will
have lower precision).

4.1 Error Reduction and User Effort Metrics
To show that CHECKCELL is effective at removing errors, we
need a metric that captures the total error of a spreadsheet.
To show that CHECKCELL makes users more efficient, we
need a metric that captures expended effort. We derive both
of these metrics in the following section.

Quantifying User Effort
Without an auditing tool, users must in the worst case inspect
all function inputs. An effective tool should reduce the
number of inputs a user must manually examine. Let z be the
number of cells inspected during the use of the tool (z ≤ m,
the total number of inputs). The relative effort of the tool is
then defined as effort = z/m.

Quantifying Error
We consider the “correct” (original) spreadsheet to be a vector
S of strings. Recall that we assume that the spreadsheet prior
to error injection is correct. CHECKCELL may identify latent
errors in the EUSES spreadsheets, but because we do not
know the ground truth, we conservatively treat such reports
as false positives.

We refer to a spreadsheet with errors injected as spread-
sheet Se. Using CHECKCELL leads to a sequence of k cor-
rections, c1 . . . ck, rank-ordered by impact. Note that k ≤ n,
the total number of errors injected, since CHECKCELL may
not identify all of the errors present.

We apply the corrections in sequence, c1 . . . ck, producing
a partially-corrected version of the fault-injected spreadsheet
Se, namely the spreadsheet Sp,k. Spreadsheet Sp,0 is the
spreadsheet with no corrections applied (Se). Spreadsheet
Sp,n is the spreadsheet with all n corrections applied (S,
when k = n).

Because spreadsheets contain both numeric and non-
numeric data, we treat them separately and then combine
their terms into a total error metric.

Let f be a real-valued function over spreadsheet inputs.
Then the absolute numerical error of f is:

errR(f, k) = |f(Sp,k)− f(S)|

Note that it is possible for a sequence of corrections to
temporarily increase the numerical error (i.e., errR(f, k) >
errR(f, k+1)), because the effect of multiple errors may com-
bine to reduce total error. Consequently, we normalize numer-
ical errors by the most extreme error observed. Nonetheless,
after correcting all n errors, the numerical error is guaranteed
to be 0.

The normalized absolute numerical error of f is thus:

nerrR(f, k) =
errR(f, k)

max
i∈0..n

errR(f, i)

We treat non-numerical errors (i.e., errors in nominal
outputs) by using an indicator function which is 1 if it differs

in value and 0 otherwise. Let g be a categorical function.
Then the categorical error of g is:

errC(g, k) =

{
1 if g(Sp,k) = g(S)

0 otherwise.

We then compute the total error in a spreadsheet as
follows. Let the set of all numeric functions defined in a
spreadsheet be F and the set of all categorical functions
defined in a spreadsheet be G. Then the total error after k
corrections of the spreadsheet is:

errtot(k) =
∑
f∈F

nerrR(f, k) +
∑
g∈H

errC(g, k)

errtot(k) allows us to compute the remaining error over all
numeric and string valued functions at step k of the algorithm.
Finally, since there may be remaining error at step k, we
define the remaining error to be:

errrem =
errtot(n)
errtot(0)

This last number expresses the ratio of cells remaining
to be fixed. For example, a remaining error of 0.5 means
that 50% of the total error remains from the fault-injected
spreadsheet. Note that if k = n (we fix all of the errors), then
errrem is guaranteed to be 0.

Classifier Accuracy
CHECKCELL’s stated purpose is to assist a user in a spread-
sheet audit by classifying inputs into one of two categories:
errors and non-errors. CHECKCELL cannot distinguish be-
tween important errors and important non-errors. Nonethe-
less, it is informative to examine CHECKCELL’s error-finding
accuracy using off-the-shelf classifier metrics.

We use precision and recall for this purpose. Precision
and recall are more informative than raw counts for true
positives and false positives, because they are normalized by
the number of values flagged and by the number of true errors
respectively. Nonetheless, since these metrics make use of
false positive, false negative, and true negative counts, we
explain these counts in terms of CHECKCELL’s evaluation. A
false positive is when CHECKCELL flags a cell as erroneous
that is correct (or an unknown latent error). A false negative is
when CHECKCELL fails to flag an injected error as erroneous.
A true positive is when CHECKCELL correctly identifies an
cell with an injected error.

Precision is defined as:

Precision =
true positives

true positives + # false positives

Recall is defined as:

Recall =
true positives

true positives + # false negatives

Both metrics need to be reported, as they are misleading
in isolation. A classifier that produces no false positives
will have a precision of 1 (“perfect precision”). Such a
classifier may be conservative, missing many true positives.
A classifier that flags all errors will have a recall of 1
(“perfect recall’). But perfect recall can be achieved by
trivially classifying all inputs as errors. Thus precision and
recall are complementary metrics for understanding how
often a classification procedure is correct.

As a pessimistic baseline, we also compare CHECKCELL
against a procedure that randomly classifies k% of the cells
as errors. The expected precision of a random-flagging proce-
dure with one error equals 1

inputs . The expected recall of
that same procedure is k% [43].

Error Generator
In order to inject errors that are representative of the kind
of errors that people actually make, we built and trained a
classifier by recruiting workers on Amazon’s Mechanical
Turk to perform data entry tasks. The classifier is designed to
spot two kinds of errors: (1) character transpositions and (2)
simple typographical errors.

Our input data came from two sources: we randomly sam-
pled formula inputs from 500 spreadsheets in the EUSES
corpus (corresponding to 69,112 input strings), and we ran-
domly generated 100,000 additional strings. The additional
strings were created to ensure that users were exposed to a
wide range of strings, reducing the sparsity in our model. To
make it impossible for users to simply cut and paste these
strings back into the input field, we rendered strings as images
and had 946 workers re-enter the text shown in the image.
Workers correctly re-entered 97.14% strings from the first
data set and 93.24% from the second data set for a total
accuracy of 94.74% (an error rate of 5.26%).

Experimental Results
Distribution of Generated Errors. Of the 6100 error injec-
tion experiments, 2836 were numerical only and were thus
used for our analysis. The distribution of errors generated and
their effects on the output are shown in Figure 5(a). The input
error magnitude distribution is reasonably close to a standard
Normal distribution (quantiles: 0% = -14.41, 25% = -0.04,
50% =-0.04, 75% = 0.30, 100% = 13.69). The total output
error is skewed, as low magnitude errors dominate (quantiles:
0% = 0.00, 25% = 0.03, 50% = 0.08, 75% = 0.25, 100% =
1.00). The vast majority of errors generated were small errors
with minimal impact on the computation.

Precision and Recall. Across all benchmark runs, CHECK-
CELL had a mean precision of 8.0% and a mean recall of
12.1%. NAll had a mean precision of 5.9% and a mean recall

●●●●●● ●●●●
●●

●●
●●
●●●●●● ●●
●●
●●●●●● ●●●●●●

●●
●● ●● ●●●● ●●

●● ●●●●●●
●●
●●

●●●● ●●
●● ●●

●●
●●

●●
●●●●●●●●

●●
●●●●

●●
●● ●● ●●

●● ●●●●●●
●●●●

●● ●●
●●
●●

●●
●●●●
●●
●●
●●

●●
●●
●●
●● ●●
●●●●
●●

●●●●●● ●● ●●●●●●●● ●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●●●●● ●● ●●●●●● ●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●●●

●● ●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●

●●

●●●●

●●●●●●

●●

●●

●●
●●
●●
●●●●
●●

●●

●●

●●●●●●

●●

●●

●●●●

●●●●●●
●●
●●●●●●●●

●●

●●

●●
●●

●●

●●
●● ●●●● ●●

●●

●●
●● ●●
●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●● ●●

●●

●●
●●
●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●

●●●●●● ●● ●●

●●

●●

●●●● ●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●● ●●

●●

●●●●●●

●●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●● ●●●● ●●●● ●●●● ●● ●●

●●

●●●●

●●●●●●●● ●●●●●●

●●●●

●●●●

●●●●

●●●●

●● ●●

●●●●●●●●●● ●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●●●●●●●●●●●●● ●●

●●

●●●●●●●●

●●

●●

●●

●●●●

●●

●●●●●●●●

●●

●●●●●● ●●●●

●●

●●

●●

●●●●

●●●●

●●●●●● ●●●●●●

●●

●●

●●

●●●●●●●● ●●●●

●●●●

●●●●●●●● ●●
●●

●●

●●●● ●●

●●
●●

●●●●

●●

●●

●●

●●
●●

●●●●●●
●●●●

●●

●● ●●●●

●●

●●
●●●●

●●
●●●●

●●●●

●●

●●

●●

●●

●●●●●●
●●
●●●●●●

●●

●●

●●

●●
●●

●●

●●●●

●●
●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●● ●●●● ●● ●●●●

●●

●●

●●

●●●●

●●

●● ●●●●●●●●

●●●●

●●●● ●●
●●

●●●●

●●●●●●●●

●●

●● ●● ●● ●●●●●●●●

●● ●●

●●

●●

●●

●● ●●
●●

●●●●●●

●●

●●●● ●●●●●●

●●●●

●●●●
●●

●●●●

●●

●●●●
●●

●●●● ●●

●●

●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●

●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●● ●● ●●●●●●●●●●●● ●●

●●

●●●●●●●● ●●●● ●●●●●●●● ●●

●●

●●

●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●

●●

●●●●●●●●●●●● ●●●● ●● ●●●● ●●

●●●●●● ●●●● ●●●● ●●●●●● ●●●● ●●●●●●●● ●● ●●●●●●●● ●●●● ●●●● ●●●● ●●●●●● ●● ●●

●●●●●●

●●

●●

●●

●●●●●● ●● ●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●●●●● ●●●●

●●
●●

●●●●

●●

●●●●●●●● ●●●●

●●

●● ●●●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●● ●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●● ●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●● ●●●●●●●●●●●● ●●
●●

●● ●●

●●

●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●
●●

●●●● ●●●●●●●●●●

●●

●●●●●● ●●●● ●●●●

●●●●
●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●

●●●●●● ●●●● ●●●● ●● ●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●● ●●●● ●●●●●●

●● ●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●● ●●●●●● ●●

●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●
●●

●●
●● ●●

●●

●●

●●
●●

●●
●●

●●●●
●●●●●●
●●

●●
●●●●
●●●●

●●

●●
●●

●●

●●●●●●
●●
●●

●●

●●

●●

●●
●●
●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●
●●

●●
●●

●●●●●●

●●

●●

●●
●●

●●
●●●●●●
●●

●●●●

●●●●●●
●●
●●●●●●
●●●●
●●●●

●●

●●

●●●●
●●

●●●●
●●

●●●● ●●●●

●●●●

●●
●●

●●
●●●●

●●

●●
●●

●●

●●
●●

●●●●●●●●●●

●●

●●

●●●●●●●●●●●●
●●
●●

●●

●●
●●
●●

●●

●●●●
●●
●●●● ●●●●
●●
●●

●●

●●

●●

●●

●●●●

●●
●●

●●

●●

●●

●●

●●●●●● ●●●●●●

●●●●

●● ●●

●●●●

●●

●●

●●

●●

●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●

●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●● ●●●●

●●

●●

●●

●●

●●

●● ●● ●●

●●

●●

●●

●●

●● ●●

●●
●●●●●● ●●●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●

●●

●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●

●●●● ●●●●●●●●●●●● ●● ●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●● ●●

●●
●●
●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●
●●●●●●●●
●●●●

●●

●●

●●

●●

●●●●●●

●●●●●●

●●
●●

●●

●●●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●●●

●●
●● ●●
●●●● ●●
●●

●●

●●
●●
●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●●●
●●

●●

●●●●●●
●●●●●● ●●

●●●●
●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●

●●●● ●●●● ●● ●●●● ●●
●●●● ●● ●●●●●● ●●●● ●●●●●●●● ●●●● ●●

●●●●●●

●●

●● ●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●

●●

●● ●●
●● ●●

●● ●●●●●● ●● ●●●●

●●

●●

●●
●●

●●
●●●●

●● ●● ●●

●●

●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●

●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●
●●

●●
●●●●

●●
●●

●● ●●●●
●●

●●
●●
●●

●●
●● ●●●●

●●
●●●●
●●

●●
●●

●●●●●●
●●

●● ●●●●●● ●●
●●
●●●● ●●●● ●●●● ●●●●

●●
●●

●● ●● ●●●●●●●●
●●
●●

●●

●●●●●● ●●
●●

●● ●●

●●

●●●● ●●

●●●●

●●●● ●●●●●●●●

●●
●●

●●

●●

●●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●● ●●

●●

●●●● ●●

●●●●
●●

●●

●●

●●●●

●●●●

●● ●●●● ●●

●●
●●

●● ●●●●●●●●

●●●●

●●

●●●●

●● ●●

●●

●●●●

●●

●●

●●
●●

●●

●●

●● ●●

●●

●●

●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●●●●●●
●●

●●

●●

●●
●●

●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●●●
●●●●

●●

●●

●●

●●

●●

●●

●●
●●
●●

●●
●●

●●

●●

●●
●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●●● ●●●●●●

●●●●

●●●●

●●

●●

●●●●

●●

●●

●●●●●●

●●

●●

●●

●● ●●●●●●●●●●●● ●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●● ●●●●●●

●●●●

●●●● ●●

●● ●●●●

●●●●●●●●

●●

●●●● ●●

●●●●

●●●●●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●●●

●●

●●

●●●● ●●

●●●●●●●● ●●●●

●●

●● ●●●● ●●●●●●●●

●●

●●

●●●●

●●

●●●●

●●●●

●●●●●●

●●●●

●●

●●

●●●● ●●●● ●●●●●● ●●

●●●●

●●●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●●●

●●

●●●●●●

●●

●●●●

●● ●●

●●●●●● ●●●● ●●

●●

●●●● ●●●● ●●

●●

●●●●●●●●●●●●

●●

●●●● ●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●●● ●●

●●

●● ●●
●●

●●

●●

●●

●●
●●●●

●●

●●
●●●●

●●
●●●●

●● ●●

●●

●●

●●

●●●●●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●● ●●

●●●● ●●●● ●●

●●
●●

●●●●●●●●●●
●●●● ●●
●●●●●●●● ●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●● ●●

●●●●●● ●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●
●●●●●●●●
●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●

●●●●

●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●●●

●●

●●●● ●● ●●●●●●●●●● ●●●●

●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●
●●
●●●● ●●
●●●●
●●●●●● ●●●●
●●●●●●
●●●●●●●● ●● ●●
●●

●●●●●●●●●● ●●
●●

●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●
●●

●●
●●

●●●● ●●●●●●●● ●●
●●
●●●● ●●
●● ●●●●●●●●●●

●●
●●●● ●●

●●●●●●●● ●●●●●● ●● ●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●●●●●●●

●●

●●

●●●●

●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●

●●

●●

●●●●

●● ●●

●●●●●●

●●●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●● ●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●● ●●●●
●●●●

●● ●●
●● ●●●●●●●●

●● ●●
●● ●●

●●
●●
●●

●●●●
●●

●●●●●●
●●●●

●●●● ●●
●● ●●

●●
●●

●●●●
●●

●●●●●●
●●
●●

●●

●● ●●●●

●●

●●

●● ●●

●●

●●●●

●●

●●●●

●●

●● ●●

●●

0.00

0.25

0.50

0.75

1.00

−10 0 10
Magnitude Change in Input

To
ta

l O
ut

pu
t E

rr
or

Error Distribution

●●● ●● ●
●● ●

● ●

●●●●●● ●

● ●

● ●

●● ●●

●●● ●●●●●●●●●●●●●●●● ●● ●

●

●● ●● ●●●●● ●●●●●●●● ●● ●●●● ●●● ●●● ●●●●●

●●● ●●●●●●●● ●● ●● ●

● ● ●●●● ● ●●●

●●●● ● ●● ●●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●●● ●●●

●●● ●●●●●
●

●●●

● ●●●● ●●● ●●●● ●●●●●●●●●●●● ●● ●●●● ●●●

●●●● ●●

●● ●●●●● ●

●●●●●●
●●●●●

●
●

●●

●●●●●●●● ●● ●●● ●●●●● ●●

●●

●

●

●●●● ● ●●

● ●● ●
● ●●

●● ●●

●

●●●

● ●

●●

●
●● ●●●●●● ●● ●●●●

0.00

0.25

0.50

0.75

1.00

−10 0 10
Magnitude Change in Input

To
ta

l O
ut

pu
t E

rr
or

Errors Detected by CheckCell

(a) (b)

●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●

●

●●● ●●

●

●

●●● ●

●

●●● ●●●●●●●●●●● ●● ●●● ●●●● ●● ● ●●

●

●● ● ●●● ●●● ● ●●● ●●

●●●●●●●● ● ●●

●●●● ●●●●●●● ●●●● ●●●●●●●●● ●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●● ● ●●●●● ●●● ●●●● ●● ●●●●●
●●● ●●● ● ●● ●●●● ●●●●●● ●●●● ●● ● ●● ●●●

●●●● ●

● ●● ●●●●●●●●● ● ●● ●●● ●●● ●●●● ●●●●● ●● ●●●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●●

●● ●●● ●●● ●●● ●● ●●●●●●

●●●●●●●● ●●●●● ●●

●● ●●●●● ●

●●●●●● ●● ●●●●

●●●●

●

●

●●●● ●●

●●

●●●●

● ●●

●

●● ●

● ●

●

●

●● ●●●

●●●
●

● ●● ●
●●

●

●

●

●
●
●

●●● ●●

●● ● ●
●●● ●●●●● ●● ●●●●●●● ●● ●●●●●

0.00

0.25

0.50

0.75

1.00

−10 0 10
Magnitude Change in Input

To
ta

l O
ut

pu
t E

rr
or

Errors Detected by NAll

●●● ●● ●

●

●●●●●● ●

●

●

● ●●

●● ●● ●●●●● ●●●●●●●● ●● ●●●● ●●● ●●● ●●●●●

●●● ●●●●●●●● ●● ●● ●

● ●

●
●
●

●●●

●●●●●●●●●●●●●●●●●

●

●●●●●●
●

●●●●●●●● ●● ●●● ●●●●● ●●

●●
●●● ●●

●●

●● ●●●●●

●

0.00

0.25

0.50

0.75

1.00

−10 0 10
Magnitude Change in Input

To
ta

l O
ut

pu
t E

rr
or

Errors Detected Only by CheckCell

(c) (d)

Figure 5. (a) The distribution of input errors. Each point corresponds to a single benchmark run. The change in input magnitude
as the result of the error is shown on the x-axis while the change in the spreadsheet’s total error is shown on the y-axis. Note
that because our typo generator was designed to produce representative errors, they are largely biased toward small-magnitude
perturbations. (b) The distribution of errors caught by CC10. CHECKCELL favors errors that produce a large effect on the output.
(c) The distribution of errors caught by NAll. NAll favors large input errors in the input. (d) The distribution of errors found by
CC10 but not by NAll. These errors tend to be subtle: they have a high impact on the spreadsheet’s output and are the result of
small magnitude changes in the input.

of 15.8%. A random-answering adversary that expects errors
to occur at a rate of 5.26% has a mean expected precision
of 3.5% and a mean expected recall of 5.26%. CHECKCELL
has higher precision than NAll, indicating that it is more
discriminating. However, NAll has a higher recall, which
means it flags more errors than CHECKCELL. Nonetheless,
both of these figures are strongly influenced by the presence
of a large number of small errors with little impact. The skew

is an artifact of our error generator, which does not produce
errors uniformly across input and output error magnitudes.

Precision and recall numbers are more informative when
we stratify benchmarks by a minimum total output error.
Figure 6(a) compares CC10 and NAll mean precision as the
minimum total error is increased. Figure 6(b) compares CC10
and NAll mean recall as the minimum total error is increased.
NAll gains a rapid precision advantage over CC10 as errors
have more of an effect on the computation.

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Total Output Error >= x

M
ea

n
P

re
ci

si
on

Analysis NAll CC10

Precision as Total Output Error Increases

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Total Output Error >= x

M
ea

n
R

ec
al

l

Analysis NAll CC10

Recall as Total Output Error Increases

(a) (b)

0.0

0.2

0.4

0.6

0.8

−15 −10 −5 0 5 10
Input Error Magnitude >= x

M
ea

n
P

re
ci

si
on

Analysis NAll CC10

Precision as Input Error Magnitude Increases

0.0

0.2

0.4

0.6

0.8

−15 −10 −5 0 5 10
Input Error Magnitude >= x

M
ea

n
R

ec
al

l

Analysis NAll CC10

Recall as Input Error Magnitude Increases

(c) (d)

Figure 6. (a) Precision as the minimum total output error is increased. CHECKCELL always has fewer false positives than
NAll. (b) Recall as the minimum total output error is increased. For errors that cause a small effect, NAll returns more false
positives, but as errors grow more severe, CHECKCELL returns increasingly relevant errors. (c) Across all input error magnitudes,
CHECKCELL is always at least as precise as NAll, but usually more. (d) NAll is more sensitive to small-magnitude input errors
than CHECKCELL.

However, NAll’s initial recall advantage over CHECK-
CELL quickly evaporates as errors grow in importance. When
an error is large enough to influence at least a quarter of the
total output error, CC10’s precision is 17.9% while NAll’s
is 6.9%. When an error influences at least half of the total
error, CC10’s precision is 20.0% while NAll’s is 3.7%, more
than five times higher. These plots mean that as errors grow
in importance, CHECKCELL finds them more accurately than
NAll.

It is also informative to stratify benchmarks by a minimum
total input error. Figure 6(c) shows that CHECKCELL is
always at least as precise as NAll; for a large range of input

error magnitudes, it is strictly more precise. Figure 6(d)
shows that NAll has higher recall (flags more errors) for
small magnitude input errors. The difference is not surprising.
NAll is only sensitive to inputs, while CHECKCELL is only
sensitive to outputs. Both procedures are equally precise and
sensitive for large magnitude input errors.

Distributions of Detected Errors. CC10 found 344 errors
while NAll found 448. 205 errors were found by both pro-
cedures. The fact that both CC10 and NAll failed to detect a
large number of errors is not surprising given that most errors
were inconsequential. The errors missed by both procedures
were both small in magnitude (µ =-0.251, median: -0.045,

Input Error Magnitude Total Output Error
µ med. σ µ med. σ

CC10 only 0.59 0.87 1.01 0.49 0.50 0.37
CC10 1.02 0.95 1.49 0.35 0.23 0.32
NAll 0.96 0.95 1.39 0.21 0.08 0.23
NAll only 0.67 0.95 0.98 0.18 0.08 0.23
Undetected -0.25 -0.04 1.71 0.18 0.07 0.25

Figure 7. Classes of errors detected by CC10 and NAll. Input
error magnitude is the magnitude of the change in input. Total
output error is the normalized amount of error in the spread-
sheet’s output. The errors detected by CHECKCELL (CC10) have
a higher total error and are thus more important than the errors
detected by NAll. The errors detected only by CHECKCELL
have a lower input error magnitude, confirming that flagging
errors on the basis of input error alone is likely to miss subtle,
high-impact errors.

Df Sum Sq Mean Sq F Pr(>F)
IEM 1 0.20 0.200 2.600 0.107
AT 1 3.62 3.618 47.00 1.43× 10−11

IEM:AT 1 0.00 0.004 0.053 0.817
Residuals 788 60.65 0.077

Figure 8. Analysis of covariance (ANCOVA) output for the
model TOE~IEM*AT. ANCOVA tests whether two populations
are significantly different, controlling for confounding variables.
TOE is total output error (dependent). AT is the analysis type (in-
dependent). IEM is input error magnitude (confound). IEM:AT
signifies the interaction term, which should not be significant
for valid ANCOVAs. The test shows that on average, CHECK-
CELL captures 9.8% more output error than NAll for the same
IEM (significance: Pr(>F) = 1.43 × 10−11; 9.8% from model
coefficients not shown).

σ = 1.712) and had little effect on the output (µ =0.187,
median: 0.074, σ = 0.256).

CHECKCELL and Gaussian outlier detection find qualita-
tively different kinds of errors (Figures 5(b) and 5(c)). We
expect that the class of errors caught by CHECKCELL will
have a large effect on the output, and this is what we observe.
CC10 finds errors with a mean total error of 0.350 (median:
0.236, σ = 0.321) while NAll finds errors with a mean total
error of 0.214 (median: 0.083, σ = 0.238). CC10 favors errors
with a high total error and is nearly three times as sensitive
as NAll when comparing median total error (NAll is skewed
in favor of small total errors).

The effect is even more dramatic when we consider the
errors that only CHECKCELL finds: what we call subtle errors
(see Figure 5(d)). Errors found only by CC10 had a mean total
error of 0.491 (median: 0.500, σ = 0.377) while having only
a mean input magnitude change of 0.595 (median: 0.876, σ =
1.010).

To put this class of errors in perspective, by flagging a
single error that is within 5x of its correct value, CHECKCELL
is typically able to eliminate half of the total error of the
spreadsheet. The effect of the errors found only by NAll is
much smaller by comparison (mean input magnitude change:
0.671, median: 0.952, σ = 0.985; mean total error: 0.180,
median: 0.083, σ = 0.237).

To show that the difference between the class of errors
detected by CHECKCELL and the class of errors detected
by CC10 is unlikely to be the result of random chance,
we modeled the reduction in total output error (dependent
variable; DV) as a function of analysis type (independent
variable; IV). We also included input error magnitude as a
covariate (a confounding variable; CV) in our model. An
analysis of covariance (ANCOVA) rejects the null hypothesis
with a p-value of 1.43 × 10−11, even when accounting for
the effect of input error magnitude. Furthermore, there are
no significant interactions between the IV and the CV, which

means that the test’s assumption of the homogeneity of
regression slopes is not violated. Thus CHECKCELL reduces
total output error by 9.8% more than NAll, an effect that is
highly statistically significant.

Table 7 summarizes distributions of detected errors, while
Table 8 summarizes ANCOVA results.

Effort. CHECKCELL and NAll require comparable effort.
Across all benchmarks, CC10 required users to examine 3.6%
of a spreadsheet’s inputs. NAll required users to examine
3.2% of the inputs, slightly fewer. Again, we analyze both
procedures’ required effort by stratifying benchmarks by
a minimum total error. Figure 9(a) shows that for larger
output errors, CHECKCELL typically requires users to inspect
between 4% and 7% of the inputs. For the same errors, NAll
typically requires users to inspect between 2% and 4% of
the inputs. When compared to a user performing a manual
audit (100% of the inputs), CHECKCELL saves substantial
end-user effort.

NAll’s thriftiness comes at a price: it frequently detects
nothing at all, saving user effort only by missing important
errors. Furthermore, the effort required by CHECKCELL and
NAll are the most similar when the majority of the errors
are low magnitude, low impact errors. In this region, NAll’s
recall is slightly higher (Figure 6(b)). Thus, NAll is the most
sensitive and requires the greatest user effort for the class of
unimportant errors; CHECKCELL behaves in precisely the
opposite manner.

Note that both procedures flag fewer than the mean mini-
mum number of inputs required to correctly identify all of the
inputs (“MinAllErrors” in Figs. 9(a) and (b)). This means that
both tools trade better recall for lower effort. Our evaluation
demonstrates that within that tradeoff, CHECKCELL favors
errors that cause unusual effects in the output of the program.

Summary. CHECKCELL and Gaussian-based procedures
are quite different, and they generally find different sets of
errors. CHECKCELL is both more precise than outlier analy-

0.00

0.03

0.06

0.09

0.00 0.25 0.50 0.75
Total Output Error >= x

M
ea

n
E

ffo
rt

Analysis NAll CC10 MinAllErrors

Effort as Total Output Error Increases

0.00

0.03

0.06

0.09

−15 −10 −5 0 5 10
Input Error Magnitude >= x

M
ea

n
E

ffo
rt

Analysis NAll CC10 MinAllErrors

Effort as Input Error Magnitude Increases

(a) (b)

Figure 9. (a) For errors that cause a small total error, CHECKCELL requires about the same mean effort as NAll. (b) Across
input error sizes, mean user effort is roughly similar.

sis, and the errors found by CHECKCELL are more impactful.
While CHECKCELL has lower recall than NAll across all
of our benchmarks, the errors missed by CHECKCELL tend
to be inconsequential. For high-impact errors, CHECKCELL
clearly dominates NAll. Even in a setting where outlier analy-
sis has the greatest possible advantage (numerical functions),
CHECKCELL makes better use of a user’s limited attention,
and focuses user effort on the most important errors. When
CHECKCELL’s much richer class of non-numeric input and
output functions are considered, CHECKCELL is also more
useful for finding bugs across a wider range of spreadsheet
types.

4.2 Execution Time
Setup. We ran benchmarks on representative end-user hard-
ware: an AMD Phenom X4 running at 8GHz with 8GB of
RAM. In all cases, we ran Windows on bare metal, under Win-
dows 8. CHECKCELL was compiled using Microsoft Visual
Studio 2012, and runs as an add-in in Microsoft Excel 2010.
We also implemented CHECKCELL for Google Spreadsheets,
but only report results for the Excel version.

To evaluate CHECKCELL’s speed, we measured the time
it took to complete its two main tasks, dependence graph
construction and outlier analysis, during the experiment run
described in the previous section. Performance data was
gathered from 100 runs of 61 benchmarks.

Figure 10 reports the performance of data debugging
across our spreadsheet suite, ordered by mean total execution
time.

Table 1 includes characteristics of these spreadsheets,
ordered by the number of formulas each contains. # Inputs
indicates the total number of inputs to the computation. Dep.
Analysis (µ s) is the mean time (over 100 runs) to construct

the dependence graph. Outlier Analysis (µ s) is the mean
time (over 100 runs) to run CHECKCELL’s outlier inference
procedure.

For all but two of the 61 benchmarks, CHECKCELL
typically takes 30 seconds or less to complete. Its mean
runtime is less than 70 seconds for all spreadsheets. The
mean runtime over all spreadsheets is 6.42 seconds, with a
median runtime of 2.98 seconds. As our analysis in Section 3
predicts, the time cost of CHECKCELL is largely dominated
by the cost of the impact analysis, which is in turn dependent
on the number of inputs.

Summary. For nearly every spreadsheet examined, CHECK-
CELL’s runtime is under thirty seconds; we believe this over-
head is acceptable for an error detection tool.

4.3 Case Study: The Reinhart and Rogoff Spreadsheet
In 2010, the economists Carmen Reinhart and Kenneth Ro-
goff, both now at Harvard, presented results of an extensive
study of the correlation between indebtedness (debt/GDP)
and economic growth (the rate of change of GDP) in 44 coun-
tries and over a period of approximately 200 years [35, 36].
The authors argued that there was an apparent “tipping point”:
when indebtedness crossed 90%, growth rates plummeted.
The results of this study were widely used by politicians
to justify austerity measures taken to reduce debt loads in
countries around the world [26].

Although Reinhart and Rogoff made the original data avail-
able that formed the basis of their study, they did not make
public the instrument used to perform the actual analysis:
an Excel spreadsheet. Herndon, Ash, and Pollin, economists
at the University of Massachusetts Amherst, obtained the
spreadsheet. They discovered several errors, including the
apparently accidental omission of five countries in a range

0

20

40

60

80
C

lc
G

C
.

B
%

20
S

%
63

13
s.

F
_S

%
20

T
m

pl
t.

5_
Y

_S
3

H
M

W
K

92
F

%
20

03
N

%
20

U
%

fr
m

26
.

P
%

20
F

%
2#

A
7

G
rd

pr
.

X
LS

P
20

97
.x

ls
Y

2K
.x

l
S

%
20

%
2

pg
sk

n.
ec

c_
r.

F
%

20
C

#
a2

00
3.

03
10

01
T

R
A

IL
%

C
S

%
20

H
U

S
FA

F
S

L%
20

%
2

20
02

%
2

rp
r−

−
.

F
Y

E
gr

.
rt

nl
.x

dt
bs

r.
20

03
%

2
42

1G
C

.
qp

cl
c.

P
%

20
F

%
2#

A
8

s_
10

4.
M

yP
sG

.
B

n0
11

.
gr

db
1.

A
F

S
_D

_
05

−
00

−
lc

−
lb

.
FA

IR
I.

E
E

14
1_

P
st

rD
.

M
t_

_9
.

m
dr

03
.

Lb
1s

s.
os

m
49

.
ex

cl
_.

P
%

20
R

%
01

−
38

−
C

%
20

11
P

D
%

20
Q

pf
−

nx
.

S
2H

W
5.

M
y_

gm
.

fc
t_

_.
F

C
D

03
.

nh
02

.x

Benchmark Name

S
ec

on
ds

Mean Dependence Analysis sec. Mean Outlier Analysis sec.

Mean CheckCell Execution Times

Figure 10. Mean CHECKCELL execution times. For most of the spreadsheets, CHECKCELL completes its analysis in under 30
seconds; for all but two, it completes in under 70 seconds (see Section 4.2). Error bars represent one standard deviation.

of formulas [26]. After correcting for these and other flaws
in the spreadsheet, the results invalidate Reinhart-Rogoff’s
conclusion: no tipping point exists for economic growth as
debt levels rise.

While some of the errors in the Reinhart-Rogoff spread-
sheet are out of scope for CHECKCELL, we wanted to know
whether CHECKCELL would be able to verify any of the other
errors or discover new ones. We obtained the Excel spread-
sheet directly from Carmen Reinhart and ran CHECKCELL on
it. CHECKCELL singled out one cell in bright red, identifying
it as a value with an extraordinary impact on the final result.
We reported this finding to one of the UMass economists
(Michael Ash). He confirmed that this value, a data entry of
10.2 for Norway, indicated a key methodological problem
in the spreadsheet. The UMass economists found this flaw
by careful manual auditing after their initial analysis of the
spreadsheet (emphasis ours) [5]:

For example, Norway spent only one year (1946) in the
60-90 percent public debt/GDP category over the total
130 years (1880-2009) that Norway appears in the data.
Norway’s economic growth in this one year was 10.2
percent. This one extraordinary growth experience
contributes fully 5.3 percent (1/19) of the weight
for the mean GDP growth in this category even
though it constitutes only 0.2 percent (1/445) of
the country-years in this category. Indeed Norway’s
one year in the 60-90 percent GDP category receives
equal weight to, for example, Canada’s 23 years in the
category, Austria’s 35, Italy’s 39, and Spain’s 47.

This case study demonstrates data debugging’s utility not
only for detecting errors but also for understanding structural
flaws in computations.

5. Related Work
Data Cleaning
Most past work on locating or removing errors in data has
focused on data cleaning or scrubbing in database sys-
tems [22, 32]. Standard approaches include statistical outlier
analysis for removing noisy data [42], interpolation to fill in
missing data (e.g., with averages), and using cross-correlation
with other data sources to correct or locate errors [25].

A number of approaches have been developed that allow
data cleaning to be expressed programmatically or applied
interactively. Programmatic approaches include AJAX, which
expresses a data cleaning program as a DAG of transforma-
tions from input to output [18]. Data Auditor applies rules
and target relations entered by a programmer [19]. A sim-
ilar domain-specific approach has been employed for data
streams to smooth data temporally and isolate it spatially [29].
Potter’s Wheel, by Raman and Hellerstein, is an interactive
tool that lets users visualize and apply data cleansing trans-
formations [33].

To identify errors, Luebbers et al. describe an interactive
data mining approach based on machine learning that builds
decision trees from databases. It derives logical rules (e.g.,
“BRV = 404 ⇒ GBM = 901”) that hold for most of the
database, and marks deviations as errors to be examined
by a data quality engineer [31]. Raz et al. describe an
approach aimed at arbitrary software that uses Daikon [13]
to infer invariants about numerical input data and then report
discrepancies as “semantic anomalies” [34]. Data debugging
is orthogonal to these approaches: rather than searching
for latent relationships in or across data, it measures the
interaction of data with the programs that operate on them.

Spreadsheet Errors
Spreadsheets have been one of the most prominent computer
applications since their creation in 1979. The most widely
used spreadsheet application today is Microsoft Excel. Excel
includes rudimentary error detection including errors in for-
mula entry like division by zero, a reference to a non-existient
formula or cell, invalid numerical arguments, or accidental
mixing of text and numbers. Excel also checks for incon-
sistency with adjacent formulas and other structural errors,
which it highlights with a “squiggly” underline. In addition,
Excel provides a formula auditor, which lets users view de-
pendencies flowing into and out of particular formulas.

Past work on detecting errors in spreadsheets has focused
on inferring units and relationships (has-a, is-a) from infor-
mation like structural clues and column headers, and then
checking for inconsistencies [1, 3, 9, 14, 15, 30]. For exam-
ple, XeLda checks if formulas process values with incorrect
units or if derived units clash with unit annotations. There
also has been considerable work on testing tools for spread-
sheets [8, 17, 27, 30, 37, 38].

This work is complementary and orthogonal to CHECK-
CELL, which works with standard, unannotated spreadsheets
and focuses on unusual interactions of data with formulas.

Statistical Outlier Analysis
Techniques to locate outliers date to the earliest days of statis-
tics, when they were developed to make nautical measure-
ments more robust. Widely-used approaches include Chau-
venet’s criterion, Peirce’s criterion, and Grubb’s test for out-
liers [7]. All of these techniques are parametric: they re-
quire that the data belong to a known distribution, generally
the Gaussian (normal). Unfortunately, input data does not
necessarily fit a predefined statistical distribution. Moreover,
identifying outliers leads to false positives when they do not
materially contribute to the result of a computation (i.e., have
no impact). By contrast, data debugging only reports data
items with a substantial impact on a computation.

Sensitivity Analysis and Uncertainty Quantification
Sensitivity analysis is a method used to determine how
varying an input affects a model’s range of outputs. Most
sensitivity analyses are analytic techniques; however, the one-
factor-at-a-time technique, which systematically explores the
effect of a single parameter on a system of equations, is
similar to data debugging in that it seeks to numerically
approximate the effect of an input on an output. Recent
research employing techniques from sensitivity analysis in
static program analyses seeks to determine whether programs
contain “discontinuities” that may indicate a lack of program
robustness [2, 10, 21].

Uncertainty quantification draws a relationship between
the uncertainty of an input parameter and the uncertainty in
the output. Unlike sensitivity analysis, which in the case of
OAT can be used as a “black-box” technique, uncertainty

quantification requires the analyst to know the functional
composition of the model being analyzed.

Data debugging differs from sensitivity analysis and uncer-
tainty quantification in several important respects. First, data
debugging is a fully-automated black-box technique that re-
quires no knowledge of a program’s structure. Second, unlike
sensitivity analysis, data debugging does not vary a param-
eter through a known range of valid values, which must be
parameterized by an analyst. Instead, data debugging infers
an empirical input distribution via a nonparametric statistical
approach. Finally, the uncertainty of inputs and outputs is
irrelevant to CHECKCELL’s analysis. CHECKCELL instead
seeks to find specific data elements that have an extraordinary
effect on program outputs. In essence, sensitivity analysis and
uncertainty quantification are aimed at analyzing the model,
while data debugging is a technique for analyzing the data
itself.

6. Future Work
In future work, we plan to explore applying data debugging to
other data-intensive domains, including Hadoop/MapReduce
tasks [4, 11], scientific computing environments like R [28],
and database management systems, especially those with
support for “what-if” queries [6].

We expect all of these domains will require some tailoring
of the existing algorithms to their particular context. For
databases, we plan to treat as computations both stored
procedures and cached queries. While it is straightforward
to apply data debugging to databases when queries have no
side effects, handling queries that do modify the database will
take some care in order to avoid an excessive performance
penalty due to copying.

A similar performance concern arises with Hadoop, where
the key computation is the relatively costly reduction step.
Data debugging will also likely need to take into account
features of the R language in order to work effectively
in that context. Finally, we are interested in exploring the
effectiveness of data debugging in conventional programming
language settings.

While CHECKCELL’s speed is reasonable in most cases,
we are interested in further optimizing it. We are especially in-
terested in developing a version that incrementally updates its
impacts on-the-fly. This version would run in the background
and detect data with unusual impacts as they are entered,
much like modern text entry underlines misspelled words.
We believe that having automatic detection of possible data
errors on all the time could greatly reduce the risk of data
errors.

7. Conclusion
This paper presents data debugging, an approach aimed
at finding potential data errors by locating and ranking
data items based on their overall impact on a computation.
Intuitively, errors that have no impact do not pose a problem,

while values that have an unusual impact on the overall
computation are either very important or incorrect.

We present the first data debugging tool, CHECKCELL,
which operates on spreadsheets. We evaluate CHECKCELL’s
performance analytically and empirically, showing that it
is reasonably efficient and effective at helping to find data
errors. CHECKCELL is available for download at https:
//checkcell.org.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-1349784. This
work was also supported by a Microsoft Research Software
Engineering Innovation Foundation (SEIF) Award. Thanks to
Alexandru Toader, our Google Summer of Code student who
ported CHECKCELL to Google Spreadsheets. We thank Ben
Zorn for the stimulating conversations that led to this work,
and also Charlie Curtsinger for the many valuable discussions
during the evolution of this project.

References
[1] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A

type system for statically detecting spreadsheet errors. In ASE,
pages 174–183. IEEE Computer Society, 2003.

[2] Y. Ait-Ameur, G. Bel, F. Boniol, S. Pairault, and V. Wiels.
Robustness analysis of avionics embedded systems. SIGPLAN
Not., 38(7):123–132, June 2003.

[3] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen. Validating the unit correctness of spreadsheet pro-
grams. In Proceedings of the 26th International Conference on
Software Engineering, ICSE ’04, pages 439–448, Washington,
DC, USA, 2004. IEEE Computer Society.

[4] Apache Foundation. Welcome to Apache Hadoop. http:
//hadoop.apache.org/, Nov. 2012.

[5] M. Ash and R. Pollin. Supplemental Technical Critique of
Reinhart and Rogoff, “Growth in a Time of Debt”. Research
brief, Political Economy Research Institute, University of
Massachusetts Amherst, Apr. 2013.

[6] A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypo-
thetical queries in an OLAP environment. In Proceedings of
the 26th International Conference on Very Large Data Bases,
VLDB ’00, pages 220–231, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[7] V. Barnett and T. Lewis. Outliers in statistical data. Wiley Series
in Probability and Mathematical Statistics. Applied Probability
and Statistics, Chichester: Wiley, 1994, 3rd ed., 1, 1994.

[8] J. Carver, M. Fisher, II, and G. Rothermel. An empirical
evaluation of a testing and debugging methodology for excel. In
Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, ISESE ’06, pages 278–287,
New York, NY, USA, 2006. ACM.

[9] C. Chambers and M. Erwig. Reasoning about spreadsheets
with labels and dimensions. J. Vis. Lang. Comput., 21(5):249–
262, Dec. 2010.

[10] S. Chaudhuri and U. Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Rec., 26(1):65–74, Mar.
1997.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[12] B. Efron. Bootstrap Methods: Another Look at the Jackknife.
The Annals of Statistics, 7(1):pp. 1–26, 1979.

[13] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco,
M. Tschantz, and C. Xiao. The daikon system for dynamic de-
tection of likely invariants. Science of Computer Programming,
69(1):35–45, 2007.

[14] M. Erwig. Software engineering for spreadsheets. IEEE Softw.,
26(5):25–30, Sept. 2009.

[15] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger.
Automatic generation and maintenance of correct spreadsheets.
In ICSE, ICSE ’05, pages 136–145, New York, NY, USA, 2005.
ACM.

[16] M. Fisher and G. Rothermel. The EUSES spreadsheet corpus:
a shared resource for supporting experimentation with spread-
sheet dependability mechanisms. SIGSOFT Softw. Eng. Notes,
July 2005.

[17] M. Fisher, G. Rothermel, T. Creelan, and M. Burnett. Scaling
a dataflow testing methodology to the multiparadigm world of
commercial spreadsheets. In 17th International Symposium
on Software Reliability Engineering (ISSRE’06), pages 13–22.
IEEE, 2006.

[18] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: an
extensible data cleaning tool. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data,
SIGMOD ’00, page 590, New York, NY, USA, 2000. ACM.

[19] L. Golab, H. Karloff, F. Korn, and D. Srivastava. Data auditor:
exploring data quality and semantics using pattern tableaux.
Proc. VLDB Endow., 3(1-2):1641–1644, Sept. 2010.

[20] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In T. Ball and M. Sagiv, editors,
POPL, pages 317–330. ACM, 2011.

[21] D. Hamlet. Continuity in software systems. In Proceedings of
the 2002 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’02, pages 196–200, New York,
NY, USA, 2002. ACM.

[22] J. Han and M. Kamber. Data mining: concepts and techniques.
Morgan Kaufmann, 2006.

[23] W. R. Harris and S. Gulwani. Spreadsheet table transformations
from examples. In M. W. Hall and D. A. Padua, editors, PLDI,
pages 317–328. ACM, 2011.

[24] J. Hellerstein. Quantitative data cleaning for large databases.
United Nations Economic Commission for Europe (UNECE),
2008.

[25] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’95, pages 127–138, New York, NY, USA, 1995. ACM.

[26] T. Herndon, M. Ash, and R. Pollin. Does High Public Debt
Consistently Stifle Economic Growth? A Critique of Reinhart
and Rogoff. Working Paper Series 322, Political Economy

https://checkcell.org
https://checkcell.org
http://hadoop.apache.org/
http://hadoop.apache.org/

Research Institute, University of Massachusetts Amherst, Apr.
2013.

[27] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner.
On the empirical evaluation of fault localization techniques for
spreadsheets. In Proceedings of the 16th international con-
ference on Fundamental Approaches to Software Engineering,
FASE’13, pages 68–82, Berlin, Heidelberg, 2013. Springer-
Verlag.

[28] R. Ihaka and R. Gentleman. R: A language for data analysis and
graphics. Journal of computational and graphical statistics,
5(3):299–314, 1996.

[29] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A
pipelined framework for online cleaning of sensor data streams.
In Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), pages 140–142, Apr. 2006.

[30] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,
M. B. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck.
The state of the art in end-user software engineering. ACM
Comput. Surv., 43(3):21:1–21:44, Apr. 2011.

[31] D. Luebbers, U. Grimmer, and M. Jarke. Systematic develop-
ment of data mining-based data quality tools. In Proceedings
of the 29th International Conference on Very Large Data Bases,
VLDB ’03, pages 548–559. VLDB Endowment, 2003.

[32] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[33] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive
data cleaning system. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01, pages
381–390, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[34] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly
detection in online data sources. In ICSE, ICSE ’02, pages
302–312, New York, NY, USA, 2002. ACM.

[35] C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.
Working Paper 15639, National Bureau of Economic Research,
January 2010.

[36] C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.
The American Economic Review, 100(2):573–78, 2010.

[37] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A methodology for testing spreadsheets. ACM Transactions on
Software Engineering and Methodology (TOSEM), 10(1):110–
147, 2001.

[38] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you see
is what you test: A methodology for testing form-based visual
programs. In ICSE 1998, pages 198–207. IEEE, 1998.

[39] M. Sakal and L. Raković. Errors in building and using
electronic tables: Financial consequences and minimisation
techiques. International Journal of Strategic Management and
Decision Support Systems in Strategic Management, 17(3):29–
35, 2012.

[40] V. Samar and S. Patni. Controlling the information flow in
spreadsheets. CoRR, abs/0803.2527, 2008.

[41] R. Singh and S. Gulwani. Learning semantic string transfor-
mations from examples. Proc. VLDB Endow., 5(8):740–751,
Apr. 2012.

[42] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar. Enhancing
data analysis with noise removal. IEEE Transactions on
Knowledge and Data Engineering, 18(3):304–319, Mar. 2006.

[43] P. Zhang and W. Su. Statistical inference on recall, precision
and average precision under random selection. In FSKD, pages
1348–1352. IEEE, 2012.

Benchmark Name # Inputs Dep. Analysis (µ s) Outlier Analysis (µ s)
01-38-PK_tables-figures.xls 170 0.5549288 9.390480198
031001.xls 45 0.0842667 1.983900989
05-00-046.xls 232 0.2372456 5.121365639
2002%20Project%20Reports.xls 85 0.0864263 2.328297928
2003%20Applications%2#A92C1.xls 80 0.1394455 3.033752753
421GradeCalc.xls 20 0.0568004 3.748034307
5_Year_Summary3.xls 17 0.0680315 0.239336643
6313syllabus.xls 5 0.0602589 0.070019999
97.xls 44 0.0763964 1.176864265
AFS_Dec_2002.xls 65 0.4726516 4.594466757
as2003puna.xls 32 0.038661 1.887443405
Bnbjan011.xls 217 0.2617529 4.097381562
Business%20Scenarios%#A88E6.xls 4 0.0190942 0.041386032
CalcGradeCalculator.xls 5 0.0195551 0.03929663
Chemistry%20114%20lab%20web.xls 52 1.4207694 11.05709885
ChiSquare%20Homework.xls 21 0.1257881 2.002615437
databaser.xls 302 0.1874444 2.883269715
ecc_rev.xls 44 0.043359 1.450572499
EE141_s03_grades_clas#A7BDC.xls 69 0.6682386 4.900768485
excel_template.xls 361 0.3944765 7.280832274
factiva_rev_sum.xls 340 0.3629518 26.61497105
FAIRInventory.xls 576 0.5294704 5.030910367
Fall%2003%20grades.xls 18 0.0220087 0.485243888
Fin_St%20June%20for%2#A7FFC.xls 9 0.0948804 0.037443947
Financial%20Compariso#A7ED8.xls 67 0.2627775 1.291007253
FinancialCompilationDec03.xls 348 0.6122993 46.49485957
form26.xls 104 0.1452416 0.94196296
FYEgrades.xls 16 0.07125 2.872127556
gradebook1.xls 112 0.0991529 4.433837156
Gradeprediction.xls 32 0.0388809 1.179147718
HMWK92903.xls 35 0.092238 0.40308102
Lab1assignmentsolutions.xls 71 0.1821385 7.118771288
lc-labrepevalsht.xls 343 0.399497 5.099844378
Listeria%20cross%20co#A7D8F.xls 36 0.2208161 2.150088599
mdr03demo.xls 134 0.231352 6.602564816
Metrics_version_9.xls 101 0.6916134 5.861234578
My_gam.xls 204 0.4057672 26.45568679
MyPsycGrade.xls 43 0.1271021 4.140405027
nih02.xls 370 1.7016567 66.76504172
Nsfcam%20Upgrade%20Es#A7E18.xls 24 0.0355804 0.915177933
osm49.xls 80 0.1032796 7.451600866
PD%20Q4-02.xls 180 0.7858247 12.97192893
pfi-anxa.xls 310 0.9821158 13.3156672
pigskin.xls 38 0.1125059 1.359677528
PosterData.xls 88 0.2789295 5.358120438
Progress%20Report%20a#A8403.xls 98 0.2588778 8.886032269
Project%20Financial%2#A7CEE.xls 8 0.0431702 1.065178219
Project%20Financial%2#A8AD9.xls 46 0.0596221 3.941388616
qpacalculator.xls 35 0.1361675 3.848016248
ratioanal.xls 120 0.4037585 2.65019949
report-financial-part.xls 59 0.1337376 2.296524129
sample_ais104.xls 128 0.1594051 3.974220706
Solution2HW5.xls 340 0.9126632 23.20265487
Summ%20of%20Physical%#A899C.xls 36 0.1387315 1.288594914
Template.xls 13 0.0521189 0.090706512
TRAIL%20INVENTORY%20N#A850A.xls 156 0.1782064 1.932176567
USFAthleticFinancialSummary.xls 45 0.0909246 2.243268007
XLSolverPractice2001.xls 90 0.2117995 1.011882867
Y2K.xls 6 1.1960657 0.059038997

Table 1. Performance statistics for a randomly-selected benchmark suite.

	Introduction
	Data Debugging: Algorithms
	Dependence Analysis
	Impact Analysis
	Impact Scoring
	Optimizations

	Data Debugging: Analysis
	Number of Resamples
	Efficiency of Caching

	Evaluation
	Error Reduction and User Effort Metrics
	Execution Time
	Case Study: The Reinhart and Rogoff Spreadsheet

	Related Work
	Future Work
	Conclusion

