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ABSTRACT

A boundary element method for solving three-dimensional linear elasticity problems
that involve a large number of particles embedded in a binder is introduced. The pro-
posed method relies on an iterative solution strategy in which matrix-vector multipli-
cation is performed with the fast multipole method. As a result the method is capable
of solving problems with N unknowns using only O(N) memory and O(N) opera-

tions. Results are given for problems with hundreds of particles in which N = O(10°).
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1 Introduction

In this paper, we introduce a fast boundary element method (BEM) for solving three-
dimensional linear elasticity problems that involve a large number of particles em-
bedded in a binder. We refer to those problems as many-particle problems and to the
new method as FLEMS: Fast Linear Elastic Many-particle problem Solver.

For many-particle problems, FLEMS combines the robustness of conventional
BEMs with superior performance. To date, FLEMS has been applied to analysis
of problems that involve tens of particles on desktop computers and hundreds of par-
ticles on small parallel computers. Solution of problems with thousands of particles
is feasible with large parallel computers. The ability to solve such problems may dra-
matically change the field of micromechanics. In this regard, we believe that in the
near future various issues concerned with the overall response of composite materials
(Hashin, 1983) will be settled and the focus of research will be shifted to problems
concerned with edge effects, interlaminar stress distribution, size effects, etc.

In order to compare FLEMS with conventional BEMs, let us recall that conven-
tional BEMs give rise to dense algebraic problems and, in the BEM community, it is
customary to solve those problems using direct methods such as LU decomposition or
others derived from Gaussian elimination. In this case, a problem with N unknowns
requires O(N?) memory and O(N?) operations. These requirements are practically
unacceptable for many-particle problems for which NV > 10%.

In the last decade, iterative solution strategies have become increasingly recog-
nized by the BEM community. In particular, effective iterative solution strategies
for many-particle problems have been developed by Phan-Tien and Kim (1994).
FLEMS also relies on an iterative solution strategy that, for many-particle prob-
lems, requires only an O(N) memory and O(N) operations; in summary, FLEMS

is an O(N) method. This dramatic improvement in performance, in comparison to



conventional BEMs, comes from two sources. First, as a rule, many-particle problems
give rise to well-conditioned algebraic problems for which effective preconditioners can
be constructed. As a result the number of required iterations is usually small and vir-
tually independent of N and therefore the operation count is reduced from O(N?) to
O(N?). Second, at each iteration, matrix-vector multiplication is performed using the
fast multipole method (Rokhlin, 1985; Greengard and Rokhlin, 1987) which computes
the product using only O(N) memory and O(N) operations. The reader unfamiliar
with the fast multipole method (FMM) is referred to Rokhlin (1985), Greengard and
Rokhlin (1987), Greengard (1988), and Greengard and Rokhlin (1996). Nevertheless,
in order to understand this paper, the reader needs to know very little about the
FMM, and this information is provided in Section 2. For now, it is sufficient to know
that the FMM is a method for solving the many-body electrostatics problem.
Although the idea of applying the FMM to iterative solution of integral equations
dates back to the seminal paper of Rokhlin (1985), there are good reasons why the
FMM has not been frequently applied to three-dimensional elliptic boundary-value
problems, especially those arising in linear elasticity and low-Reynolds-numbers hy-
drodynamics. For three-dimensional boundary-value problems, the FMM is used in-
frequently because it is meaningful only if the problem size exceeds N = O(10° —10%).
In particular, we are aware of only one research group that uses the FMM to solve
boundary integral equations corresponding to three-dimensional Laplace’s equation
(Nabors et al., 1994). In contrast, the break-even point in two dimensions is N =
O(10%), and, for current desktop computers, this difference is significant. Fortunately,
this situation will not last because recently Greengard and Rokhlin (1996) improved
the three-dimensional FMM and reduced its break-even point to N = O(10?); of
course further progress in desktop computers will make the three-dimensional FMM
even more attractive. The reason why the FMM is not frequently applied to solution

of boundary-value problems other than those governed by Laplace’s equation is due



to the fact that Laplace’s equation is directly related to the many-body electrostatics
problem while other partial differential equations are not. Nevertheless several re-
searchers have been able to overcome this obstacle. Among those we cite the studies
of Greenbaum et al. (1992) concerned with the two-dimensional biharmonic equation,
of Peirce and Napier (1995) concerned with 2-D Navier’s equations of linear elasticity,
and of Sangani and Mo (1996) concerned with three-dimensional equations of low-
Reynolds-numbers hydrodynamics (Stokes’ equations). Those researchers modified
either the integral equations to accommodate the FMM (Greenbaum et al., 1992) or
the FMM to accommodate the integral equations (Peirce and Napier, 1995; Sangani
and Mo, 1996). Such modifications are non-trivial and often problem specific. In
particular, the approach of Greenbaum et al. (1992) cannot be extended to three
dimensions, the version of the FMM developed by Sangani and Mo (1996) cannot
be easily extended to three-dimensional linear elasticity because it is limited to rigid
particles, and the version of the FMM developed by Peirce and Napier (1995) is
somewhat inefficient.

The principal results reported in this paper are as follows. First, we established
a relationship between boundary integral equations of three-dimensional linear elas-
ticity and the FMM. This relationship allows one to combine any BEM formulation
with any FMM formulation. Second, based on the new relationship, we developed
FLEMS - a parallel C++4/C code that can be easily modified to accommodate better
BEM or FMM formulations.

The remainder of this paper is organized as follows. In Section 2, we describe
how to adopt the FMM for solution of integral equations. First, for those unfamil-
iar with the FMM, we summarize its basic ideas. Then we explain how to extend
the FMM to generalized many-body electrostatics problems and demonstrate that a
combination of those problems can be used to represent the biharmonic kernel. In

Section 3, we formulate BEM equations. Most of the material presented in Section 3



is standard, except for new expressions for the fundamental solutions that allow us to
relate discretized boundary integral equations of three-dimensional linear elasticity to
a combination of sixteen generalized many-body electrostatics problems. In Section
4, we describe the implementation of the iterative solution strategy. In Section 5, we
explain the basic ideas behind the parallel version of FLEMS. In Section 6, we present
test problems in which the number of particles varies from 8 to 343. In Section 7, we

summarize results and briefly discuss future work.

2 Fast Multipole Method

In the many-body electrostatics problem, one is given a unit cube containing n charges
q; at positions @; and asked to determine the forces f; acting on those charges. The

forces are calculated in terms of the potentials as

fi= -4 Vo(x) (1)

and
n

o(x;) :ggﬂﬁ; i=1,..n 2)

While ordinarily the solution of this problem requires O(n?) operations, for large n,
one can compute the forces with the FMM in O(n) operations only. We outline the
FMM in the next paragraph. For details, the reader is referred to Rokhlin (1985),
Greengard and Rokhlin (1987), Greengard (1988), and Greengard and Rokhlin (1996).
The FMM exploits the well-known idea that the potential field induced by a cluster

of charges can be approximated by the potential field of their total charge or higher
order moments, as long as the target charges are sufficiently far away from the source
charges. In the FMM, the clusters are formed via hierarchical partitioning of the unit

cube into 23, 43, 83, etc. identical cubic cells which interact among themselves based

on the machinery of the multipole and solid spherical harmonic (local) expansions.



The computation proceeds in three stages. First, the multipole coefficients (charge,
dipole, etc.) are computed for all cells. Second, the cell-cell interactions are computed
so that the local expansion coefficients of the smallest cells are related to the multipole
coefficients. Third, the potentials are computed by adding the potentials due to the

local expansions and nearby charges. As a result the solution is expressed as

(p+1)?
E lphi(a )+ E + error (3)
J#Z o zc]|
and
(p+1)
f. = Z I [—q:Vhi(®; — ¢)] + remaining terms. (4)
k=1

In these equations, [’s are the local expansion coefficients, h’s are the solid spherical
harmonics, ¢ is the center of the smallest cell containing ¢;, and the tilde sign denotes
that the second sum includes nearby charges only. The upper limit of the local
expansion is (p + 1)2 because this is the number of the solid spherical harmonics of
order less or equal to p. The error term, which can be bounded a priori, is controlled
by choosing a sufficiently large p. Note that most of the FMM machinery is needed
for computing I’s — evaluation of (3) and (4) for given I’s is a simple computation
performed pointwise, one charge at a time.

In order to extend the FMM to many-body problems associated with discretized
integral equations of three-dimensional linear elasticity we introduce two generaliza-
tions of the many-body electrostatics problem. The first generalization is related to
the fact that collocation BEMs are endowed with two point sets. One point set is
formed by the nodal points which are also used as the collocation points. The other
point set is formed by the integration points. To distinguish between these two sets
we regard the collocation points as the target points and the integration points as
the source points. In what follows, we denote the target points by & and the source
points by y. The second generalization is related to the fact that the fundamental

solutions of linear elasticity involve the biharmonic | — y| kernel to which, without



modifications, the FMM cannot be applied. In this regard, we observe that only
minor modifications are required in order to extend the FMM to problems in which
(i) the charges at the source points are prescribed in terms of a function ¢ = Q(y)
and (ii) the forces at the target points are prescribed in terms of a linear map F on
®(x) so that
(p+1)?
fi=Fl0(x;),z] = > LF[hi(z; —c), ;] + remaining terms. (5)
k=1
It is obvious that (5) is a pointwise computation that can be implemented once
the FMM is supplemented with a ’pre-processing’ procedure for evaluation of ¢ =
Q(y) and a ’'post-processing’ procedure for evaluation of F[hy(@), x]. Note that with
the introduction of the generalized many-body electrostatics problem we amplify an
observation of Greengard (1994) that the FMM is a separation of variables technique
for the harmonic kernel | — y|™'. From this perspective, we extend the FMM to the
kernel X(z) Y (y) |z —y|™".
As an example, let us consider how the generalization we have introduced can be

applied to the biharmonic kernel. In the following expression, we use the subscripts

to denote Cartesian components of & and y:

e —yl=2 - x— x 1
—~ |le—-y| >~
F1(&) (Yy)

1
+(=221) X ——— %Xy
—_—— |-y =~
Fa() 22(Y)
1
+ (—2z3) X—— X Yo
— |-y <~
Fa() Q:(Y)
1
+ (—2z3) x X Y3
— |-y <~
Fa() 24(Y)
1 x X Y-y .
+ ~—~— |;13 — y| u
F5(®) 2s(Y)

In this representation the harmonic kernel is distilled from the biharmonic one and
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as a result the many-body problem associated with the three-dimensional biharmonic
equation is reduced to five generalized many-body electrostatics problems.

In conclusion of this section, we observe that, strictly speaking, the FMM is not
an O(N) method because in order to optimize the performance the partitioning depth
should be a logarithmic function of N. We avoid this issue in this paper and keep
referring to the FMM as an O(NN) method; for details see Aluru (1996).

3 Governing Equations

The principal objective in this section is to formulate the boundary integral and
corresponding algebraic equations of many-particle problems in a form suitable for
the FMM application. We accomplish this objective by combining well-established
BEM procedures (Brebbia and Dominguez, 1984) with new representations for the

fundamental solutions of three-dimensional linear elasticity.

3.1 Integral Equations

In this section, we formulate the boundary integral equations for a simple many-
particle problem that involves an infinite binder with M identical particles perfectly
bonded to the binder. This problem is selected for demonstration purposes. There
are no conceptual obstacles to extending our approach to problems that involve finite
binders, different particles, and debonding.

The problem of interest is formulated in three steps. First, we formulate an aux-
iliary boundary-value problem for a finite body with M embedded particles. Second,
we formulate the boundary integral equations for the finite body and introduce new
representations for the fundamental solutions. Finally, we derive the boundary inte-
gral equations for the infinite body. From now on, we use the subscripts to denote
Cartesian components and superscripts to denote attributes. For position vectors, we

use interchangeably the indicial and direct conventions; for example, the notations «



Figure 1: A binder containing identical particles.

and x; are equivalent.

Consider a finite three-dimensional linear elastic body formed by a binder € and
M embedded identical particles 2™ perfectly bonded to the binder (Fig. 1). We
denote the surface of this body by I'°, the interface boundaries by I'™, and their
union, UM_ '™ by I'. Lame’s constants of the binder are denoted by A and y and
the corresponding Poisson’s ratio by v. For the particles, the corresponding constants
are marked with the asterisk superscript. The body is loaded by a displacement field
ud(@) prescribed on T°.

The displacement field in the body, @;(@), is the solution of the following boundary-

value problem:

(A4 )t (@) + pi; j;(2) =0 VeeQ, (6)

(N + p) i) + 1t (2) =0 Veeud o, (7)
i(x) =ul(z) Vael, (8)

Jisz)] =0 and [i(z)]=0, VYael. (9)

In (9) [ ... ] denotes the jump along the normal vector, n;(«), as defined in Figure 1.



Equations (6-9) are equivalent to a system of M + 1 integral equations. The first
equation in this system is defined on the binder boundary, I'° U T, and each of the

remaining equations is defined on the boundary of a particle:

ﬁ@ﬁ—uL%@wmwﬂy—AﬁwwmwNyz

- /FO Uii(z,y)l;(y) dy — /FUij(a:,y)th(y) (10)

and

—uz —I—/ (z,y)i;(y) dy = /rm Ui*]-(a:,y)fj(y) dy, m=12,...,M. (11)

In (10) and (11) and in the rest of the paper it is implied that @ is an arbitrary point
on the surface on which the integral equation is defined.
The kernels U;;(x,y) and T;;(@,y) introduced in (10) are the fundamental solu-

tions of three-dimensional linear elasticity. Usually they are expressed as

) — 1 TRV Gt ) G2l /)
R Ty A P )
and
To@y) = e (o 9+ (5 = ) () + 8o ) (9)
+ e s — ) vnaly) (13)

8n(l —v)|le —yl|°
where §;; is the second rank identity tensor. The kernels U} (x,y) and T7(z,y)
introduced in (11) can be obtained from (12) and (13) once p and v are replaced by
p* and v*, respectively.
The kernels U;;(@,y) and T;;(x,y) can be also expressed as
Uitenn) = Pote) () + o) () (14
|z -y |z -y

and

1
—n
e —y| *

Tij(z,y) = Rijp() [



where

1

PZ(;B) = m [(3 - 41/)52']‘ - 1:]82] 5 (16)
Ri(&) = gy (1 = 2006k = 8,85) =20 = )6y + 00). (19)

and
Sp() = —wlli_y)aiap | (19)

In (16-19), the symbol 0; denotes the partial derivative with respect to z;. Note that
in (14) and (15) the terms dependent on @ are separated from those dependent on y
except for the harmonic kernel |& — y|™!.

Now let us evaluate (10) and (11) under the conditions that I'° tends to infinity and

0

0o — O .
ui(x) = e;;z;, where €,

j is a constant tensor. To do this we first consider an auxiliary
problem for the finite binder from which the particles are removed and in which the

0
ij

0

linear displacement field uf () = €;; is realized by prescribing uf(x) = €j;2; on the

entire boundary I'° U T'. The corresponding stress and traction fields are denoted by
J?j and 17, respectively; 19 = U?jnj. The integral equation for the auxiliary problem

parallels (10):
sw@) — [ Theydy)dy — [ Ty y)(y) dy =
- [, Uiyl dy — [ U@ y)iy). (20)

Once (20) is subtracted from (10), the integrals over I'° disappear as I'° tends to

infinity and we obtain

Jui®) — [ Tl y)us(y) dy + [ Ul y)ts(y) dy = 0. (21)

where

ul (@) = d(x) —ud(x) and () =t;(x) — (). (22)
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In terms of the perturbation fields, (11) is rewritten in the form

Sui(z) + [ T yuy) dy - [ U@y dy =g(@)  (23)
with
1
gil@) = —seo; — &, [ Ti@yydy +0%, [ Uj@ynly)dy. (24

In (23) and (24) it is implied that m runs from 1 to M.

In the remainder of the paper, we are concerned with solving integral equations
(21) and (23). The most challenging part of this task is to solve (21) which can be
characterized as a coupled problem for M particles. For this problem the use of the
FMM is critical. In contrast, (23) represents M relatively small uncoupled problems

for which a conventional BEM is adequate.

3.2 Algebraic Equations

In this section, (21) and (23) are converted into algebraic equations following standard
finite element discretization techniques.

The finite element representation of I' is based on the map

=D a4 (€). (25)
Kl
In (25) € is the position vector in the master element space, "' is the position vector
of the node [ of the element k, and ¢'(€) is the shape function of the node I. For
isoparametric finite elements, the maps u;[®(&)] and ¢;[&(&)] mimic (25),

wlz(©] = D ud() and nfe(e)] = 2 t'90). (26)

k|l
When (25) and (26) are substituted in (21) we obtain

julz) - E/@Tff'[*’”’y<€>1U?’¢l<€>J[y<e>] dé

+ 3 [ Uil y(©)6(€) Iy ()] d = 0. (27)
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In (27) the integrals are over the master element space © and .J[y(§)] is the Jacobian
corresponding to (25). Numerical integration of (27) followed by collocation at the

nodal points &? yields the algebraic equation

) = 3 Tle y(E )l S €€
+ > Uyla®,y(€)]4e'(€°) T [y(€))w® = 0. (28)

In (28) s runs over the integration points of the master element and w?® is the inte-
gration weight at £°. Upon substitution of (14-19), (28) can be rewritten as

1
5“2(a3q> Rijp( Z

k,l,s

|{ ' (€, [y(€)) [y(€"))w}

|wq —

Sul@") 3 1 |{ 016 (67 (€) 96"
P(2) Z Ty {tk1¢1 Jly(€* )]ws}
i(2? Z

k,l,s

&) { 1516 (€)y;(€°) Ty (&))"} = 0. (29)

|2 —
Again, note that in (29) the terms dependent on @ are separated from those dependent

on y except for the harmonic kernel |2 — y|™".

The discretized forms of (23) and (24) are similar to (28):

i)+ ST y(E e
ZU* [, y(&)]15' (&) I[y(&)]w’ = gi(=") , (30)

and

(@) = et — &, ST y (€)' (€) Ty E)

k,l,s

100, U, y(€°)]n (€)[y(€)) (31)

k,l,s

The wide hat implies that the sums involve the nodes and integration points that

belong to a single particle.
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At this stage, it is useful to rewrite (29) through (31) in a symbolic matrix form. To
this end we form N-dimensional nodal vectors u, t, and g organized on a particle-by-
particle basis, so that each vector is formed by M blocks. Consequently the operators
acting on u and t are represented as N x N matrices formed by M x M blocks. Thus
we rewrite (29) as

Au+ Bt =0 (32)
and (30) and (31) as
Au+Bt=g. (33)
Equations (32) and (33) can be combined into
(A-BB'A)u=-BB""g (34)
or simply
Cu=b. (35)
Also it is useful to rewrite (35) in the residual form
r(u)=Cu—b=0. (36)

The structure of the matrices in (32) and (33) reflects the physics of the problem.
The matrices A and B are dense and their off-diagonal blocks represent pair-wise
particle interactions while the diagonal blocks represent particle self-interactions. The
off-diagonal blocks become negligible for well-separated particles, and their decay
rates follow directly from (12) and (13). The matrices A* and B* are block-diagonal
because they represent M uncoupled problems. For identical particles, the diagonal

blocks in each matrix are the same.

4 Iterative Solution Strategy

In this section, we outline a procedure for solving (35) using O(N) memory and O(N)

operations. This procedure consists of three components: (i) decomposition of u along

14



the residual Krylov’s vectors r, Cr, C%r, C°r, etc., (ii) matrix-vector multiplication
with the FMM, and (iii) preconditioning.
The solution vector u is obtained following the generalized minimum residual algo-

rithm (GMRES) of Saad and Shultz (1986). This algorithm requires construction of

the residual Krylov’s vectors. The k-th Krylov vector v(¥) is constructed by induction:
v = v with v =
Following (34), this multiplication is performed as
vk = AvE-D _ w1 (37)

with
W(k—l) — B*_IA*V(k_l).

Observe that the term w*=") can be computed in O(N) since both A* and B* are
block-diagonal. Now comes the crucial step — application of the FMM to (37). To
explain this step let us go back to (29) and replace there the nodal displacements

(k=1)

with the nodal values of v and the nodal tractions with with the nodal values

of w1

. The four sums in (29) have the same structure and therefore it is suffi-
cient to explain how to apply the FMM to the first one. To connect this sum with
the generalized many-body electrostatics problem defined in Section 2, we identify
the collocation points @? with the target points, the integration points y(&°) with
the source points, the expression in the curly brackets with the generalized charge
Q[y(&’)], the sum with the potential ®(2?), and the operator R(«?) with the gener-
alized force operator F[®(x?), x?]. Observe that the generalized charge is a second
rank tensor and therefore it has to be represented by nine ordinary charges. Thus
the first sum is computed by invoking the FMM nine times. For the remaining sums,

the FMM is invoked three times for the second and third sums, and once for the last

sum, so that the total number of times the FMM is invoked is sixteen.
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For large algebraic problems, like those corresponding to many-particle problems,
preconditioning is important because it allows one to reduce the number of required
iterations. Preconditioning involves multiplication of both sides of (35) by a ma-
trix P, the preconditioner, which is as close to C™1 as possible. We choose P to
be block-diagonal, with each block being equal to the inverse of the correspond-
ing diagonal block of C. Formally, this preconditioner is known as block-Jacobi. For
many-particle problems, the block-Jacobi preconditioner has a clear physical meaning
— it exactly represents non-interacting particles. Therefore the matrix PC represents

the inter-particle interactions only. Details of incorporating the preconditioner into

the GMRES can be found in Saad and Shultz (1986).

5 Parallel Implementation

The goals for our parallel implementation of the FMM algorithm were efficiency and
scalability and provision for mesh adaptivity in a second phase of algorithm and code
refinement. These goals were attained by building the parallel code on the Scalable
Dynamic Distributed Array (SDDA) data management infrastructure (Edwards and
Browne, 1996; Edwards, 1997). The SDDA provides normal array semantics for any
array of objects (where each may have a different structure) which is distributed across
multiple processors and which may expand and contract with preservation of locality
and without copying to follow adaptive mesh refinement. The SDDA was originally
developed to support hp-adaptive finite element methods (Edwards and Browne, 1996;
Edwards, 1997) for which it provides data management for the geometry data of the
adapting finite element model. This requires support for efficient handling of dynamic
arrays of small objects which is the fundamental data management problem for the
parallel FMM implementation.

The implementation of the SDDA is based upon use of space-filling curves and sep-
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Figure 2: Partioning of the computational domain based on a space-filling curve.

aration of address management (indexing) from storage management (Parashar and
Browne, 1997). Space-filling curves (Sagan, 1994) map the three-dimensional physical
space to a one-dimensional space. Several authors have previously used space-filling
curves for implementation of parallel tree codes (Salmon and Warren, 1992; Salmon
and Warren, 1993; Singer, 1995). A simple Hilbert’s space-filling curve is shown in
Figure 2. It resembles a necklace with the curve as the carrier and the cells as the
beads. Assignment of weights to the cells enables simple and efficient partitioning of
the three-dimensional space with preservation of its geometrical localities in the one-
dimensional space. The mapping to storage distributed across a parallel computer
architecture and accessing of the data is accomplished through use of a hierarchical
index space where the keys are derived from the positions of the cells on the space-
filling curve. All partitioning, distribution, and communication are provided by the
SDDA transparently to the user.

The current code does not implement mesh adaptivity but the SDDA provides
the data management infrastructure for this refinement in a later phase of code de-

velopment.

6 Test Problem

In this section, we describe application of FLEMS to a family of problems that involve

identical spherical voids embedded in an infinite binder. In each problem, the spheres
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form a simple cubic array in which the number of spheres is between 2° = 8 and
7% = 343 and the spacing between two nearest spheres is equal to 2.5 radii (Fig.
3). The principal objective in this section is to demonstrate that we can solve these

problems quickly and accurately.

Figure 3: A simple cubic array of 8 spheres.

In our computations, we used the boundary element mesh shown in Figure 4. It
allowed us to compute stresses near the surface of the voids to within 1% accuracy. We
arrived at this conclusion by comparing the BEM solutions for two voids with detailed
finite element solutions. The mesh is formed by 9-node isoparametric elements and
the number of degrees of freedom per sphere is 1158. Within each element, integration
is performed using 4 x 4 Gaussian and singular integration schemes (Le et al., 1985).

Our version of the FMM code was developed by Singer (1995) who, to improve the
performance of the method, represented the spherical harmonics with normalizations
different from Greengard (1988). We used the FMM expansion depth p = 10 and the
partitioning depth was chosen such that the number of charges in the smallest cells
was close to is close to one hundred. This number was determined experimentally
in order to balance the amount of computations involved in the sums in (3) (Singer,
1995; Greengard and Rokhlin, 1996).

First, we analyzed the geometries that can be solved on a desktop computer
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Figure 4: The surface discretization of a sphere.

(one 133 MHz processor of SP2 equipped with 128 Mb RAM). None of the problems
reported here can be solved on this computer with solvers that require O( N?) memory
— the problem that involves two spheres only is very close to the memory capacity
limit. In contrast, we were able to solve problems with up to 64 spheres and 74,112
unknowns using O(N) memory iterative solution strategies.

Computational results are summarized in Figure 5 which contains a log-log plot for
the CPU time as a function of N. The cross symbols correspond to the O(N) iterative
solution strategy that takes advantage of the FMM and the circular symbols to an
O(N?) strategy. The latter strategy was implemented by suppressing hierarchical
partitioning and consequently eliminating the cell-cell interactions within the FMM.
Thus the O(N?) strategy is not the most efficient one in its class since it involves some
of the FMM overhead. Nevertheless we estimate that, in the present computations,
the performance of the O(N?) strategy was within 20% from being optimal. The
relative a posteriori Iy error of the FMM matrix-vector multiplications was O(107%).

The number of performed matrix-vector multiplications was equal to 9 for all cases.
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Each number of matrix-vector multiplications corresponds to a residual vector whose
l; norm was 107% of the [; norm of the right-hand side vector. Results of these
computations suggest that the break-even point is probably close to five thousand
and that for M = 64 the O(N?) strategy becomes impractical since it takes about
ten days to complete the job. It appears that the O(N) strategy performs optimally
between M = 27 and M = 64 and the case of M = 8 appears to be not large enough.
In this regard, one should realize that in order to attain the O(N) performance, N
should be large but not too large in order to avoid using the hard-disk memory (or
paging), which may significantly deteriorate the performance. This issue becomes
obvious in the next set of computations.

10°¢

CPU time (seconds)
'501
T
|
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Figure 5: Computational results for 8, 27 and 64 spheres obtained with one processor
of SP2. Crosses correspond to the O(N) strategy and circles correspond to the O(N?)
strategy.

The parallel version of the code was tested on an IBM SP2 computer with 16
133 MHz processors each equipped with 128 Mb RAM. The problems tested on this
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computer involved the cases for 64, 125, 216 and 343 spheres and all computations
were performed using the O(N) strategy only. Computational results are summarized
in Figure 6 which contains a log-log plot for the CPU time per iteration as a function
of N. Note that the performance is much better for the medium-size cases, M = 125
and M = 216, than for M = 64 and M = 343. For M = 64, the poor performance is
due to the fact that the communication time constitutes a significant portion of the
total time, i.e. the problem is not large enough. For M = 343, the poor performance
is due to the fact that the processor that distributes the data had to resort to the
hard-disk memory, i.e. the problem is too large for the 16 processors. We did not
compute complete solutions for the considered problems only due to limited access to
all 16 processors of the computer.
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Figure 6: Computational results for the O(N) strategy for 64, 125, 216 and 343
spheres obtained with 16 processors of SP2.
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7 Concluding Remarks

In this paper, we introduced FLEMS, an O(N) method for analysis of large-scale
three-dimensional micromechanical analysis of composite materials. This method
is suitable for analyzing problems that involve hundreds and thousands of particles
without imposing any essential restrictions on their geometry. The principal idea of
FLEMS is to combine a conventional BEM with an iterative solution strategy that
includes the FMM. We implemented this idea in a way that allows us to combine any
BEM with any FMM and developed a parallel code that can be upgraded once better
BEM or FMM formulations become available.

To a certain extent, this paper can be viewed as a first report — the work is
in progress and several improvements to the code are currently under way. Those
include incorporation of the improved FMM proposed by Greengard and Rokhlin
(1996), modeling of more complex geometries, further parallelization of the code,
development of local mesh refinement techniques, and preconditioning. Of course,
the method needs to be tested on more complex geometries than those considered
in this paper. Nevertheless, we believe that the fundamentals of FLEMS are sound
and it will become a unique and useful tool of micromechanical analysis of composite
materials.

Finally, we note that the generalized many-body electrostatics problem can be
extended to the kernels that characterize long-range dislocation interactions (Rodin,
1997), so that the interactions of N dislocation segments can be computed in O(N)
rather ordinarily O(N?) operations. Originally, the FMM was applied to this class of
problems by Wang and LeSar (1995).
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Figure Captions

Figure 1. A binder containing identical particles.

Figure 2. Partioning of the computational domain based on a space-filling curve.
Figure 3. A simple cubic array of 8 spheres.

Figure 4. The finite element discretization of the boundary of a sphere.

Figure 5. Computational results for 8, 27, and 64 spheres obtained with one processor
of SP2. Circles correspond to the O(N) strategy and squares correspond to the O(N?)

strategy.

Figure 6. Computational results for the O(N) strategy for 64, 125, 216, and 343

spheres obtained with 16 processors of SP2.
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