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Abstract
False sharing is an insidious problem for multithreaded pro-
grams running on multicore processors, where it can silently
degrade performance and scalability. Previous tools for de-
tecting false sharing are severly limited: they cannot distin-
guish false sharing from true sharing, have high false pos-
itive rates, and provide limited assistance to help program-
mers locate and resolve false sharing.

This paper presents two tools that attack the problem of
false sharing: FS-DETECTIVE and FS-PATROL. Both tools
leverage a framework we introduce here called SHERIFF.
SHERIFF breaks out threads into separate processes, and ex-
poses an API that allows programs to perform per-thread
memory isolation and tracking on a per-page basis. We be-
lieve SHERIFF is of independent interest.

FS-DETECTIVE finds instances of false sharing by com-
paring updates within the same cache lines by different
threads, and uses sampling to rank them by performance
impact. FS-DETECTIVE is precise (no false positives), runs
with low overhead (on average, 20%), and is accurate, pin-
pointing the exact objects involved in false sharing. We
present a case study demonstrating FS-DETECTIVE’s effec-
tiveness at locating false sharing in a variety of benchmarks.

Rewriting a program to fix false sharing can be infeasible
when source is unavailable, or undesirable when padding ob-
jects would unacceptably increase memory consumption or
further worsen runtime performance. FS-PATROL mitigates
false sharing by adaptively isolating shared updates from dif-
ferent threads into separate physical addresses, effectively
eliminating most of the performance impact of false sharing.
We show that FS-PATROL can improve performance for pro-
grams with catastrophic false sharing by up to 9×, without
programmer intervention.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Writing multithreaded programs can be challenging. Not
only must programmers cope with the difficulty of writing
concurrent programs (races, atomicity violations, and dead-
locks), they must also make sure they are efficient and scal-
able. Key to achieving high performance and scalability is
reducing contention for shared resources. However, threads
can still suffer from false sharing when multiple objects
that are not logically shared reside on the same cache line.
When false sharing is frequent enough, the resulting “ping-
ponging” of cache lines across processors can cause perfor-
mance to plummet [5, 11]. False sharing can degrade appli-
cation performance by as much as an order of magnitude.
Two trends—the prevalence of multicore architectures and
the expected increase in the number of multithreaded appli-
cations in broad use, and increasing cache line sizes—are
likely to make false sharing increasingly common.

Locating false sharing requires tool support. Past false
sharing detection tools operate on binaries, either via sim-
ulation [22] or binary instrumentation [10, 18, 24], and in-
tercept all reads and writes (leading to slowdowns of up to
200×), or rely on hardware performance monitors and cor-
relate cache invalidations with function calls [12, 13]

These false sharing detection tools suffer from problems
that greatly limit their usefulness. They generate numer-
ous false positives: addresses that appear shared but are just
reused by the memory allocator, instances of true sharing,
and objects that were falsely shared so few times that they
do not present a performance bottleneck. They also provide
little actionable information for programmers seeking to re-
solve false sharing in their programs. Their reports range
from a list of suspicious memory addresses with functions
that accessed them at some point [12, 22] to a single num-
ber representing the overall false sharing rate for the entire
program [10, 18, 24].

This paper presents two tools designed to help program-
mers effectively address the challenges of locating and deal-
ing with false sharing in multithreaded applications. FS-
DETECTIVE finds and reports false sharing accurately (no
false positives) and precisely, indicating the exact objects re-
sponsible for false sharing. When rewriting an application to
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resolve false sharing is infeasible (because source is unavail-
able, or padding data structures would unacceptably reduce
cache utilization and/or increase memory consumption), FS-
PATROL can be used as a runtime system that eliminates
false sharing automatically. Both tools leverage a common
framework we introduce here called SHERIFF that enables
them to operate efficiently.

Figure 1 presents a sample workflow for using FS-
DETECTIVE and FS-PATROL. A multithreaded program is
first executed with FS-DETECTIVE to uncover any false
sharing. The programmer can then act on FS-DETECTIVE’s
reports to correct false sharing by applying padding or align-
ing objects to cache line boundaries. If these fixes resolve
the problem, then the modified program can be used with
the standard pthreads library. If the fixes degrade perfor-
mance or introduce excessive memory consumption [24], or
when it is impractical or impossible to modify the program,
then FS-PATROL can be used as a substitute runtime system
to automatically eliminate false sharing.

Contributions
This paper makes the following contributions:

• It presents SHERIFF, a software-only framework that
replaces the standard pthreads library and transforms
threads into OS processes. It exposes an API that enables
per-thread memory protection and optional memory iso-
lation on a per-page basis. We believe SHERIFF is of in-
dependent interest since it enables a range of possible ap-
plications, including language support and enforcement
of data sharing, software transactional memory, thread-
level speculation, and race detection [19], though we use
SHERIFF here to build two tools focused on false sharing.

• It presents FS-DETECTIVE, a tool that finds and re-
ports false sharing with high precision and with no false
positives. It only reports actual false sharing—not true
sharing, and not artifacts from heap object reuse. It uses
sampling to rank instances of false sharing by their po-
tential performance impact. FS-DETECTIVE pinpoints
false sharing locations by indicating offsets and global
variables or heap objects (with allocation sites), making
false sharing relatively easy to locate and correct. FS-
DETECTIVE is generally efficient: on average, it slows
down execution time by just 20%.

• It presents FS-PATROL, a tool that eliminates false shar-
ing automatically without the need for code modifica-
tions or recompilation. FS-PATROL can dramatically in-
crease performance in the face of false sharing sharing.
To our knowledge, FS-PATROL is the first false sharing
resistant runtime for shared-memory multithreaded pro-
grams.

We evaluate FS-DETECTIVE and FS-PATROL over a
range of applications, including the Phoenix and PARSEC
benchmark suites; the latter is designed to be representa-
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Figure 1. A workflow for using FS-DETECTIVE and FS-
PATROL.

tive of next-generation shared-memory programs for chip-
multiprocessors [4]. We show that FS-DETECTIVE can suc-
cessfully guide programmers to the exact sources of false
sharing, and use its results to remove false sharing in several
applications. We also apply FS-PATROL to automatically
mitigate false sharing in these applications; in one case, an
applicaton suffering from catastrophic false sharing runs 9×
faster with FS-PATROL than with the standard pthreads
library.

Outline
The remainder of this paper is organized as follows. Sec-
tion 2 describes key related work. Section 3 describes SHER-
IFF’s mechanisms and algorithms in detail. Section 4 de-
scribes the FS-DETECTIVE tool and how it works to locate
false sharing problems. Section 5 presents the FS-PATROL
runtime system. Section 6 presents experimental results, in-
cluding several case studies of using FS-DETECTIVE to de-
tect and guide the correction of false sharing. Finally, Sec-
tion 7 concludes.

2. Related Work
The proliferation of multicore systems has increased interest
in tool support to detect false sharing, since standard profil-
ers like OProfile [17] or gprof [9] only report overall cache
misses.

Simulation and Instrumentation Approaches: Schinde-
wolf describes a system based on the SIMICS functional
simulator that reports full cache miss information, including
invalidations caused by sharing [22]. Pluto uses the Valgrind
framework to track the sequence of load and store events on
different threads and reports a worst-case estimate of pos-
sible false sharing [10]. Similarly, Liu uses Pin to collect
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memory access information and then reports total false shar-
ing miss information [18].

Independently and in parallel with this work, Zhao et
al. developed a tool designed to detect false sharing and
other sources of cache contention in multithreaded applica-
tions [24]. This tool uses shadow memory to track ownership
of cache lines and cache access patterns. It is currently lim-
ited to at most 8 simultaneous threads. Like Liu above, it
only reports an overall false sharing rate for the whole pro-
gram, placing the burden on programmers to examine the
entire source base to locate any instances of false sharing.

Unlike FS-DETECTIVE, these systems generally suffer
from high performance overhead (5−200× slower) or mem-
ory overheads. They cannot differentiate true sharing from
false sharing, yielding numerous false positives. Because
they operate at the binary level, they can all be misled by
aliasing due to memory object reuse. Finally, and most im-
portantly, they do not point to the objects responsible for
false sharing, limiting their value to the programmer.

Sampling-Based Approaches: Intel’s performance tuning
utility (PTU) [12, 13] uses event-based sampling, allowing
it to operate efficiently. PTU can discover shared physical
cache lines, and can identify possible false sharing at the
grain of individual function calls. PTU suffers from a high
false positive rate caused by aliasing due to reuse of heap ob-
jects, and reports false sharing instances that have no impact
on performance. PTU cannot differentiate true from false
sharing or pinpoint the source of false sharing problems, un-
like FS-DETECTIVE. Section 6 contains an extensive empir-
ical comparison of PTU to FS-DETECTIVE demonstrating
PTU’s relative shortcomings.

Pesterev et al. describe DProf, a tool that leverages
AMD’s instruction-based sampling hardware to help pro-
grammers identify the sources of cache misses [20]. DProf
requires manual annotation to locate data types and object
fields, and cannot detect false sharing when multiple objects
reside on the same cache line. By contrast, FS-DETECTIVE
is architecture independent, requires no manual intervention,
and precisely identifies false sharing regardless of the flow
of data or which data types are involved.

False Sharing Avoidance: In some restricted cases, it is
possible to eliminate false sharing, obviating the need for
detection. Jeremiassen and Eggers describe a compiler trans-
formation that adjusts the memory layout of applications
through padding and alignment [14]. Chow et al. describe an
approach that alters parallel loop scheduling to avoid shar-
ing [7]. The effectiveness of these static analysis based ap-
proaches is primarily limited to regular, array-based scien-
tific codes, while FS-PATROL can prevent false sharing in
any application.

Berger et al. describe Hoard, a scalable memory allocator
can reduce the likelihood of false sharing of distinct heap
objects [1]. Hoard limits accidental false sharing of entire
heap objects by making it unlikely that two threads will use

the same cache lines to satisfy memory requests, but this
has no effect on false sharing within individual heap objects,
which FS-PATROL avoids.

Other Related Work: SHERIFF borrows the process-as-
thread model pioneered by Grace [2], but otherwise differs
from it in its semantics, generality, and goals.

Grace is a process-based approach designed to prevent
concurrency errors, such as deadlock, race conditions, and
atomicity errors by imposing a sequential semantics on
speculatively-executed threads. Grace supports only fork-
join programs without inter-thread communication (e.g.,
condition variables or barriers), and rolls back threads when
their effects would violate sequential semantics.

SHERIFF extends Grace to handle arbitrary multithreaded
programs; for example, Grace is incompatible with any ap-
plications that employ inter-thread communication, includ-
ing the PARSEC benchmarks we examine here. SHERIFF ap-
plies diffs at synchronization points in the program to enable
updates without rollback, giving it far greater performance
(but different semantics) than Grace. SHERIFF does not elim-
inate concurrency errors, but instead allows applications to
selectively track updates and isolate memory, enabling tools
like FS-DETECTIVE and FS-PATROL.

3. SHERIFF

SHERIFF is a functional replacement for the pthreads li-
brary that extends it with two novel features: per-thread
memory protection (allowing each thread to track memory
accesses independently of each other thread’s accesses) and
optional memory isolation (allowing each thread to read
and write memory without interference from other threads).
SHERIFF works through a combination of replacing threads
by processes [2] and page-level twinning and diffing [6, 15].

Replacing pthreads with processes is surprisingly inex-
pensive, especially on Linux where both pthreads and pro-
cesses are invoked using the same underlying system call.
Process invocation can actually outperform threads because
operating systems initially assign threads to the invoking
CPU to maximize locality, while it spreads processes across
all CPUs [2]. To achieve the effect of shared memory, SHER-
IFF maps globals and the heap into a shared region (Sec-
tion 3.1). It also intercepts the pthread create call and
replaces it with a process creation call (Section 3.2).

Using processes to simulate threads has two key advan-
tages. First, converting threads to processes enables the use
of per-thread page protection, allowing SHERIFF to track
memory accesses by different threads, a feature that FS-
DETECTIVE uses in its false sharing detection algorithm
(Section 4). Second, it isolates threads’ memory accesses
from each other. This isolation ensures that threads do not
update shared cache lines, and because each process natu-
rally has its own distinct set of cache lines this eliminates
false sharing: FS-PATROL takes advantage of this feature
(Section 5).
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Figure 2. SHERIFF replaces pthreads by simulating
threads with processes. It exposes an API that enables per-
thread memory protection and memory isolation on a per-
page basis. Each “thread” thus either operates directly on
shared memory, or on its own private copy. For the latter,
SHERIFF commits diffs to shared mappings at synchroniza-
tion points (Section 3.3).

To maintain the shared-memory semantics of a multi-
threaded program, SHERIFF must periodically update the
shared heap and globals so that modifications become vis-
ible to other threads. SHERIFF delays these updates until
synchronization points such as lock acquisition and release
(Section 3.3). However, SHERIFF takes care to update only
the changed parts of each page (Section 3.4).

3.1 Simulating a Shared Address Space
To create the effect of multi-threaded programs where dif-
ferent threads share the same address space, SHERIFF uses
memory mapped files to share the heap and globals across
different processes. Note that SHERIFF does not share the
stack across different processes because different threads
have their own stacks and, in general, multithreaded pro-
grams do not use the stack for cross-thread communication.

SHERIFF creates two different mappings for both the heap
and the globals. One is a shared mapping, which is used
to hold shared state. The other is a private, copy-on-write
(COW) per-process mapping that each process works on di-
rectly. Private mappings are linked to the shared mapping
through the one memory mapped file. Reads initially go di-
rectly to the shared mapping, but after the first write oper-
ation, both reads and writes are entirely private. SHERIFF
updates the shared image at synchronization points, as de-
scribed in Section 3.5.

SHERIFF uses a fixed-size mapping to hold globals,
which it checks to ensure is large enough to hold all globals.
SHERIFF also uses a fixed-size mapping to store the heap (by
default, 1GB). Memory allocation requests from user appli-
cations are satisfied from this fixed-size private mapping.

Since different threads allocate memory from this single
fixed-size mapping, the global superheap data structure is
shared among different threads and allocations are protected
by one process-based mutex. In order to avoid false sharing
induced by the memory allocator, SHERIFF employs a scal-
able “per-thread” heap organization that is loosely based on
Hoard [1] and built using HeapLayers [3]. SHERIFF divides
the heap into a fixed number of sub-heaps (currently 16).
The metadata for each sub-heap is also shared by different
threads and protected by a cross-process mutex. In order to
reduce lock contention, SHERIFF assigns different sub-heaps
to each thread at creation time. Since each thread’s heap al-
locates from different pages, the allocator itself is unlikely
to collocate two objects from different threads on the same
cache line.

Note that tools built with SHERIFF can specify, on a
per-page basis, whether to use a shared mapping (so that
updates are immediately visible to other “threads”), or a
private mapping (so that updates are delayed). Both FS-
DETECTIVE and FS-PATROL take advantage of this facility.

3.2 Shared File Access
In multithreaded programs, all threads share the same file
descriptor table that tracks the process’ open files. For ex-
ample, if one thread opens a file, the other threads see that
the file has been opened. However, multiple processes each
have their own resources, including not only memory but
also file handles, sockets, device handles, and windows.

While SHERIFF could manage these directly, our current
prototype takes advantage of a feature of Linux that allows
selective sharing of memory and file descriptors. SHERIFF
sets the CLONE FILES flag when creating new processes,
resulting in child processes with different address spaces but
the same shared file descriptor table.

3.3 Synchronization
SHERIFF supports the full range of POSIX synchronization
operations (mutexes, conditional variables, barriers), as well
as all thread-related calls, including cancellation.

At each synchronization point, SHERIFF must commit all
changes made by the current thread. The span between syn-
chronization points thus constitutes a single atomic trans-
action. Note that SHERIFF’s approach differs significantly
from previous transactional memory proposals [16], includ-
ing Grace. SHERIFF is not optimistic, does not replace locks
with speculation (it actually acquires program-level locks),
never needs to roll back (it is always able to commit suc-
cessfully), and achieves low overhead for long transactions.

To simulate multithreaded synchronization, SHERIFF in-
tercepts all synchronization object initialization function
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calls, allocates new synchronization objects in a mapping
shared by all processes, and initializes them to be accessible
by different processes.

SHERIFF wraps all synchronization operations, includ-
ing mutexes, condition variables, and barriers in a similar
fashion. For example, a call to pthread mutex lock first
ends the current transaction, then calls the corresponding
pthreads library function but on a cross-process mutex.
SHERIFF then starts a new transaction after the lock is ac-
quired, which ends with the next synchronization operation.

Thread-related calls are implemented in terms of their
process counterparts. For example, pthread join ends the
current transaction and calls waitpid to wait for the appro-
priate process to complete.

3.4 Updating Shared Memory
At each synchronization point, SHERIFF updates the shared
globals and heap with any updates that thread made. To ac-
complish this SHERIFF uses twinning and diffing, mecha-
nisms first introduced in distributed shared memory systems
to reduce communication overhead [6, 15].

Figure 2 presents an overview of both mechanisms at
work. All private pages are initially write-protected. Before
any page is modified, SHERIFF copies its contents to a “twin
page” and then unprotects the page. At a synchronization
point, SHERIFF compares each twin page to the modified
page (byte by byte) to compute diffs.

3.5 Example Execution
This section walks through an example of SHERIFF’s execu-
tion from the start of a program to its termination.

Initialization: Before the program begins, SHERIFF estab-
lishes the shared and local mappings for the heap and glob-
als, and initiates the first transaction.

Transaction Begin: At the beginning of every transac-
tion, SHERIFF write-protects any shared pages so that later
writes to these pages can be caught by handling SEGV protec-
tion faults. In later transactions, SHERIFF only write-protects
pages dirtied in the last transaction, since the others remain
write-protected.

Execution: While performing reads, SHERIFF runs at the
same speed as a conventional multithreaded program. How-
ever, the first write to a protected page triggers a page fault
that SHERIFF handles.

SHERIFF records the page holding the faulted address and
then unprotects this page so that future accesses run at full
speed. Each page thus incurs at most one page fault per trans-
action. Although protection faults and signals are expensive,
these costs are amortized over the entire transaction.

However, before servicing the fault, SHERIFF must first
obtain an exact copy of this page (its twin). SHERIFF ac-
complishes this by forcing a copy-on-write operation on this
page by writing to the start of this page with contents from
the same address (i.e., it reads and writes the same value).

This step is essential to ensure that the twin is identical to
the original, unmodified page. After the signal handler, the
OS’s copy-on-write mechanism creates a new, private page.

Transaction End: At the end of each atomically-executed
region—at thread exit and before synchronization points—
SHERIFF commits changes from private pages to the shared
space and reclaims memory holding old private pages and
twin pages.

SHERIFF commits only the differences between the twin
and the modified pages. Once it has written these diffs,
SHERIFF issues an madvise call with the MADV DONTNEED
flag that discards the physical pages backing both the pri-
vate mapping and the twin pages. This action allows the OS
to reclaim this memory, helping to ensure that SHERIFF’s
memory overhead remains close to that of the original pro-
gram.

3.6 Discussion
As Section 3.1 notes, SHERIFF does not share the stack be-
tween different threads. When using pthreads, threads are
allowed to share stack variables with their parent. As long
as threads do not modify these variables, SHERIFF operates
correctly. However, SHERIFF does not preserve pthreads
semantics for applications whose threads modify stack vari-
ables from their parent thread that their parent then reads.
Fortunately, passing stack variables to a thread for modifi-
cation is generally frowned upon, making it a rare coding
practice.

SHERIFF cannot currently intercept atomic operations
written in assembly, so programs that implement their own
ad hoc synchronization operations are not guaranteed to
work correctly (Xiong et al. have shown that 22–67% of the
uses of ad hoc synchronization they examined led to bugs or
severe performance issues [23]). We expect this limitation
to be less of a problem in the future because the forthcom-
ing C++0x standard exposes atomic operations in a standard
library, making it possible for SHERIFF to intercept them.

4. FS-DETECTIVE

We use the SHERIFF framework to build two tools that ad-
dress false sharing. This section describes the first of these,
FS-DETECTIVE, which detects false sharing.

FS-DETECTIVE detects both types of false sharing de-
scribed in the literature. The first is the sharing of structurally-
unrelated objects that happen to be located on the same
cache line (i.e., different variables). The second is when mul-
tiple processors access different fields of the same object,
which Hyde and Fleisch describe as “pseudo sharing” [11].

FS-DETECTIVE is designed to report only those in-
stances of false sharing with the potential to seriously de-
grade performance. False sharing only causes a significant
performance degradation when multiple threads concur-
rently and repeatedly update falsely-shared data, leading to
large numbers of invalidation misses.
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Figure 3. Overview of FS-DETECTIVE’s operation. FS-DETECTIVE extends SHERIFF with page ownership tracking,
sampling, and per-cache line and per-word status arrays that track frequent false sharing within cache lines. For clarity of
exposition, the diagram depicts just one cache line per page and two words per cache line.

4.1 Page Ownership Tracking
One approach to implementing FS-DETECTIVE would be
to use SHERIFF and direct it to protect all pages and map
them private. The only change needed to detect false sharing
would be an added check of twins and diffs against com-
mitted pages. Any cache line whose contents differ from the
twin indicates it was changed by another thread. False shar-
ing has occurred whenever a diff (a local update) lies on the
same cache line as a local update.

However, this naı̈ve approach would be quite costly.
Since all local modifications of different threads must be
committed to the shared space at every synchronization point
to ensure correct execution (see Section 3.3), this approach
would introduce substantial and unnecessary overhead for
applications with a large number of unshared pages.

To reduce this overhead, FS-DETECTIVE leverages a
simple insight: if two threads can falsely share a cache line,
then they must simultaneously access the page containing
that cache line.

Guided by this insight, FS-DETECTIVE relies on page
protection to gather information about whether pages are

shared or not. Instead of placing everything in the private
address space, FS-DETECTIVE utilizes its knowledge about
page sharing patterns and only maps those shared pages
private.

FS-DETECTIVE initially read-protects all memory pages
and tracks the number of threads that attempt to write a page
concurrently. Any attempt to write to a page will trigger
a page fault. FS-DETECTIVE then increments the access
counter for this page before unprotecting the page. Once
the access counter for a given page reaches two, the page
is considered to be shared, and the page is mapped privately
to each process to allow FS-DETECTIVE to locate possible
false sharing.

4.2 Discovering Local Modifications
When FS-DETECTIVE concludes each transaction, it com-
pares each dirty page with its twin a word at a time to find
any modifications. FS-DETECTIVE thus identifies all writes
made by the current thread. Whenever local modifications
are found, either in the sampling period or at the end of a
transaction (outside a critical section), FS-DETECTIVE sets
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the virtual status words that indicate local modifications by
the current thread.

4.3 Identifying Problematic False Sharing
FS-DETECTIVE uses sampling to measure the performance
impact of false sharing, which it uses to rank its reports. FS-
DETECTIVE currently uses a sampling interval of 10 mil-
liseconds, which we empirically observe balances accuracy
and performance overhead.

FS-DETECTIVE tracks the frequency of updates made to
cache lines by associating a temporary twin page with each
private, modified page (see Figure 3). These temporary twins
are created only during sampling, and are updated to reflect
the current working version at every sampling interval.

Only repeatedly interleaved writes (that is, by different
threads) can degrade performance by repeatedly forcing
cache line invalidations. FS-DETECTIVE monitors inter-
leaved writes across different threads in order to capture
this effect.

FS-DETECTIVE associates a per-cache line status with
each cache line in every tracked page (Figure 2). This sta-
tus contains two fields. The first points to the last thread to
write to this cache line, and the second records the number
of interleaved updates to the cache line. Every time a dif-
ferent thread writes to a cache line, FS-DETECTIVE updates
the associated status word with both the thread id and the
version number. To reduce overhead, FS-DETECTIVE splits
the status into two different arrays to allow the use of atomic
operations instead of locks.

In addition, during sampling and at commit time, FS-
DETECTIVE updates per-word status values for every mod-
ified word. This information is later used to report the ap-
proximate frequency of updates at the individual word gran-
ularity. Programmers can then use this information to decide
where to place padding. For example, if two struct fields are
falsely shared, padding should be placed between the fields
that are most frequently updated.

FS-DETECTIVE imposes relatively low memory over-
head by maintaining status values only for pages that are
shared by multiple threads. To further save space, FS-
DETECTIVE stores each status in a single 32-bit word. The
upper 16 bits stores the thread id, and the lower 16 bits stores
the version number. When a word is detected to have been
modified by more than two threads, FS-DETECTIVE sets the
thread id field to 0xFFFF, indicating that it is shared.

4.4 Reporting
At this point, FS-DETECTIVE has detected individual cache
lines that are responsible for a large number of invalidations,
and thus potential sources of slowdowns. The next step is to
identify the culprit objects.

FS-DETECTIVE aims to provide as much context as pos-
sible about false sharing in order to reduce programmer ef-
fort, identifying global variables by name, heap objects by
allocation context, and where possible, the fields modified

by different threads. FS-DETECTIVE also provides an op-
tion to print out detailed information for every word in a
given cache line, including the number of updates and the
accessor threads.

FS-DETECTIVE identifies globals directly by using de-
bug information that associates the address with the name
of the global. For heap objects, FS-DETECTIVE instruments
memory allocation to attach the call site to the header of each
heap object. This calling context indicates the sequence of
function calls that led to the actual allocation request, and
is useful to help the programmer identify and correct false
sharing, as the case study in Section 6.1.1 demonstrates. Any
heap object responsible for a large number of invalidations
is not deallocated so that it can be reported at the end of pro-
gram execution.

4.5 Avoiding False Positives
FS-DETECTIVE instruments memory allocation operations
to clean up cache invalidation counts whenever an object is
de-allocated. This approach avoids the false positives caused
by incorrectly aggregating counts when one address is re-
used for other objects.

4.6 Reporting Falsely Shared Objects
Once execution is complete, FS-DETECTIVE generates a
ranked list of falsely shared objects. FS-DETECTIVE scans
the cache invalidation array for cache lines with a number
of invalidations above a fixed threshold (currently 100). The
corresponding invalidation times and offset of this cache line
are added to a global linked list sorted by invalidation times.

After scanning the cache invalidation array, FS-DETECTIVE
obtains object information for all cache lines in the linked
list, and reports the allocation site and offsets of all falsely-
shared allocated objects.

4.7 Optimizations
FS-DETECTIVE employs several optimizations that further
reduce its overhead.

Reducing timer overhead. As explained in Section 4.3,
FS-DETECTIVE uses sampling to track interleaved writes by
triggering a timer signal via ualarm. To reduce the impact
of timer interrupts, FS-DETECTIVE activates sampling only
when the average transaction time is larger than a thresh-
old time (currently 10 milliseconds). FS-DETECTIVE uses
an exponential moving average to track average transaction
times (α = 0.9). This optimization does not significantly
reduce the possibility of finding false sharing since FS-
DETECTIVE’s goal is to find an object with a large amount
of interleaved writes from different threads.

Sampling to find shared pages. FS-DETECTIVE relies on
page protection to determine whether pages are shared or
not. When one application has a large number of transac-
tions or page touches, the protection overhead to gather this
sharing information can dominate running time.
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FS-DETECTIVE reduces overhead by using sampling to
detect shared pages. If objects on a page are frequently
falsely shared, the page itself must also be frequently shared,
so even relatively infrequent sampling will eventually detect
this sharing. FS-DETECTIVE currently samples the first 50
out of every 1,000 periods (one period equals one transaction
or one sampling interval). At the beginning of each sampled
period, all memory pages are made read-only so that any
writes to each page will be detected. Once a page is found
to be shared, FS-DETECTIVE will track any false sharing
inside it. FS-DETECTIVE only updates the shared status of
pages during sampled periods and at commit points. During
unsampled periods, pages whose sharing status is unknown
impose no protection overhead.

4.8 Discussion
Unlike previous tools, FS-DETECTIVE has no false pos-
itives, differentiates true sharing from false sharing, and
avoid false positives caused by the reuse of heap objects.
FS-DETECTIVE can under-report false sharing instances in
the following situations:

Single writer. False sharing usually involves updates from
multiple threads, but it can also arise when there is exactly
one thread writing to part of a cache line while other threads
read from it. Because its detection algorithm depends on
multiple, differing updates, FS-DETECTIVE cannot detect
this kind of false sharing.

Heap-induced false sharing. SHERIFF replaces the stan-
dard memory allocator with one that behaves like Hoard
and thus reduces the risk of heap-induced false sharing. FS-
DETECTIVE therefore does not detect false sharing caused
by the standard memory allocator. Since it is straightforward
to deploy Hoard or a similar allocator to avoid heap-induced
false sharing, this limitation is not a problem in practice.

Misses due to sampling. Since it uses sampling to capture
continuous writes from different threads, FS-DETECTIVE
can miss writes that occur in the middle of sampling inter-
vals. We hypothesize that false sharing instances that affect
performance are unlikely to perform frequent writes exclu-
sively during that time, and so are unlikely to be missed.

5. FS-PATROL

While FS-DETECTIVE can be effective at locating the
sources of false sharing, it is sometimes difficult or impos-
sible for programmers to remove the false sharing that FS-
DETECTIVE can reveal. For instance, padding data struc-
tures to eliminate false sharing within an object or different
elements of an array can cause excessive memory consump-
tion or degrade cache utilization [24]. Time constraints may
prevent programmers from investing in other solutions, or
the source code may simply be unavailable. FS-PATROL,
our second tool developed with the SHERIFF framework,

can take unaltered C/C++ binaries and eliminate the perfor-
mance degradation caused by false sharing.

To accomplish its goals, FS-PATROL relies on a key in-
sight due initially to DuBois et al. [8]: delaying updates
avoids false sharing. Delaying one thread’s updates so that
they do not cause invalidations to other threads eliminates
the performance impact of false sharing. Consider the case
when two threads are updating two falsely-shared objects A
and B. If one thread’s accesses to A were delayed so that they
preceded all of the other thread’s accesses to B, then the false
sharing would cause no invalidations and hence have no per-
formance impact.

In effect, this is exactly what SHERIFF does already when
all pages are mapped private. By using processes instead of
threads, all updates between synchronization points are ap-
plied to different physical addresses belonging to the differ-
ent “threads”. In this way, SHERIFF itself prevents false shar-
ing by not updating the same physical cache lines.

However, using SHERIFF with all pages mapped pri-
vate would be impractical as a runtime replacement for
pthreads, because it would impose excessive overhead.
This overhead arises due to protection and copying costs
that would counteract the benefit of preventing false sharing.

For example, when a thread updates a large number of
pages between transactions, SHERIFF must commit all local
changes to the shared mapping at the end of every transac-
tion, even in the absence of sharing. The associated protec-
tion and copying overhead can dramatically degrade perfor-
mance. The same problem arises when transactions are short
(e.g., when there are frequent lock acquisitions), because the
cost of protection and page faults cannot be amortized by the
protection-free part of the transaction.

FS-PATROL implements two key optimizations that im-
prove performance by directly addressing these issues.

Focus on smaller objects: FS-PATROL focuses its false
sharing prevention exclusively on small objects (those less
than 1024 bytes in size). All large objects are mapped shared
and are never protected.

First, we expect small objects to be a likely source of
false sharing because they fit on a cache line. False sharing
in large objects like arrays is also possible, but we expect the
amount of false sharing relative to the size of the object to
be far lower than with small objects (an intuition that FS-
DETECTIVE confirms, at least across our benchmark suite).
For such objects, the cost of protection would outweigh the
advantages of preventing false sharing.

Second, the total amount of memory consumed by small
objects tends to be less than that consumed by large objects.
Because the cost of protecting and committing changes is
proportional to the volume of updates, FS-PATROL limits
protection to small objects, reducing overhead while captur-
ing the benefit of false sharing prevention where it matters
most.
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Microbenchmark Performance-Sensitive / FS-DETECTIVE PTU
Actual False Sharing?

False sharing (adjacent objects) Yes X X
Pseudo sharing (array elements) Yes X X
True sharing No
Non-interleaved false sharing No ×
Heap reuse (no sharing) No ×

Table 1. False sharing detection results using PTU and FS-DETECTIVE. FS-DETECTIVE correctly reports only actual false
sharing instances, and only those with a performance impact; X denotes a correct report, and × indicates a spurious report (a
false positive).

Adaptive false sharing prevention: Short transactions do
not give SHERIFF the chance to amortize its protection over-
heads. To address this, FS-PATROL employs a simple adap-
tive mechanism. FS-PATROL tracks the length of each trans-
action and uses exponential weighted averaging (α = 0.9)
to calculate the average transaction length. Once the average
transaction length is shorter than an established threshold,
FS-PATROL switches to using shared mappings for all mem-
ory and does no further page protection. As long as transac-
tions remain too short for FS-PATROL to have any benefit,
all of its overhead-producing mechanisms remain switched
off. If the average transaction length rises back above the
threshold, FS-PATROL re-establishes private mappings and
page protection.

6. Evaluation
We perform our evaluation on a quiescent 8-core system
(dual processor with 4 cores), and 8GB of RAM. Each pro-
cessor is a 4-core 64-bit Intel Xeon running at 2.33 Ghz with
a 4MB L2 cache. For compatibility reasons, we compiled all
applications to a 32-bit target. All performance data is the
average of 10 runs, excluding the maximum and minimum
values. Our evaluation answers the following questions:

• How effective is FS-DETECTIVE at finding and guiding
programmers to resolve false sharing? (§ 6.1)

• What is FS-DETECTIVE’s performance overhead? (§ 6.2)
• How effectively does FS-PATROL mitigate false sharing?

(§ 6.3)

6.1 FS-DETECTIVE Effectiveness
We first evaluate FS-DETECTIVE with microbenchmarks we
developed that exemplify a range of sharing scenarios. For
comparison, we also present the corresponding results of
Intel’s Performance Tuning Utility (PTU), version 3.2 [12].

Table 1 presents the results of this evaluation. We can see
that FS-DETECTIVE reports both false sharing and pseudo-
sharing problems successfully, and correctly ignores the
benchmarks with no actual false sharing performance impact
(3–5). However, PTU reports false sharing for benchmarks
4 and 5. Note that benchmark 5 triggers a false positive due
to heap object reuse: the two different allocations happen to

Benchmark PTU FS-DETECTIVE

cache lines objects
blackscholes 0 0
canneal 1 1
dedup 0 0
ferret 0 0
fluidanimate 3 1
histogram 0 0
kmeans 1,916 2
linear regression 5 1
matrix multiply 468 0
pbzip2 14 0
pca 45 0
pfscan 3 0
reverse index N/A 5
streamcluster 9 1
string match 0 0
word count 4 3
swaptions 196 0
Total 2,664 14

Table 2. Detection results for PTU and FS-DETECTIVE.
For PTU, we show how many cache lines are reported as
(potentially) falsely shared. For FS-DETECTIVE, we pro-
vide the number of objects reported (with significance fil-
tering turned off). “N/A” indicates that PTU failed because
it ran out of memory.

occupy the same address. FS-DETECTIVE avoids this false
positive by cleaning up invalid counting information.

We next evaluate FS-DETECTIVE’s effectiveness at de-
tecting false sharing problems across a range of applications:
the Phoenix [21] and PARSEC [4] benchmark suites, and
two open source multithreaded applications, pbzip2 (a par-
allel compressor) and pfscan (a parallel file scanner). We
use the simlarge inputs for all applications of PARSEC. For
Phoenix, we chose parameters that allow the programs to run
as long as possible. 1

1 As of this writing, we are unable to successfully compile raytrace and
vips, and SHERIFF is currently unable to run x264, bodytrack, and
facesim. Freqmine is not included because it does not support pthreads.
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int * use_len;
void insert_sorted(int curr_thread) {

......
// After finding a new link
(use_len[curr_thread ])++;
......

}

Figure 4. False sharing detected by FS-DETECTIVE in
reverse index. False sharing arises when adjacent threads
modify the use len array.

struct {
long long SX;
long long SY;
long long SXX;
......

} lreg_args;

void *lreg_thread(void *args_in) {
struct lreg_args * args = args_in;
for(i = 0; i < args ->num_elems; i++) {

args ->SX += args ->points[i].x;
args ->SXX += args ->points[i].x

* args ->points[i].x;
}
......

}

Figure 5. False sharing detected by FS-DETECTIVE in
linear regression. Each thread is passed in a pointer to
a struct as an argument, but the struct is smaller than a cache
line (52 bytes), so two different threads write to the same
cache line simultaneously.

Table 2 shows that FS-DETECTIVE reveals false shar-
ing in seven out of seventeen benchmarks (when filtering
for low performance impact is disabled; see below). FS-
DETECTIVE detects false sharing in four benchmarks from
the Phoenix suite and three from the PARSEC suite. How-
ever, for three of these benchmarks (kmeans, canneal, and
fluidanimate), the average number of interleavings per
cache line is lower than 10, indicating that the false shar-
ing would not have a significant performance impact; FS-
DETECTIVE is normally configured not to report these.

In reverse index and word count, multiple threads re-
peatedly modify the same heap object. A simplified version
of the code is shown in Figure 4. Using a thread-local copy
avoids false sharing: each thread can operate on a temporary
variable and modify the global use len only at the end of
the thread.

Linear regression’s false sharing problem is slightly
different (see Figure 5). In this case, two different threads
falsely share the same cache line if the structure lreg args
is not cache line aligned. This problem can easily be avoided
simply by padding the structure lreg args.

The false sharing detected in streamcluster (one of
the PARSEC benchmarks) is similar to the false sharing in
linear regression.

Benchmark Orig Mod Speedup Updates
(s) (s) (M)

linear regression 3.40 0.37 818% 1323.6
reverse index 2.08 2.03 2.4% 0.4
streamcluster 2.78 2.63 5.4% 28.7
word count 2.20 2.18 1% 0.3

Table 3. Performance data for benchmarks with significant
false sharing, as reported by FS-DETECTIVE. “Orig” and
“Mod” are the runtimes before and after fixing the false
sharing revealed by FS-DETECTIVE. All data are obtained
running with pthreads. “Updates” is the maximum number
of updates to falsely-shared cache lines.

Examination of the source code indicates that the author
tried to avoid false sharing by padding, but the amount of
padding, 32 bytes, was insufficient to accomodate the actual
physical cache line size used in the evaluation (64 bytes).
Setting the CACHE LINE macro to 64 bytes eliminates the
false sharing.

The performance of these four benchmarks is listed in
Table 3, before and after fixing the false sharing issues that
FS-DETECTIVE identifies. To understand the differences in
performance improvements, we modified the code to com-
pute the number of updates to these falsely shared objects.
Updates listed here are the maximum possible number of in-
terleaving writes of these objects; the actual number of in-
terleaving writes depends on scheduling.

The reverse index and word count benchmarks do
not exhibit substantial performance improvements after
removing false sharing because the number of updates
is relatively low. For example, the maximum number of
interleaved updates for reverse index is 416,000. The
streamcluster benchmark has around 28 million updates,
and eliminating false sharing provides a modest performance
improvement (5.4%). The most dramatic improvement is for
linear regression. After removing its false sharing, it
runs 9× faster.

6.1.1 FS-DETECTIVE vs. PTU
To evaluate FS-DETECTIVE’s effectiveness at finding false
sharing, we compare it to Intel’s Performance Tuning Utility
(PTU), a commercial product which represents the state of
the art for detecting false sharing.

This comparison evaluates the number of reports that
each tool generates, and the effectiveness of each at helping
the programmer find and resolve actual instances of false
sharing.

Reporting. For PTU, we list the number of cache lines
reported as possibly falsely-shared. To locate a single case of
false sharing, a programmer must sift through every one of
these reports. FS-DETECTIVE reports sharing at the object
granularity.
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Figure 6. A fragment of Intel Performance Tuning Utility’s report for word count (see Section 6.1.1); the full report is 863
lines long.

From the results listed in Table 2, we can see that
FS-DETECTIVE imposes a far lower burden on the pro-
grammer. Across all of the benchmarks, PTU indicates the
need to examine 2,664 cache lines overall (not including
reverse index, which PTU cannot run). By contrast, FS-
DETECTIVE reports just 14 objects as potential source of
false sharing. After increasing its significance threshold pa-
rameter, FS-DETECTIVE reports just 4 objects, all of which
are truly false sharing.

Several factors lead to this difference. First, FS-DETECTIVE
reports objects rather than cache lines, which reduces the
number of reports when one callsite is the source of a num-
ber of allocations (as in kmeans) or when one object spans
multiple cache lines (as in reverse index). Second, FS-
DETECTIVE distinguishes true from false sharing, reducing
the number of reported items. Finally, FS-DETECTIVE only
reports those objects with interleaving writes above a thresh-
old, which significantly reduces the number of reports.

Ease of locating false sharing. To illustrate how FS-
DETECTIVE can precisely locate false sharing instances, we
use the word count benchmark as a representative example.
Our experience with diagnosing other false sharing issues is
similar. Below is an extract of FS-DETECTIVE’s report for
word count:

1st object, cache interleaving writes
13767 times (start at 0xd5c8e140).
Object start 0xd5c8e160, length 32.
It is a heap object with callsite:
[0] ./wordcount_pthreads.c:136
[1] ./wordcount_pthreads.c:441

Line 136 (wordcount pthreads.c), contains the following
memory allocation:

use_len=malloc(num_procs*sizeof(int));

Grepping for use len, a global pointer, quickly leads to this
line:

use_len[thread_num]++;

Now it is clear that different threads are modifying the
same object (use len). Fixing the problem with thread-local
copies of this object is now straightforward [13].

By contrast, compare PTU’s output for the same bench-
mark, shown in Figure 6. Finding this problem is far more
complicated with PTU. The full report consists of 863 lines
describing cache lines and the functions that access them,
not individual objects. The task of finding false sharing is
further exacerbated by the fact that many of these reports are
false positives. PTU is also unable to effectively rank the per-
formance impact of false sharing instances. The “Collected
Data Refs” metric (the second column) is inaccurate at best:
for this example, PTU only reports 12 references, while FS-
DETECTIVE observes 13,767 references.

6.2 FS-DETECTIVE Performance
Figure 7 presents the runtime overhead of FS-DETECTIVE
versus pthreads across our benchmark suites. FS-DETECTIVE
executes with surprisingly low overhead: 20% on average,
with the exception of three outliers.

There are two benchmarks on which FS-DETECTIVE
does not perform particularly well. One is canneal, where
the performance overhead of FS-DETECTIVE is about 8×
compared to pthreads, while fluidanimate’s overhead is
approximately 11× slower than that using pthreads.

The first reason for these overheads is that both bench-
marks trigger a high number of dirtied pages (3.4 million
and 2.15 million, respectively). For each dirty page, FS-
DETECTIVE applies memory protection twice, creates the
copy-on-write version and twin page, checks for false shar-
ing at every checking period, and finally commits updates
to the shared mapping. Copying alone is a major part of the
overhead associated with dirty pages, since one dirty page
needs at least three copies. For canneal, copying alone ac-
counts for about 20 seconds of additional execution time.

fluidanimate also runs slowly with FS-DETECTIVE
because of an unusually high number of transactions (16.7
million). Examination of the source code of fluidanimate
reveals frequent locking and unlocking. SHERIFF replaces
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Figure 7. FS-DETECTIVE overhead across two suites of benchmarks, normalized to the performance of the pthreads library
(lower is better). With two exceptions, its overhead is quite low (on average, just 20%).

!"!#

!"$#

%"!#

%"$#

&"!#

'()
*+
,*
-.
(/,
#

*)
00
/)
(#

1/
12
3#

4/5
5/
6#

72
81)
089

)6/
#

-8,
6.
:5)
9#

+9
/)
0,
#

(80
/)
5;
5/
:5/
,,8
.0
#

9)
658
<;
92
(=3
(>#

3'
?83
&#

3*
)#

34,
*)
0#

5/
@/
5,/
;80
1/
<#

,65
/)
9*
(2,
6/
5#

,65
80:
;9
)6*
-#

,A
)3
=.
0,
#

A.
51
;*
.2
06
#

:/
.9
/)
0#

!
"#
$
%&
'(
)*

+,
-)
./
0
"1

+2
'$

)+

34567289:+;)#<"#$%1.)+

36-5/)1,# BCDEFGHIJ#

Figure 8. FS-PATROL performance, normalized to the performance of the pthreads library (see Section 6.3; lower is better).
For applications with significant false sharing, FS-PATROL can substantially increase performance.

lock calls with their interprocess variants and triggers a
transaction end and begin for each, adding overhead if there
are shared pages (as here).

While these outliers force FS-DETECTIVE to run slowly,
FS-DETECTIVE’s overhead is generally acceptable and far
lower than most previous tools.

linear regression is an outlier in the opposite di-
rection: with FS-DETECTIVE, it runs 8× faster than with
pthreads. The reason is a serious false sharing issue (see
Table 3) that both FS-DETECTIVE and FS-PATROL elim-
inate automatically, thus dramatically improving perfor-
mance. Other cases where FS-DETECTIVE outperforms
pthreads are also due to false sharing elimination; FS-
PATROL further reduces overhead for these and other appli-
cations, as the next section describes.

6.3 Effectiveness of FS-PATROL

Here, we examine the effectiveness of FS-PATROL at miti-
gating false sharing; Figure 8 presents execution times ver-
sus pthreads. For most applications, FS-PATROL either has

no effect on performance (when there is no false sharing to
eliminate) or improves it. Table 4 provides detailed perfor-
mance numbers for both FS-PATROL and FS-DETECTIVE.

For three applications, FS-PATROL degrades perfor-
mance by up to 47% versus pthreads. For kmeans, which
creates over 375 threads per second, the added cost stems
from using processes instead of threads. While process cre-
ation on Linux is relatively cheap, it is still more expensive
than creating threads.

The slowdowns for reverse index and fluidanimate
are due to more subtle technical details of the processes-
as-threads framework. SHERIFF uses a file-based mapping
to connect the private and shared mappings. The Linux
page fault handler does more work when operating on file-
based pages than on anonymous pages (the normal case for
heap-allocated pages). For example, the first write to a file-
mapped page repopulates information from the file’s page
table entry. In addition, the shared store for all heap pages
is initially set to MAP SHARED, so writing to one shared page
can cause a copy-on-write operation in the kernel even when
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Benchmark Normalized Runtime
FS-DETECTIVE FS-PATROL

blackscholes 1.00 1.00
canneal 8.23 1.11
dedup 1.27 1.02
ferret 1.03 1.03
fluidanimate 11.39 1.47
histogram 0.77 0.76
kmeans 1.29 1.28
linear regression 0.12 0.11
matrix multiply 1.00 1.00
pbzip2 1.13 1.00
pca 1.04 1.03
pfscan 1.02 0.85
reverse index 1.67 1.25
streamcluster 1.10 0.94
string match 0.61 0.60
swaptions 0.97 0.94
word count 1.09 1.05
Geomean 1.21 0.87

Table 4. Detailed execution times with FS-DETECTIVE and
FS-PATROL, normalized to execution with the pthreads
library; numbers below 1 (boldfaced) indicate a speedup
over pthreads.

there is only one user. As future work, we plan to investigate
extending the kernel with an additional mapping mode to
eliminate this overhead.

FS-PATROL improves the performance of the programs
implicated by FS-DETECTIVE as suffering from false shar-
ing, as well as several others. For example, histogram
also runs substantially faster with FS-PATROL (24%), al-
though we currently are not certain why this is the case.
string match runs 40% faster because of false sharing
caused by the pthreads heap allocator (which is why FS-
DETECTIVE does not find it). The most dramatic improve-
ment comes from linear regression, which runs 9×
faster than with pthreads because FS-PATROL eliminates
its serious false sharing (see Table 3). These results show that
FS-PATROL is effective at mitigating false sharing without
the need for programmer intervention or access to source
code.

7. Conclusion
This paper presents two tools that attack the problem of
false sharing in multithreaded programs. Both are built with
SHERIFF, a software-only framework that enables per-thread
memory protection and isolation. SHERIFF works by con-
verting threads into processes, and uses memory mapping
and a difference-based commit protocol to provide isolated
writes. FS-DETECTIVE identifies false sharing instances
with no false positives, and pinpoints the objects involved in
performance-critical false sharing problems. We show that

FS-DETECTIVE can greatly assist programmers in track-
ing down and resolving false sharing problems. When it is
not feasible for programmers to resolve these problems, ei-
ther because code is unavailable or because the fixes would
degrade performance further, FS-PATROL can be used to
automatically eliminate the false sharing problems indicated
by FS-DETECTIVE. We show that FS-PATROL can substan-
tially improve the performance of applications with moder-
ate to severe false sharing, without the need for programmer
intervention or source code.

We plan to release the source code for SHERIFF, FS-
DETECTIVE, and FS-PATROL by publication time.
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