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Abstract

Contributory applications allow users to donate unused
resources on their personal computers to a shared pool.
Applications such as SETI@home, Folding@home, and
Freenet are now in wide use and provide a variety of ser-
vices, including data processing and content distribution.
However, while several research projects have proposed
contributory applications that support peer-to-peer stor-
age systems, their adoption has been comparatively lim-
ited. We believe that a key barrier to the adoption of
contributory storage systems is that contributing a large
quantity of local storage interferes with the principal user
of the machine.

To overcome this barrier, we introduce the Transparent
File System (TFS). TFS provides background tasks with
large amounts of unreliable storage—all of the currently
available space—without impacting the performance of
ordinary file access operations. We show that TFS al-
lows a peer-to-peer contributory storage system to pro-
vide 40% more storage at twice the performance when
compared to a user-space storage mechanism. We an-
alyze the impact of TFS on replication in peer-to-peer
storage systems and show that TFS does not appreciably
increase the resources needed for file replication.

1 Introduction

Contributory applications allow users to donate unused
resources from their personal computers to a shared pool.
These applications harvest idle resources such as CPU
cycles, memory, network bandwidth, and local storage to
serve a common distributed system. These applications
are distinct from other peer-to-peer systems because the
resources being contributed are not directly consumed
by the contributor. For instance, in Freenet [8], all
users contribute storage, and any user may make use
of the storage, but there is no relationship between
user data and contributed storage. Contributory appli-

cations in wide use include computing efforts like Fold-
ing@home [17] and anonymous publishing and content
distribution such as Freenet [8]. The research commu-
nity has also developed a number of contributory appli-
cations, including distributed backup and archival stor-
age [30], server-less network file systems [1], and dis-
tributed web caching [11]. However, the adoption of
storage-based contributory applications has been limited
compared to those that are CPU-based.

Two major barriers impede broader participation in
contributory storage systems. First, existing contribu-
tory storage systems degrade normal application perfor-
mance. While transparency—the effect that system per-
formance is as if no contributory application is running—
has been the goal of other OS mechanisms for network
bandwidth [34], main memory [7], and disk schedul-
ing [19], previous work on contributory storage systems
has ignored its local performance impact. In particu-
lar, as more storage is allocated, the performance of the
user’s file system operations quickly degrades [20].

Second, despite the fact that end-user hard drives are
often half empty [10, 16], users are generally reluctant
to relinquish their free space. Though disk capacity has
been steadily increasing for many years, users view stor-
age space as a limited resource. For example, three of the
Freenet FAQs express the implicit desire to donate less
disk space [12]. Even when users are given the choice
to limit the amount of storage contribution, this option
requires the user to decide a priori what is a reasonable
contribution. Users may also try to donate as little as pos-
sible while still taking advantage of the services provided
by the contributory application, thus limiting its overall
effectiveness.

Contributions: This paper presents the Transparent
File System (TFS), a file system that can contribute
100% of the idle space on a disk while imposing a neg-
ligible performance penalty on the local user. TFS oper-
ates by storing files in the free space of the file system
so that they are invisible to ordinary files. In essence,



normal file allocation proceeds as if the system were not
contributing any space at all. We show in Section 5 that
TFS imposes nearly no overhead on the local user. TFS
achieves this both by minimizing interference with the
file system’s block allocation policy and by sacrificing
persistence for contributed space: normal files may over-
write contributed space at any time. TFS takes several
steps that limit this unreliability, but because contribu-
tory applications are already designed to work with un-
reliable machines, they behave appropriately in the face
of unreliable files. Furthermore, we show that TFS does
not appreciably impact the bandwidth needed for repli-
cation. Users typically create little data in the course of
a day [4], thus the erasure of contributed storage is neg-
ligible when compared to the rate of machine failures.

TFS is especially useful for replicated storage systems
executing across relatively stable machines with plentiful
bandwidth, as in a university or corporate network. This
environment is the same one targeted by distributed stor-
age systems such as FARSITE [1]. As others have shown
previously, for high-failure modes, such as wide-area
Internet-based systems, the key limitation is the band-
width between nodes, not the total storage. The band-
width needed to replicate data after failures essentially
limits the amount of storage the network can use [3].
In a stable network, TFS offers substantially more stor-
age than dynamic, user-space techniques for contributing
storage.

Organization: In Section 2, we first provide a de-
tailed explanation of the interference caused by contrib-
utory applications, and discuss current alternatives for
contributing storage. Second, we present the design of
TFS in Section 3, focusing on providing transparency to
normal file access. We describe a fully operating imple-
mentation of TFS. We then explain in Section 4 the in-
teraction between machine reliability, contributed space,
and the amount of storage used by a contributory stor-
age system. Finally, we demonstrate in Section 5 that the
performance of our TFS prototype is on par with the file
system it was derived from, and up to twice as fast as
user-space techniques for contributing storage.

2 Interference from Contributing Storage

All contributory applications we are aware of are config-
ured to contribute a small, fixed amount of storage—the
contribution is small so as not to interfere with normal
machine use. This low level of contribution has little im-
pact on file system performance and files will generally
only be deleted by the contributory system, not because
the user needs storage space. However, such small, fixed-
size contributions limit contribution to small-scale stor-
age systems.

Instead of using static limits, one could use a dynamic
system that monitors the amount of storage used by lo-
cal applications. The contributory storage system could
then use a significantly greater portion of the disk, while
yielding space to the local user as needed. Possible
approaches include the watermarking schemes found in
Elastic Quotas [18] and FS2 [16]. A contributory storage
system could use these approaches as follows: whenever
the current allocation exceeds the maximum watermark
set by the dynamic contribution system, it could delete
contributory files until the contribution level falls below
a lower watermark.

However, if the watermarks are set to comprise all
free space on the disk, the file system is forced to delete
files synchronously from contributed storage when writ-
ing new files to disk. In this case, the performance of the
disk would be severely degraded, similar to the synchro-
nous cleaning problem in LFS [31]. For this reason, Elas-
tic Quotas and FS2 use more conservative watermarks
(e.g., at most 85%), allowing the system to delete files
lazily as needed.

Choosing a proper watermark leaves the system de-
signer with a trade-off between the amount of storage
contributed and local performance. At one end of the
spectrum, the system can contribute little space, limiting
its usefulness. At the other end of the spectrum, local
performance suffers.

To see why local performance suffers, consider the fol-
lowing: as a disk fills, the file system’s block allocation
algorithm becomes unable to make ideal allocation de-
cisions, causing fragmentation of the free space and al-
located files. This fragmentation increases the seek time
when reading and writing files, and has a noticeable ef-
fect on the performance of disk-bound processes. In an
FFS file system, throughput can drop by as much as 77%
in a file system that is only 75% full versus an empty
file system [32]—the more storage one contributes, the
worse the problem becomes. The only way to avoid this
is to maintain enough free space on the disk to allow the
allocation algorithm to work properly, but this limits con-
tribution to only a small portion of the disk.

Though some file systems provide utilities to defrag-
ment their disk layout, these utilities are ineffective when
there is insufficient free space on the file system. For in-
stance, the defragmentation utility provided with older
versions of Microsoft Windows will not even attempt to
defragment a disk if more than 85% is in use. On mod-
ern Windows systems, the defragmentation utility will
run when the disk is more than 85% full, but will give
a warning that there is not enough free space to defrag-
ment properly [22]. When one wants to contribute all of
the free space on the disk, they will be unable to meet
these requirements of the defragmentation utility.
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Figure 1: The time required to perform a series of file
system operations while contributing different amounts
of storage. As the amount of contributed space increases,
the time it takes for Ext2 to complete the experiment also
increases. However, the performance of TFS stays nearly
constant. Error bars represent standard deviation.

Any user-space scheme to manage contributed storage
will be plagued by the performance problems introduced
by the contributed storage—filling the disk with data in-
evitably slows access. Given a standard file system in-
terface, it is simply not possible to order the allocation
of data on disk to preserve performance for normal files.
As Section 3 shows, by incorporating the mechanisms
for contribution into the file system itself, TFS maintains
file system performance even at high levels of contribu-
tion.

Figure 1 depicts this effect. This figure shows the time
taken to run the copy phase of the Andrew Benchmark
on file systems with different amounts of space being
consumed. The full details of the benchmark are pre-
sented in Section 5. As the amount of consumed space
increases, the time it takes to complete the benchmark
increases. We assume that the user is using 50% of the
disk space for non-contributory applications, which cor-
responds to results from a survey of desktop file sys-
tem contents [10]. The figure shows that contributing
more than 20% of the disk space will noticably affect the
file system’s performance, even if the contributed stor-
age would have been completely idle. As a preview of
TFS performance, note that when contributing 35% of
the disk, TFS is twice as fast as Ext2 for copying files.

3 Design and Implementation of TFS

The Transparent File System (TFS) allows users to do-
nate storage to distributed storage systems with minimal
performance impact. Because the block allocation policy
is one of the primary determinants of file system perfor-
mance, designers have devoted considerable attention to

tuning it. Accordingly, deviating from that policy can re-
sult in a loss of performance. The presence of data on the
file system can be viewed as an obstruction which causes
a deviation from the default allocation policy. The goal
of TFS is to ensure the transparency of contributed data:
the presence of contributed storage should have no mea-
surable effect on the file system, either in performance,
or in capacity. We use the term transparent files for files
which have this property, and transparent data or trans-
parent blocks for the data belonging to such files. A
transparent application is an application which strives
to minimize its impact on other applications running on
the same machine, possibly at the expense of its own per-
formance.

Section 3.1 shows how we achieve transparency with
respect to block allocation in the context of a popular
file system, Ext2 [5]. Ext2 organizes data on disk using
several rules of thumb that group data on disk accord-
ing to logical relationships. As we show in Section 5,
TFS minimally perturbs the allocation policy for ordi-
nary files, yielding a near-constant ordinary file perfor-
mance regardless of the amount of contributed storage.

In exchange for this performance, TFS sacrifices file
persistence. When TFS allocates a block for an ordinary
file, it treats free blocks and transparent blocks the same,
and thus may overwrite transparent data. Files marked
transparent may be overwritten and deleted at any time.
This approach may seem draconian, but because repli-
cated systems already deal with the failure of hosts in the
network, they can easily deal with the loss of individual
files. For instance, if one deletes a file from a BitTorrent
peer, other peers automatically search for hosts that have
the file.

The design of TFS is centered around tracking which
blocks are allocated to which kind of file, preserving per-
sistence for normal user files, and detecting the overwrit-
ing of files in the contributed space. As the file system is
now allowed to overwrite certain other files, it is imper-
ative that it not provide corrupt data to the contribution
system, or worse yet, to the user. While our design can
preserve transparency, we have also made several small
performance concessions which have minimal effect on
normal file use, but yield a better performing contribu-
tion system. Additionally, file systems inevitably have
hot spots, possibly leading to continuous allocation and
deallocation of space to and from contribution. These hot
spots could lead to increased replication traffic elsewhere
in the network. TFS incorporates a mechanism that de-
tects these hot-spots and avoids using them for contribu-
tion.



3.1 Block Allocation
TFS ensures good file system performance by minimiz-
ing the amount of work that the file system performs
when writing ordinary files. TFS simply treats transpar-
ent blocks as if they were free, overwriting whatever data
might be currently stored in them. This policy allows
block allocation for ordinary files to proceed exactly as
it would if there were no transparent files present. This
approach preserves performance for ordinary files, but
corrupts data stored in transparent files. If an application
were to read the transparent file after a block was over-
written, it would receive the data from the ordinary file in
place of the data that had been overwritten. This presents
two issues: applications using transparent files must en-
sure the correctness of all file data, and sensitive informa-
tion stored in ordinary files must be protected from appli-
cations trying to read transparent files. To prevent both
effects, TFS records which blocks have been overwritten
so that it can avoid treating the data in those blocks as
valid transparent file data. When TFS overwrites a trans-
parent file, it marks it as overwritten and allocates the
block to the ordinary file.

This requires some modifications to the allocation pol-
icy in Ext2. Blocks in a typical file system can only be in
one of two states: free and allocated. In contrast, in TFS
a storage block can be in one of five states: free, allo-
cated, transparent, free-and-overwritten, and allocated-
and-overwritten.

Figure 2 shows a state transition diagram for TFS
blocks. Ordinary data can be written over free or trans-
parent blocks. If the block was previously used by
transparent data, the file system marks these blocks as
allocated-and-overwritten. When a block is denoted as
overwritten, it means that the transparent data has been
overwritten, and thus “corrupted” at some point. Trans-
parent data can only be written to free blocks. It can-
not overwrite allocated blocks, other transparent blocks,
or overwritten blocks of any sort. Figure 3 shows this
from the perspective of the block map. Without TFS,
appending to a file leads to fragmentation, leading to a
performance loss in the write, and in subsequent reads.
In TFS, the file remains contiguous, but the transparent
file data is lost and the blocks are marked as allocated-
and-overwritten.

When a process opens a transparent file, it must verify
that none of the blocks have been overwritten since the
last time it was opened. If any part of the file is over-
written, the file system returns an error to open. This
signals that the file has been deleted. TFS then deletes
the inode and directory entry for the file, and marks all
of the blocks of the file as free, or allocated. As ordi-
nary files cannot ever be overwritten, scanning the al-
location bitmaps is not necessary when opening them.
This lazy-delete scheme means that if TFS writes trans-
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Figure 2: A state diagram for block allocation in TFS.
The Free and Allocated states are the two allocation
states present in the original file system. TFS adds three
more states.

parent files and never uses them again, the disk will even-
tually fill with overwritten blocks that could otherwise be
used by the transparent storage application. To solve this,
TFS employs a simple, user-space cleaner that opens and
closes transparent files on disk. Any corrupted files will
be detected and automatically deleted by the open oper-
ation.

Though scanning the blocks is a linear operation in
the size of the file, very little data must be read from the
disk to scan even very large files. On a typical Ext2 file
system, if we assume that file blocks are allocated con-
tiguously, then scanning the blocks for a 4GB file will
only require 384kB to be read from the disk. In the
worst case—where the file is fragmented across every
block group, and we must read every block bitmap—
approximately 9.3MB will be read during the scan, as-
suming a 100GB disk.

Many file systems, including Ext2 and NTFS, denote a
block’s status using a bitmap. TFS augments this bitmap
with two additional bitmaps and provides a total of three
bits denoting one of the five states. In a 100GB file sys-
tem with 4kB blocks, these bitmaps use only 6.25MB
of additional disk space. These additional bitmaps must
also be read into memory when manipulating files. How-
ever, very little of the disk will be actively manipulated
at any one time, so the additional memory requirements
are negligible.

3.2 Performance Concessions
This design leads to two issues: how TFS deals with open
transparent files and how TFS stores transparent meta-
data. In each case, we make a small concession to trans-
parent storage at the expense of ordinary file system per-



formance. While both concessions are strictly unneces-
sary, their negative impact on performance is negligible
and their positive impact on transparent performance is
substantial.

First, as TFS verifies that all blocks are clean only at
open time, it prevents the file system from overwriting
the data of open transparent files. One alternative would
be to close the transparent file and kill the process with
the open file descriptor if an overwritten block is de-
tected. However, not only would it be difficult to trace
blocks to file descriptors, but it could also lead to data
corruption in the transparent process. In our opinion,
yielding to open files is the best option. We discuss other
strategies in Section 7.

It would also be possible to preserve the transparent
data by implementing a copy-on-write scheme [26]. In
this case, the ordinary file block would still allocate its
target, and the transparent data block would be moved to
another location. This is to ensure transparency with re-
gards to the ordinary file allocation policy. However, to
use this strategy, there must be a way to efficiently de-
termine which inode the transparent data block belongs
to, so that it can be relinked to point to the new block.
In Ext2, and most other file systems, the file system does
not keep a mapping from data blocks to inodes. Accord-
ingly, using copy-on-write to preserve transparent data
would require a scan of all inodes to determine the owner
of the block, which would be prohibitively expensive.
It is imaginable that a future file system would provide
an efficient mapping from data blocks to inodes, which
would allow TFS to make use of copy-on-write to pre-
serve transparent data, but this conflicts with our goal of
requiring minimal modifications to an existing operating
system.

Second, TFS stores transparent meta-data such as in-
odes and indirect blocks as ordinary data, rather than
transparent blocks. This will impact the usable space for
ordinary files and cause some variation in ordinary block
allocation decisions. However, consider what would hap-
pen if the transparent meta-data were overwritten. If the
data included the root inode of a large amount of trans-
parent data, all of that data would be lost and leave an
even larger number of garbage blocks in the file sys-
tem. Determining liveness typically requires a full trac-
ing from the root as data blocks do not have reverse map-
pings to inodes and indirect blocks. Storing transparent
storage metadata as ordinary blocks avoids both issues.

3.3 Transparent Data Allocation
As donated storage is constantly being overwritten by or-
dinary data, one concern is that constant deletion will
have ill effects on any distributed storage system. Every
time a file is deleted, the distributed system must detect
and replicate that file, meanwhile returning errors to any
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Figure 3: The block map in a system with and without
TFS. When a file is appended in a normal file system it
causes fragmentation, while in TFS, it yields two over-
written blocks.
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Figure 4: Cumulative histogram of two user machine’s
block allocations. 70% of the blocks on machine 2’s disk
were never allocated during the test period, and 90% of
the blocks were allocated at a rate of 0.1kB/s or less. This
corresponds to the rate at which TFS would overwrite
transparent data if it were to use a given amount of the
disk.

peers that request it. To mitigate these effects, TFS iden-
tifies and avoids using the hot spots in the file system that
could otherwise be used for donation. The total amount
of space that is not used for donation depends on the
bandwidth limits of the distributed system and is con-
figurable, as shown in this section.

By design, the allocation policy for Ext2 and other
logically organized file systems exhibits a high degree
of spatial locality. Blocks tend to be allocated to only
a small number of places on the disk, and are allocated
repeatedly. To measure this effect, we modified a Linux
kernel to record block allocations on two user worksta-
tions machines in our lab. A cumulative histogram of the
two traces is shown in Figure 4. Machine 1 includes 27
trace days, and machine 2 includes 13 trace days. We can



observe two behaviors from this graph. First, while one
user is a lot more active than the other, both show a great
deal of locality in their access—machine 2 never allo-
cated any blocks in 70% of the disk. Second, an average
of 1kB/s of block allocations is approximately 84MB of
allocations per day. Note that this is not the same as cre-
ating 84MB/s of data per day—the trace includes many
short-lived allocations such as temporary lock files.

Using this observation as a starting point, TFS can bal-
ance the rate of block deletion with the usable storage
on the disk. Using the same mechanism that we used
to record the block allocation traces shown in Figure 4,
TFS generates a trace of the block addresses of all or-
dinary file allocations. It maintains a histogram of the
number of allocations that occurred in each block and pe-
riodically sorts the blocks by the number of allocations.
Using this sorted list, it finds the smallest set of blocks
responsible for a given fraction of the allocations.

The fraction of the allocations to avoid, f , affects the
rate at which transparent data is overwritten. Increasing
the value of f means fewer ordinary data allocations will
overwrite transparent data. On the other hand, by de-
creasing the value of f , more storage becomes available
to transparent data. Because the effects of changing f are
dependent on a particular file system’s usage pattern, we
have found it convenient to set a target loss rate and allow
TFS to determine automatically an appropriate value for
f . Suppose ordinary data blocks are allocated at a rate of
α blocks per second. If f is set to 0 – meaning that TFS
determines that the entire disk is usable by transparent
data – then transparent data will be overwritten at a rate
approximately equal to α. The rate at which transparent
data is overwritten t is approximately β = (1 − f)α.
Solving for f gives f = 1 − β

α . Using this, TFS can
determine the amount of storage available to transparent
files, given a target rate. Using this map of hot blocks in
the file system, the allocator for transparent blocks treats
them as if they were already allocated to transparent data.

However, rather than tracking allocations block-by-
block, we divide the disk into groups of disk blocks,
called chunks, and track allocations to chunks. Each
chunk is defined to be one eighth of a block group.
This number was chosen so that each block group could
keep a single byte as a bitmap representing which blocks
should be avoided by transparent data. For the default
block size of 4096 bytes, and the maximum block group
size, each chunk would be 16MB.

Dividing the disk into multi-block chunks rather
than considering blocks individually greatly reduces the
memory and CPU requirements of maintaining the his-
togram, and due to spatial locality, a write to one block
is a good predictor of writes to other blocks in the same
chunk. This gives the histogram predictive power in
avoiding hot blocks.

It should be noted that the rate at which transparent
data is overwritten is not exactly α because, when a
transparent data block is overwritten, an entire file is lost.
However, because of the large chunk size and the high
locality of chunk allocations, subsequent allocations for
ordinary data tend to overwrite other blocks of the same
transparent file, making the rate at which transparent data
lost approximately equal to the rate at which blocks are
overwritten.
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Figure 5: This shows the simulated rate of TFS data loss
when using block avoidance to avoid hot spots on the
disk. For example, when TFS allows 3% of the disk to
go unused, the file system will allocate data in the used
portion of the disk at a rate of 0.1kB/s. By using block
avoidance, TFS provides more storage to contributory
applications without increasing the rate at which data is
lost.

The figure of merit is the rate of data erased for a rea-
sonably high allocation of donated storage. To examine
TFS under various allocations, we constructed a simula-
tor using the block allocation traces used earlier in the
section. The simulator processes the trace sequentially,
and periodically picks a set of chunks to avoid. When-
ever the simulator sees an allocation to a chunk which is
not being avoided, it counts this as an overwrite. We ran
this simulator with various fixed values of f , the fraction
of blocks to avoid, and recorded the average amount of
space contributed, and the rate of data being overwrit-
ten. Figure 5 graphs these results. Note that the graph
starts at 80% utilization. This is dependent on the high-
est value for f we used in our test. In our simulation, this
was 0.99999. Also notice that, for contributions less than
approximately 85%, the simulated number of overwrites
is greater than the number given in Figure 4. This is be-
cause, for very high values of f , the simulator’s adap-
tive algorithm must choose between many chunks, none
of which have received very many allocations. In this



case, it is prone to make mistakes, and may place trans-
parent data in places that will see allocations in the near
future. These results demonstrate that for machine 2’s
usage pattern, TFS can donate all but 3% of the disk,
while only erasing contributed storage files at 0.08kB/s.
As we demonstrate in the section 4, when compared to
the replication traffic due to machine failures, this is neg-
ligible.

3.4 TFS Implementation
We have implemented a working prototype of TFS in the
Linux kernel (2.6.13.4). Various versions of TFS have
been used by one of the developers for over six months
to store his home directory as ordinary data and Freenet
data as transparent data.

TFS comprises an in-kernel file system and a user-
space tool for designating files and directories as either
transparent or opaque, called setpri. We implemented
TFS using Ext2 as a starting point, adding or modifying
about 600 lines of kernel code, in addition to approxi-
mately 300 lines of user-space code. The primary modifi-
cations we made to Ext2 were to augment the file system
with additional bitmaps, and to change the block alloca-
tion to account for the states described in Section 3. Ad-
ditionally, the openVFS call implements the lazy-delete
system described in the design. In user-space, we modi-
fied several of the standard tools (including mke2fs and
fsck) to use the additional bitmaps that TFS requires.
We implemented the hot block avoidance histograms in
user-space using a special interface to the kernel driver.
This made implementation and experimentation some-
what easier; however, future versions will incorporate
those functions into the kernel. An additional benefit is
that the file system reports the amount of space available
to ordinary files as the free space of this disk. This causes
utilities such as df, which are used to determine disk uti-
lization, to ignore transparent data. This addresses the
concerns of users who may be worried that contributory
applications are consuming their entire disk.

In our current implementation, the additional block
bitmaps are stored next to the original bitmaps as file
system metadata. This means that our implementation
is not backwards-compatible with Ext2. However, if we
moved the block bitmaps to Ext2 data blocks, we could
create a completely backwards-compatible version, eas-
ing adoption. We believe that TFS could be incorporated
into almost any file system, including Ext3 and NTFS.

4 Storage Capacity and Bandwidth

The usefulness of TFS depends on the characteristics of
the distributed system it contributes to, including the dy-
namics of machine availability, the available bandwidth,
and the quantity of available storage at each host. In this

section, we show the relationship between these factors,
and how they affect the amount of storage available to
contributory systems. We define the storage contributed
as a function of the available bandwidth, the uptime of
hosts, and the rate at which hosts join and leave the net-
work. Throughout the section we will be deriving equa-
tions which will be used in our evaluation.

4.1 Replication Degree
Many contributory storage systems use replication to en-
sure availability. However, replication limits the capacity
of the storage system in two ways. First, by storing re-
dundant copies of data on the network, there is less over-
all space [2]. Second, whenever data is lost, the system
must create a new replica.

First we calculate the degree replication needed as a
function of the average node uptime. We assume that
nodes join and leave the network independently. Though
this assumption is not true in the general case, it greatly
simplifies the calculations here, and holds true in net-
works where the only downtime is a result of node fail-
ures, such as a corporate LAN. In a WAN where this
assumption does not hold, these results still provide an
approximation which can be used as insight towards the
system’s behavior. Mickens and Noble provide a more
in-depth evaluation of availability in peer-to-peer net-
works [21].

To determine the number of replicas needed, we use a
result from Blake and Rodrigues [3]. If the fraction of
time each host was online is u, and each file is replicated
r times, then the probability that no replicas of a file will
be available at a particular time is

(1 − u)r. (1)

To maintain an availability of a, the number of replicas
must satisfy the equation

a = 1 − (1 − u)r. (2)

Solving for r gives the number of replicas needed.

r =
ln(1 − a)
ln(1 − u)

(3)

We consider the desired availability a to be a fixed
constant. A common rule of thumb is that “five nines” of
availability, or a = 0.99999 is acceptable, and the value
u is a characteristic of host uptime and downtime in the
network. Replication could be accomplished by keeping
complete copies of each file, in which case r would have
to be an integer. Replication could also be implemented
using a coding scheme that would allow non-integer val-
ues for r [28], and a different calculation for availability.
In our analysis, we simply assume that r can take any
value greater than 1.



4.2 Calculating the Replication Bandwidth
The second limiting effect in storage is the demand for
replication bandwidth. As many contributory systems
exhibit a high degree of churn, the effect of hosts fre-
quently joining and leaving the network [13, 33], repair-
ing failures can prevent a system from using all of its
available storage [3]. When a host leaves the network for
any reason, it is unknown when or if the host will return.
Accordingly, all files which the host was storing must
be replicated to another machine. For hosts that were
storing a large volume of data, failure imposes a large
bandwidth demand on the remaining machines. For in-
stance, a failure of one host storing 100GB of data every
100 seconds imposes an aggregate bandwidth demand of
1GB/s across the remaining hosts. In this section, we
consider the average bandwidth consumed by each node.
When a node leaves the network, all of its data must be
replicated. However, this data does not have to be repli-
cated to a single node. By distributing the replication,
the maximum bandwidth demanded by the network can
be very close to the average.

The critical metric in determining the bandwidth re-
quired for a particular storage size is the session time
of hosts in the network: the period starting when the
host joins the network, and ending when its data must be
replicated. This is not necessarily the same as the time a
host is online—hosts frequently leave the network for a
short interval before returning.

Suppose the average storage contribution of each host
is c, and the average session time is T . During a host’s
session, it must download all of the data that it will store
from other machines on the network. With a session time
of T , and a storage contribution of c, the average down-
stream bandwidth used by the host is B = c

T . Because
all data transfers occur within the contributory storage
network, the average downstream bandwidth equals the
average upstream bandwidth.

In addition to replication due to machine failures, both
TFS and dynamic watermarking cause an additional bur-
den due to the local erasure of files. If each host loses file
data at a rate of F , then the total bandwidth needed for
replication is

B =
c

T
+ F. (4)

Solving for the storage capacity as a function of band-
width gives

c = T · (B − F ). (5)

The file failure rate F in TFS is measurable using the
methods of the previous section. The rate at which files
are lost when contributing storage by the dynamic wa-
termarking scheme is less than the rate of file loss with
TFS. When using watermarking, this rate is directly tied
to the rate at which the user creates new data.

If the value c is the total amount of storage contributed
by each host in the network, then for a replication factor
of r, the amount of unique storage contributed by each
host is

C =
c

r
=

T · (B − F )
r

. (6)

The session time, T , is the time between when a host
comes online and when its data must be replicated to an-
other host, because it is going offline, or has been offline
for a certain amount of time. By employing lazy repli-
cation—waiting for some threshold of time, t, before
replicating its data—we can extend the average session
time of the hosts [2]. However, lazy replication reduces
the number of replicas of a file that are actually online at
any given time, and thus increases the number of replicas
needed to maintain availability. Thus, both T , the session
time, and r, the degree of replication, are functions of t,
this threshold time.

C =
T (t)(B − F )

r(t)
(7)

The functions T (t) and r(t) are sensitive to the fail-
ure model of the network in question. For instance, in a
corporate network, machine failures are rare, and session
times are long. However, in an Internet-based contribu-
tory system, users frequently sign on for only a few hours
at time.

5 TFS Evaluation

Our goal in evaluating TFS is to assess its utility for
contributing storage to a peer-to-peer file system. We
compare each method of storage contribution that we de-
scribe in Section 2 to determine how much storage can
be contributed, and the effects on the user’s application
performance. We compare these based on several met-
rics: the amount of storage contributed, the effect on the
block allocation policy, and the overall effect on local
performance.

In scenarios that are highly dynamic and bandwidth-
limited, static contribution yields as much storage capac-
ity as any of the other three. If the network is more stable,
and has more bandwidth, the dynamic scheme provides
many times the storage of the static scheme; however,
it does so at the detriment of local performance. When
bandwidth is sufficient and the network is relatively sta-
ble, as in a corporate network, TFS provides 40% more
storage than dynamic watermarking, with no impact on
local performance. TFS always provides at least as much
storage as the other schemes without impacting local per-
formance.



5.1 Contributed Storage Capacity
To determine the amount of storage available to a con-
tributory system, we conduct trace-based analyses using
the block avoidance results from Section 3, the analysis
of the availability trace outlined in Section 3.3, and the
relationship between bandwidth and storage described in
Section 4.2. From these, we use Equation 7 to determine
the amount of storage that can be donated by each host
in a network using each of the three methods of contri-
bution.

We assume a network of identical hosts, each with
100GB disks that are 50% full, and we use the block
traces for Machine 2 in Section 3.3 as this machine rep-
resents the worst-case of the two machines. Given a fixed
rate of data loss caused by TFS, we determine the maxi-
mum amount of data that can be stored by TFS based on
the data from Figure 5. We assume that the fixed con-
tribution and the dynamic contribution methods cause
no data loss. Though the dynamic contribution method
does cause data loss as the user creates more data on the
disk, the rate of data creation by users in the long term is
low [4]. We assume that the amount of non-contributed
storage being used on the disk is fixed at 50%. For fixed
contribution, each host contributes 5% of the disk (5
GB), the dynamic system contributes 35% of the disk,
and TFS contributes about 47%, leaving 3% free to ac-
count for block avoidance.

To determine the functions T (t) and r(t), we analyze
availability traces gathered from two different types of
networks which exhibit different failure behavior. These
networks are the Microsoft corporate network [4] and
Skype super-peers [14]. The traces contain a list of time
intervals for which each host was online contiguously.
To determine the session time for a given threshold t, we
first combine intervals that were separated by less than t.
We then use the average length of the remaining intervals
and add the value t to it. The additional period t repre-
sents the time after a node leaves the network, but before
the system decides to replicate its data.

We use these assumptions to calculate the amount
of storage given to contributory systems with different
amounts of bandwidth. For each amount of bandwidth,
we find the value for the threshold time (Section 4.2) that
maximizes the contributed storage for each combination
of file system, availability trace, and bandwidth. We use
this value to compute the amount of storage available us-
ing Equation 7. Figure 6 shows the bandwidth vs. stor-
age curve using the reliability model based on availabil-
ity traces of corporate workstations at Microsoft [4]. Fig-
ure 7 shows similar curves using the reliability model de-
rived from traces of the Skype peer-to-peer Internet tele-
phone network [14].

Each curve has two regions. In the first region, the
total amount of storage is limited by the available band-
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Figure 6: The amount of storage that can be donated
for contributions of network bandwidth, assuming a
corporate-like failure model. With reliable machines,
TFS is able to contribute more storage than other sys-
tems, even when highly bandwidth-limited.

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Bandwidth (kB/s)

C
on

tri
bu

tio
n 

(G
B

)
TFS
Watermarking
Fixed Contribution

Figure 7: The amount of storage that can be donated
for contributions of network bandwidth, assuming an
Internet-like failure model. Because peer-to-peer nodes
on the Internet are less reliable, the amount of contribu-
tion by TFS does not surpass the other techniques until
large amounts of bandwidth become available.

width, and increases linearly as the bandwidth is in-
creased. The slope of the first part of the curve is deter-
mined by the frequency of machine failures and file fail-
ures. This line is steeper in networks where hosts tend
to be more reliable, because less bandwidth is needed
to replicate a large amount of data. In this case, the
amount of available storage does not affect the amount
of usable storage. This means that, for the first part of
the curve when the systems are bandwidth-limited, TFS
contributes an amount of storage similar to the other two
systems. Though TFS contributes slightly less because
of file failures, the additional bandwidth needed to han-
dle failures is small.



The second part of the curve starts when the amount
of storage reaches the maximum allowed by that contri-
bution technique. For instance, when the small contribu-
tion reaches 5% of the disk, it flattens out. This part of
the curve represents systems that have sufficient replica-
tion bandwidth to use all of the storage they are given,
and are only limited by the amount of available storage.
In this case, TFS is capable of contributing significantly
more storage than other methods.

In the Microsoft trace, the corporate systems have a
relatively high degree of reliability, so the bandwidth-
limited portion of the curves is short. This high relia-
bility means that, even for small bandwidth allocations,
TFS is able to contribute the most storage. The Skype
system shows a less reliable network of hosts. Much
more network bandwidth is required before TFS is able
to contribute more storage than the other storage tech-
niques can—in fact, much more bandwidth than is typ-
ically available in Internet connected hosts. However,
even when operating in a bandwidth-limited setting, TFS
is able to contribute as much as the other techniques. One
method to mitigate these bandwidth demands is to em-
ploy background file transfer techniques such as TCP-
Nice [34].

From these results, we can conclude that TFS donates
nearly as much storage as other methods in the worst
case. However, TFS is most effective for networks of
reliable machines, where it contributes 40% more stor-
age than a dynamic watermarking system. It is important
to note that these systems do not exhibit the same impact
on local performance, which we demonstrate next.

5.2 Local File System Performance
To show the effects of each system on the user’s file sys-
tem performance, we conduct two similar experiments.
In the first experiment, a disk is filled to 50% with or-
dinary file data. To achieve a realistic mix of file sizes,
these files were taken from the /usr directory on a desk-
top workstation. These files represent the user’s data and
do not change during the course of the experiment. After
this, files are added to the system to represent the con-
tributed storage.

We considered four cases: no contribution, small con-
tribution, large contribution, and TFS. The case where
there is no simulated contribution is the baseline. Any
decrease in performance from this baseline is interfer-
ence caused by the contributed storage. The small con-
tribution is 5% of the file system. This represents a fixed
contribution where the amount of storage contributed
must be set very small. The large contribution is 35% of
the file system. This represents the case of dynamically
managed contribution, where a large amount of storage
can be donated. With TFS, the disk is filled completely
with transparent data. Once the contributed storage is

added, we run a version of the Modified Andrew Bench-
mark [25] to determine the contribution’s effect on per-
formance.

We perform all of the experiments using two identical
Dell Optiplex SX280 systems with an Intel Pentium 4
3.4GHz CPU, 800MHz front side bus, 512MB of RAM,
and a 160GB SATA 7200RPM disk with 8MB of cache.
The trials were striped across the machines to account for
any subtle differences in the hardware. We conduct ten
trials of each experiment, rebooting between each trial,
and present the average of the results. The error bars in
all figures in this section represent the standard deviation
of our measurements. In all cases, the standard deviation
was less than 14% of the mean.

5.2.1 The Andrew Benchmark
The Andrew Benchmark [15] is designed to simulate the
workload of a development workstation. Though most
users do not compile programs frequently, the Andrew
Benchmark can be viewed as a test of general small-file
performance, which is relevant to all workstation file sys-
tems. The benchmark starts with a source tree located on
the file system being tested. It proceeds in six phases:
mkdir, copy, stat, read, compile, and delete.

Mkdir During the mkdir phase, the directory structure
of the source tree is scanned, and recreated in an-
other location on the file system being tested.

Copy The copy phase then copies all of the non-
directory files from the original source tree to the
newly created directory structure. This tests small
file performance of the target file system, both in
reading and writing.

Stat The stat phase then scans the newly created source
tree and calls stat on every file.

Read The read phase simply reads all data created dur-
ing the copy phase.

Compile The compile phase compiles the target pro-
gram from the newly created source tree.

Delete The delete phase deletes the new source tree.

The Andrew Benchmark has been criticized for being an
old benchmark, with results that are not meaningful to
modern systems. It is argued that the workload being
tested is not realistic for most users. Furthermore, the
original Andrew Benchmark used a source tree which
is too small to produce meaningful results on modern
systems [15]. However, as we stated above, the Bench-
mark’s emphasis on small file performance is still rel-
evant to modern systems. We modified the Andrew
Benchmark to use a Linux 2.6.14 source tree, which con-
sists of 249MB of data in 19577 files. Unfortunately,
even with this larger source tree, most of the data used
by the benchmark can be kept in the operating system’s
page cache. The only phase where file system perfor-
mance has a significant impact is the copy phase.



Despite these shortcomings, we have found that the
results of the Andrew Benchmark clearly demonstrate
the negative effects of contributing storage. Though the
only significant difference between the contributing case
and the non-contributing case is in the copy phase of the
benchmark, we include all results for completeness.

The results of this first experiment are shown in Fig-
ure 8. The only system in which contribution causes any
appreciable effect on the user’s performance is the case
of a large contribution with Ext2. Both the small con-
tribution and TFS are nearly equal in performance to the
case of no contribution.

It is interesting to note that the performance of TFS
with 50% contribution is slightly better than the perfor-
mance of Ext2 with 0% contribution. However, this does
not show that TFS is generally faster than Ext2, but that
for this particular benchmark TFS displays better perfor-
mance. We suspect that this is an artifact of the way the
block allocation strategy was be modified to accommo-
date TFS. As we show in Section 5.3, when running our
Andrew Benchmark experiment, TFS tends to allocate
the files used by the benchmark to a different part of the
disk than Ext2, which gives TFS slightly better perfor-
mance compared to Ext2. This is not indicative of a ma-
jor change in the allocation strategy; Ext2 tries to allocate
data blocks to the same block group as the inode they
belong to [5]. In our Andrew Benchmark experiments,
there are already many inodes owned by the transparent
files, so the benchmark files are allocated to different in-
odes, and therefore different block groups.

The second experiment is designed to show the ef-
fects of file system aging [32] using these three sys-
tems. Smith and Seltzer have noted that aging effects
can change the results of file system benchmarks, and
that aged file systems provide a more realistic testbed for
file system performance. Though our aging techniques
are purely artificial, they capture the long term effects of
continuously creating and deleting files. As contributory
files are created and deleted, they are replaced by files
which are often allocated to different places on the disk.
The long term effect is that the free space of the disk be-
comes fragmented, and this fragmentation interferes with
the block allocation algorithm. To simulate this effect,
we ran an experiment very similar to the first. However,
rather than simply adding files to represent contributed
storage, we created and deleted contributory files at ran-
dom, always staying within 5% of the target disk utiliza-
tion. After repeating this 200 times, we proceeded to
benchmark the file system.

Figure 9 shows the results of this experiment. As with
the previous experiment, the only system that causes any
interference with the user’s applications is the large con-
tribution with Ext2. In this case, Ext2 with 35% contri-
bution takes almost 180 seconds to complete the bench-
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Figure 8: Andrew benchmark results for 4 different un-
aged file systems. The first is an Ext2 system with no
contributory application. The second is Ext2 with a min-
imal amount of contribution (5%). The third has a signif-
icant contribution (35%). The fourth is TFS with com-
plete contribution. TFS performance is on par with Ext2
with no contribution. Error bars represent standard devi-
ation in total time.
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Figure 9: Andrew benchmark results for 4 different aged
file systems. The first is an Ext2 system with no contrib-
utory application. The second is Ext2 with a minimal
amount of contribution (5%). The third has a signifi-
cant contribution (35%). The fourth is TFS with com-
plete contribution. TFS performance is still comparable
to Ext2 with no contribution. Error bars represent stan-
dard deviation in total time.

mark. This is about 20 seconds longer than the same sys-
tem without aging. This shows that file activity caused
by contributory applications can have a noticeable im-
pact on performance, even after considering the impact
of the presence of those files. On the other hand, the time
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Figure 10: Block allocation pattern for several contribu-
tion levels in Ext2 and TFS. Both TFS and Ext2 with 0%
contribution show high locality. Ext2 with 40% contribu-
tion does not because the contributed files interfere with
the block allocation policy.

that TFS takes to complete the benchmark is unchanged
by aging in the contributory files. There are no long-term
effects of file activity by contributory systems in TFS.

5.3 Block Allocation Layout
A closer look at the block allocation layout reveals the
cause of the performance difference between Ext2 and
TFS. We analyzed the block layout of files in four occu-
pied file systems. Two of these systems were using Ext2,
the third was TFS. Each file system was filled to 50%
capacity with ordinary data. Data was then added to sim-
ulate different amounts of data contribution. For Ext2,
we consider two levels of contribution: 0% and 40%.
0% and 40% were chosen as examples of good and bad
Ext2 performance from Figure 1. The TFS system was
filled to 50% capacity with ordinary data, and the rest of
the disk was filled with transparent files. We then copied
the files that would be used in the Andrew Benchmark
into these disks, and recorded which data blocks were
allocated for the benchmark files.

Figure 10 shows the results of this experiment. The
horizontal axis represents the location of the block on the
disk. Every block that contains data to be used in the An-
drew Benchmark is marked black. The remaining blocks
are white, demonstrating the amount of fragmentation in
the Andrew Benchmark files. Note that both Ext2 with
0% contribution, and TFS show very little fragmentation.
However, the 40% case shows a high degree of fragmen-
tation. This fragmentation is the primary cause of the
performance difference between Ext2 with and without
contribution in the other benchmarks.

6 Related Work

Our work brings together two areas of research: tech-
niques to make use of the free space in file systems, and
the study of churn in peer-to-peer networks.

Using Free Disk Space: Recognizing that the file sys-
tem on a typical desktop is nearly half-empty, researchers
have investigated ways to make use of the extra storage.

FS2 [16] is a file system that uses the extra space on the
disk for block-level replication to reduce average seek
time. FS2 dynamically analyzes disk traffic to determine
which blocks are frequently used together. It then cre-
ates replicas of blocks so that the spatial locality on disk
matches the observed temporal locality. FS2 uses a pol-
icy that deletes replicas on-demand as space is needed.
We believe that it could benefit from a TFS-like allo-
cation policy, where all replicas except the primary one
would be stored as transparent blocks. In this way, the
entire disk could be used for block replication.

A number of peer-to-peer storage systems have been
proposed that make use of replication and free disk space
to provide reliability. These include distributed hash ta-
bles such as Chord [24] and Pastry [29], as well as com-
plete file systems like the Chord File System [9], and
Past [30].
Churn in Peer-to-Peer Networks: The research com-
munity has also been active in studying the dynamic
behavior of deployed peer-to-peer networks. Measure-
ments of churn in live systems have been gathered
and studied as well. Chu et al. studied the availabil-
ity of nodes in the Napster and Gnutella networks [6].
The Bamboo DHT was designed as an architecture that
can withstand high levels of churn [27]. The Bamboo
DHT [23] is particularly concerned with using a min-
imum amount of “maintenance bandwidth” even under
high levels of churn. We believe that these studies give
a somewhat pessimistic estimate of the stability of fu-
ture peer-to-peer networks. As machines become more
stable and better connected, remain on continuously, and
are pre-installed with stable peer-to-peer applications or
middleware, the level of churn will greatly diminish, in-
creasing the value of TFS.

7 Future Work

TFS was designed to require minimal support from con-
tributory applications. The file semantics provided by
TFS are no different than any ordinary file system. How-
ever, modifying the file semantics would provide oppor-
tunities for contributory applications to make better use
of free space. For instance, if only a small number of
blocks from a large file are overwritten, TFS will delete
the entire file. One can imagine an implementation of
TFS where the application would be able to recover the
non-overwritten blocks. When a file with overwritten
blocks is opened, the open system call could return a
value indicating that the file was successfully opened,
but some blocks may have been overwritten. The ap-
plication can then use ioctl calls to determine which
blocks have been overwritten. An attempt to read data
from an overwritten block will fill the read buffer with
zeros.



In the current implementation of TFS, once a transpar-
ent file is opened, its blocks cannot be overwritten until
the file is closed. This allows applications to assume, as
they normally do, that once a file is opened, reads and
writes to the file will succeed. However, this means that
transparent files may interfere with ordinary file activ-
ity. To prevent this, it would be possible to allow data
from opened files to be overwritten. If an application at-
tempts to read a block which has been overwritten, the
read call could return an error indicating why the block
is not available.

Both of these features could improve the service pro-
vided by TFS. By allowing applications to recover files
that have been partially overwritten, the replication band-
width needed by systems using TFS is reduced to the rate
at which the user creates new data. By allowing open
files to be overwritten, transparent applications may keep
large files open for extended periods without impacting
the performance of other applications. Despite these ben-
efits, one of our design goals for TFS is that it should be
usable by unmodified applications. Both of these fea-
tures would require extensive support from contributory
applications, violating this principle.

8 Conclusions

We have presented three methods for contributing disk
space in peer-to-peer storage systems. We have included
two user-space techniques, and a novel file system, TFS,
specifically designed for contributory applications. We
have demonstrated that the key benefit of TFS is that it
leaves the allocation for local files intact, avoiding is-
sues of fragmentation—TFS stores files such that they
are completely transparent to local access. The design
of TFS includes modifications to the free bitmaps and a
method to avoid hot-spots on the disk.

We evaluated each of the file systems based the
amount of contribution and its cost to the local user’s per-
formance. We quantified the unreliability of files in TFS
and the amount of replication bandwidth that is needed to
handle deleted files. We conclude that out of three tech-
niques, TFS consistently provides at least as much stor-
age with no detriment to local performance. When the
network is relatively stable and adequate bandwidth is
available, TFS provides 40% more storage over the best
user-space technique. Further, TFS is completely trans-
parent to the local user, while the user-space technique
creates up to a 100% overhead on local performance. We
believe that the key to encouraging contribution to peer-
to-peer systems is removing the barriers to contribution,
which is precisely the aim of TFS.

The source code for TFS is available at http://
prisms.cs.umass.edu/tcsm/.
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