
PREDATOR: Predictive False Sharing Detection

Tongping Liu
School of Computer Science

University of Massachusetts Amherst
tonyliu@cs.umass.edu

Chen Tian Ziang Hu
Huawei US R&D Center
Chen.Tian@huawei.com,
Ziang.Hu@huawei.com

Emery D. Berger
School of Computer Science

University of Massachusetts Amherst
emery@cs.umass.edu

Abstract
False sharing is a notorious problem for multithreaded ap-
plications that can drastically degrade both performance and
scalability. Existing approaches can precisely identify the
sources of false sharing, but only report false sharing actu-
ally observed during execution; they do not generalize across
executions. Because false sharing is extremely sensitive to
object layout, these detectors can easily miss false sharing
problems that can arise due to slight differences in mem-
ory allocation order or object placement decisions by the
compiler. In addition, they cannot predict the impact of false
sharing on hardware with different cache line sizes.

This paper presents PREDATOR, a predictive software-
based false sharing detector. PREDATOR generalizes from
a single execution to precisely predict false sharing that is
latent in the current execution. PREDATOR tracks accesses
within a range that could lead to false sharing given different
object placement. It also tracks accesses within virtual cache
lines, contiguous memory ranges that span actual hardware
cache lines, to predict sharing on hardware platforms with
larger cache line sizes. For each, it reports the exact pro-
gram location of predicted false sharing problems, ranked by
their projected impact on performance. We evaluate PREDA-
TOR across a range of benchmarks and actual applications.
PREDATOR identifies problems undetectable with previous
tools, including two previously-unknown false sharing prob-
lems, with no false positives. PREDATOR is able to immedi-
ately locate false sharing problems in MySQL and the Boost
library that had eluded detection for years.

Categories and Subject Descriptors D.1.3 [Software]:
Concurrent Programming–Parallel Programming; D.4.8
[Software]: Operating Systems–Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555244

General Terms Performance, Measurement

Keywords False Sharing, Multi-threaded

1. Introduction
While writing correct multithreaded programs is often chal-
lenging, making them scale can present even greater obsta-
cles. Any contention can impair scalability or even cause ap-
plications to run slower as the number of threads increases.

False sharing is a particularly insidious form of con-
tention. It occurs when two threads update logically-distinct
objects that happen to reside on the same cache line. The
resulting coherence traffic can degrade performance by an
order of magnitude [4]. Unlike sources of contention like
locks, false sharing is often invisible in the source code,
making it difficult to find.

As cache lines have grown larger and multithreaded ap-
plications have become commonplace, false sharing has
become an increasingly important problem. Performance
degradation due to false sharing has been detected across
the software stack, including inside the Linux kernel [5], the
Java virtual machine [8], common libraries [19] and widely-
used applications [20, 23].

Recent work on false sharing detection falls short in
several dimensions. Some introduce excessive performance
overhead, making them impractical [9, 16, 26]. Most do not
report false sharing precisely and accurately [9–11, 16, 24,
28], and some require special OS support or only work on a
restricted class of applications [17, 21].

In addition, all of these systems share one key limita-
tion: they can only report observed cases of false sharing. As
Nanavati et al. point out, false sharing is sensitive to where
objects are placed in cache lines and so can be affected by a
wide range of factors [21]. For example, using the gcc com-
piler accidentally eliminates false sharing in the Phoenix
linear_regression benchmark at certain optimization levels,
while LLVM does not do so at any optimization level. A
slightly different memory allocation sequence (or different
memory allocator) can reveal or hide false sharing, depend-
ing on where objects end up in memory; using a different
hardware platform with different addressing or cache line
sizes can have the same effect. All of this means that ex-
isting tools cannot root out potentially devastating cases of



false sharing that could arise with different inputs, in differ-
ent execution environments, and on different hardware plat-
forms.

This paper makes the following contributions:

• Predictive False Sharing Detection: This paper intro-
duces predictive false sharing analysis, an approach that
can predict potential false sharing that does not manifest
in a given run but may appear—and greatly degrade ap-
plication performance—in a slightly different execution
environment. Predictive false sharing detection thus over-
comes a key limitation of previous detection tools.

• A Practical and Effective Predictive False Sharing De-
tector: This paper presents PREDATOR, a prototype pre-
dictive false sharing detector that combines compiler-
based instrumentation with a runtime system. PREDATOR
not only detects but also predicts potential false sharing
problems. PREDATOR operates with reasonable overhead
(average: 6× performance, 2× memory). It is the first
false sharing tool able to automatically and precisely un-
cover false sharing problems in real applications, includ-
ing MySQL and the Boost library.

2. False Sharing Detection
We first describe PREDATOR’s false sharing detection mech-
anism, which comprises both compiler and runtime system
components. Section 3 then explains how PREDATOR pre-
dicts potential false sharing based on a single execution.

2.1 Overview
False sharing occurs when two threads simultaneously ac-
cess logically independent data in the same cache line, and
where at least one of the accesses is a write. For the purposes
of exposition, we assume that each thread runs on a distinct
core with its own private cache.

We observe that if a thread writes a cache line after other
threads have accessed the same cache line, this write oper-
ation most likely causes at least one cache invalidation. It
is this invalidation traffic that leads to performance degrada-
tion due to false sharing. To identify the root cause of such
traffic due to false sharing, PREDATOR tracks cache invali-
dations of all cache lines, and ranks the severity of perfor-
mance degradation of any detected false sharing problems
according to the number of cache invalidations.

To track cache invalidations, PREDATOR relies on com-
piler instrumentation to track accesses to memory. While a
compiler can easily identify read or write accesses, it cannot
know how and when those instructions are being executed,
since that depends on a specific execution, input, and run-
time environment.

Therefore, PREDATOR combines compiler instrumenta-
tion with a runtime system to track cache invalidations. The
compiler instruments memory accesses with calls to the run-
time system that notify it when an access occurs (see Sec-

tion 2.2), and the runtime system collects and analyzes these
accesses to detect and report false sharing (see Section 2.3).

2.2 Compiler Instrumentation
PREDATOR relies on LLVM to perform instrumentation at
the intermediate representation level [15]. It traverses all
functions one by one and searches for memory accesses to
global and heap variables. For each memory access, PREDA-
TOR inserts a function call to invoke the runtime system with
the memory access address and access type (read or write).
PREDATOR currently omits accesses to stack variables by
default because stack variables are normally used for thread
local storage and therefore do not normally introduce false
sharing. However, instrumentation on stack variables can al-
ways be turned on if desired.

The instrumentation pass is placed at the very end of the
LLVM optimization passes so that only those memory ac-
cesses surviving all previous LLVM optimization passes are
instrumented. This technique, which can drastically reduce
the number of instrumentation calls, is similar to the one
used by AddressSanitizer [27].

2.3 Runtime System
PREDATOR’s runtime system collects every memory ac-
cess via the functions calls inserted by the compiler’s in-
strumentation phase. It analyzes possible cache invalida-
tions due to possibly interleaved reads and writes. Finally,
PREDATOR precisely reports any performance-degrading
false sharing problems it finds. For global variables involved
in false sharing, PREDATOR reports their name, address and
size; for heap objects, PREDATOR reports the callsite stack
for their allocations, their address and size. In addition,
PREDATOR provides word granularity access information
for those cache lines involved in false sharing, including
which threads accessed which words. This information can
further help users diagnose and fix false sharing instances.

2.3.1 Tracking Cache Invalidations
PREDATOR only reports those global variables or heap ob-
jects on cache lines with a large number of cache invalida-
tions. It is critical that PREDATOR track cache invalidations
precisely in order to provide accurate reports of the location
of false sharing instances. PREDATOR achieves this goal by
maintaining a two entry cache history table for every cache
line. In this table, each entry has two fields: the thread ID and
access type (read or write). The thread ID is used to identify
the origin of each access. As stated earlier, only accesses
from different threads can cause cache invalidations.

For every new access to a cache line L, PREDATOR checks
L’s history table T to decide whether there is a cache inval-
idation based on the following rules. Note that table T only
has two statuses: full and not full. There is no “empty” status
since every cache invalidation should replace this table with
the current write access.



• For each read access R,

If T is full, there is no need to record this read access.

If T is not full and another existing entry has a differ-
ent thread ID, then PREDATOR records this read and
its thread by adding a new entry to the table.

• For each write access W ,

If T is full, then W can cause a cache invalidation
since at least one of two existing entries has a different
thread ID. After recording this invalidation, PREDA-
TOR updates the existing entry with W and its thread.

If T is not full, PREDATOR checks whether W and the
existing entry have the same thread ID. If so, W can-
not cause a cache invalidation, so PREDATOR updates
the existing entry with W . Otherwise, PREDATOR
identifies an invalidation on this line caused by W .
After recording this invalidation information, PREDA-
TOR updates the existing entry with W and its thread.

2.3.2 Reporting False Sharing
Once cache lines with many cache invalidations have been
detected, PREDATOR needs to perform further analysis to
differentiate actual false sharing from true sharing. True
sharing, e.g., multiple threads updating the same counter in
a cache line, can also cause many cache invalidations.

In order to report false sharing precisely and accurately,
PREDATOR employs the following mechanisms:

Distinguishing False from True Sharing. PREDATOR
keeps track of access information for each word on those
cache lines involved in false sharing: how many reads or
writes to each word by which thread. When a word is ac-
cessed by multiple threads, PREDATOR marks the origin of
this word as a shared access and does not track threads for
further accesses to it. This approach lets PREDATOR ac-
curately distinguish false sharing from true sharing in the
reporting phase. It also helps diagnose where actual false
sharing occurs when there are multiple fields or multiple ob-
jects in the same cache line, as this can greatly reduce the
manual effort required to fix the false sharing problems.

Callsite Tracking for Heap Objects. In order to precisely
report the origins of heap objects with false sharing prob-
lems, PREDATOR maintains detailed information so it can
report source code level information for each heap object.
To obtain callsite information, PREDATOR intercepts all
memory allocations and de-allocations, and relies on the
backtrace() function in the glibc library to obtain the
whole callsite stack. PREDATOR also avoids pseudo false
sharing (false positives) caused by memory reuse because it
updates recording information at memory de-allocations for
those objects without false sharing problems; heap objects
involved in false sharing are never reused.

Optimizing Metadata Lookup. For every access, PREDA-
TOR needs to look up the corresponding cache line’s meta-

data in order to store detailed information or update access
counters. Because this operation is so frequent, lookups need
to be very efficient. Like AddressSanitizer [27] and other
systems [22, 28], PREDATOR uses a shadow memory mech-
anism to store metadata for every piece of application data.
Thus, PREDATOR can compute and locate corresponding
metadata directly via address arithmetic.

Custom Memory Allocation. In order to efficiently sup-
port shadow memory, PREDATOR uses a predefined starting
address and fixed size for its heap. It also contains a custom
memory allocator, which is built with Heap Layers [2] us-
ing a “per-thread-heap” mechanism similar to that used by
Hoard [1]. In this allocator, memory allocations from dif-
ferent threads never occupy the same physical cache line,
which automatically prevents false sharing among different
objects. However, using this custom memory allocator im-
plies that false sharing caused by a memory allocator cannot
be detected by PREDATOR. It is straightforward to solve such
false sharing problems by using an allocator like Hoard that
avoids this kind of false sharing.

2.4 Optimizations
Tracking every memory access can be extremely expensive.
PREDATOR utilizes the following mechanisms to further re-
duce overhead.

2.4.1 Threshold-Based Tracking Mechanism
PREDATOR aims to detect false sharing that significantly de-
grades performance. Since cache invalidations are the root
cause of performance degradation and only writes can pos-
sibly introduce cache invalidations, cache lines with a small
number of writes are never a significant performance bottle-
neck. For this reason, PREDATOR only tracks cache invalida-
tions once the number of writes to a cache line crosses a pre-
defined threshold, which we refer to as the TrackingThresh-
old. Until this threshold is reached, PREDATOR only tracks
the number of writes on a cache line while skipping track-
ing for reads. This mechanism reduces runtime and memory
overhead at the same time.

PREDATOR maintains two arrays in shadow memory:
CacheWrites tracks the number of memory writes to every
cache line, and CacheTracking tracks detailed information
for each cache line once the number of writes on a cache
line exceeds the TrackingThreshold. If the threshold is not
reached, there is no need to check the corresponding Ca-
cheTracking entry.

To avoid expensive lock operations, PREDATOR uses
atomic instruction to increment the CacheWrites counter
for each cache line. Once the number of writes of a cache
line reaches the predefined threshold, PREDATOR allocates
space to track detailed cache invalidations and word ac-
cesses. PREDATOR also uses an atomic compare-and-swap
to set the cache tracking address for this cache line in the
shadow mapping. After CacheWrites on a cache line have



void HandleAccess(unsigned long addr, bool isWrite) {
unsigned long cacheIndex = addr>>CACHELINE_SIZE_SHIFTS;
CacheTrack *track = NULL;

if (CacheWrites[cacheIndex] < TRACKING_THRESHOLD) {
if (isWrite) {
if (ATOMIC_INCR(&CacheWrites[cacheIndex])
>= TRACKING_THRESHOLD) {
track = allocCacheTrack();
ATOMIC_CAS(&CacheTracking[cacheIndex], 0, track));
}
}
} else {
track = CacheTracking[index];
if (track) {
// Track cache invalidations and detailed accesses
track->handleAccess(addr, isWrite);
}
}
}

Figure 1. Pseudo-code for PREDATOR’s memory access in-
strumentation.

crossed the TrackingThreshold, PREDATOR tracks all read
and write accesses to this cache line.

2.4.2 Selective Compiler Instrumentation
PREDATOR relies on instrumentation to provide memory ac-
cess information to the runtime system and detects false
sharing based on the sequences of memory accesses to every
cache line. The performance overhead of doing this is pro-
portional to the degree of instrumentation: more instrumen-
tation means higher performance overhead. PREDATOR’s
design makes it possible to trade performance and accuracy
as needed.

Currently, PREDATOR only adds instrumentation once for
each type of memory access on each address in the same ba-
sic block. This selective instrumentation does not normally
affect the effectiveness of detection. Because PREDATOR
aims to detect cases of false sharing with many cache inval-
idations, less tracking inside a basic block can induce fewer
cache invalidations, but this does not affect the overall be-
havior of cache invalidations.

To further improve performance, PREDATOR could easily
be extended to support more flexible instrumentation:

• PREDATOR could selectively instrument both reads and
writes or only writes. Instrumenting only writes reduces
overhead while detecting write-write false sharing, as
SHERIFF does [17].

• PREDATOR can be set to instrument or skip specific code
or data. For example, the user could provide a blacklist so
that given modules, functions or variables are not instru-
mented. Conversely, the user could provide a whitelist
so that only specified functions or variables are instru-
mented.

2.4.3 Sampling Mechanism
As Section 2.4.1 describes, once the number of writes on a
cache line exceeds the TrackingThreshold, every access must

0"

1"

2"

3"

4"

5"

6"

Off
se
t=
0"

Off
se
t=
8"

Off
se
t=
16
"

Off
se
t=
24
"

Off
se
t=
32
"

Off
se
t=
40
"

Off
se
t=
48
"

Off
se
t=
56
"

Ru
n$

m
e'
(S
ec
on

ds
)'

Object'Alignment'Sensi$vity'

Figure 2. Performance of the linear_regression benchmark
from the Phoenix benchmark suite. Performance is highly
sensitive to the offset of the starting address of the (poten-
tially) falsely-shared object from the start of the cache line.

be tracked to store details such as word access information,
the access count, and the cache access history table of this
cache line. When a cache line is involved in false or true
sharing, updating those counters can exacerbate the impact
of sharing on performance: not only is there an invalidation
on an application cache line, but there is also at least another
cache invalidation caused by updating the metadata of the
corresponding cache lines.

To further reduce performance overhead, PREDATOR
only samples the first specified number of accesses of each
sampling interval for problematic cache lines. Currently,
PREDATOR maintains an access counter for each cache line
and only tracks the first 10,000 out of every 1 million ac-
cesses to a cache line (a 1% sampling rate).

3. False Sharing Prediction
This section further motivates predictive false sharing and
explains how to support it in the runtime system.

3.1 Overview
False sharing can depend on the alignment of objects and
corresponding cache lines. Figure 2 demonstrates the impact
of placement on linear_regression, a benchmark from the
Phoenix benchmark suite. For this benchmark, when the
offset of the starting address between the potentially falsely-
shared object and corresponding cache lines is 0 or 56 bytes,
there is no false sharing. When the offset is 24 bytes, we see
the most severe performance effect caused by false sharing.
The performance difference between these two scenarios can
be as great as 15×.

Existing detection tools only report observed false shar-
ing. In this case, they would miss a severe false sharing prob-
lem that could occur in the wild if the offset of the starting



address was 0 bytes or 56 bytes in their test environment.
PREDATOR overcomes this shortcoming by accurately pre-
dicting potential false sharing.

PREDATOR predicts potential false sharing, the type of
false sharing that does not manifest in the current execution
but may appear and greatly affect programs’ performance in
a slightly different environment.

Figure 3 presents a simplified overview of how false
sharing can be triggered by different environments. In this
figure, two rectangles with different patterns represent two
portions of the same object, updated by different threads.
In Figure 3(a)), there is no false sharing when thread T1
only updates cache line 1 and T2 only updates cache line
2. However, false sharing appears in each of the following
cases, even with the same access pattern:

• Doubling the cache line size. (Figure 3(b)) When the
size of a cache line doubles, both T1 and T2 access the
same cache line, leading to false sharing.

• Different object starting addresses. (Figure 3(c)) If the
starting address of the object is not aligned with the start-
ing address of the first cache line, T1 and T2 can update
the second cache line simultaneously, causing false shar-
ing.

PREDATOR predicts whether programs can have potential
false sharing in either of these two scenarios. These scenar-
ios capture the impact of any change in the execution envi-
ronment, such as a different hardware platform or a different
memory allocation sequence.

3.2 Basic Prediction Workflow
PREDATOR focuses exclusively on potential false sharing
that can cause performance problems. Its implementation is
based on two key observations. First, only accesses to adja-
cent cache lines can lead to potential false sharing: that is,
they introduce cache invalidations when the cache line size
or an object’s starting address changes. Second, only when
false sharing introduces a large number of cache invalida-
tions can it degrade performance.

Based on these two observations, PREDATOR employs the
following workflow to detect potential false sharing. Note
that the detection optimizations listed in Section 2.4 apply
directly to prediction as well.

1. Track the number of writes to different cache lines.

2. When the number of writes to a cache line L reaches
TrackingThreshold, track detailed read and write ac-
cesses for every word in both cache line L and its adjacent
cache lines.

3. When the number of writes to a cache line L crosses
a second threshold (the PredictionThreshold), identify
whether there exists false sharing in L and its adjacent
cache lines by analyzing word access information col-
lected in Step 2. Section 3.3 describes this process.

4. If potential false sharing is found, continue to track cache
line invalidations to confirm it. Section 3.4 discusses the
details.

3.3 Searching for Potential False Sharing
To predict potential false sharing in the cases when either the
hardware cache line size doubles or when object placement
changes, we first introduce the concept of a virtual cache
line. A virtual cache line is a contiguous memory range that
spans one or more physical cache lines.

Using virtual cache lines lets PREDATOR predict poten-
tial false sharing in both of the scenarios mentioned above.
When the hardware cache line size doubles, a virtual line
is composed of two original contiguous cache lines and the
first cache line has an even index number. Thus, only cache
lines 2∗ i and 2∗ i+1 can form a virtual line. To predict false
sharing due to different starting addresses, a virtual line can
have the same size as physical lines, but can be positioned
arbitrarily: unlike actual cache lines, the starting address of
a virtual cache line does not need to be multiple of the cache
line size. For instance, a 64-byte long virtual line can consist
of the range [0,64) bytes or [8,72) bytes.

To search for potential false sharing problems, PREDA-
TOR searches for a hot access pair on line L and its adjacent
cache lines by analyzing the detailed word access informa-
tion collected in Step 2. A hot access in a cache line refers
to a word whose number of read or write accesses is larger
than the average number of accesses to each word of cache
line L. For every hot access X in cache line L, PREDATOR
searches for another hot access Y in L’s previous cache line
or next cache line satisfying the following conditions: (1) X
and Y reside in the same virtual line; (2) at least one of X or
Y are a write access; and (3) X and Y are issued by different
threads.

Whenever it finds such a pair X and Y , PREDATOR identi-
fies potential performance-degrading false sharing whenever
the number of cache invalidations caused by X and Y , at a
possible virtual line, is greater than the average number of
accesses on each word of L. This approach is based on a the
same observation as in detection: if a thread writes a virtual
line after other threads have accessed the same virtual line,
this write operation most likely causes at least one cache in-
validation. PREDATOR conservatively assumes that accesses
from different threads occurs in an interleaved manner; that
is, it assumes that the schedule exposes false sharing. This
approach ensures that PREDATOR does not miss any poten-
tial false sharing cases.

After identifying possible false sharing, PREDATOR goes
to Step 4 to verify whether this is an actual false sharing
problem.

3.4 Verifying Potential False Sharing
PREDATOR verifies potential false sharing by tracking cache
invalidations of a problematic virtual line.



Cache line 1 Cache line 2 

(a) No false sharing

Cache line 1 

(b) False sharing with larger cache size

Cache line 1 Cache line 2 Cache line 3 

(c) False sharing with different alignment

Figure 3. False sharing under different scenarios (see Section 3.1).

d 

(sz-d)/2 (sz-d)/2 

Y X 

Cache Line 1 

Tracked virtual line 

Cache Line 2 

Non-tracked virtual lines 

Figure 4. Determining a virtual line with size sz according
to hot accesses (see Section 3.4).

For potential false sharing caused by double cache line
size, as described in Section 3.3, a virtual line is always com-
posed of cache line with index 2∗ i and 2∗ i+1. PREDATOR
tracks cache invalidations on the virtual line on which false
sharing has been discovered.

However, for the case of a change in starting address, two
hot accesses with a distance less than the cache line size can
form multiple virtual lines. There is thus an additional step
required to determine which virtual line needs to be tracked.

Given two words with the hot accesses shown in Figure 4,
PREDATOR leaves the same space before X and after Y in
determining a virtual line. That is, the virtual line starting
at location X − ((sz− d)/2) and ending at Y +((sz− d)/2)
is tracked. This choice allows tracking more possible cache
invalidations caused by adjacent accesses to X and Y . Since
adjusting the starting address of a virtual line has the same
effect as adjusting the starting address of an object in detect-
ing false sharing, all cache lines related to the same object
must be adjusted at the same time. PREDATOR then tracks
cache invalidations based on these adjusted virtual lines.

4. Experimental Evaluation
This section answers the following questions:

• How effective is PREDATOR at detecting and predicting
false sharing (§ 4.1)?

• What is PREDATOR’s overhead, in terms of execution
time (§ 4.2) and memory (§ 4.3)?

• How sensitive is PREDATOR to different sampling rates
(§ 4.4)?

Experimental Platform. All evaluations are performed on
a quiescent Intel Core 2 dual-processor system equipped

with 16GB RAM. Each processor is a 4-core 64-bit Intel
Xeon running at 2.33 GHz, with a 4MB shared L2 cache and
32KB private L1 cache. The underlying operating system
is an unmodified CentOS 5.5, running with Linux kernel
version 2.6.18-194.17.1.el5. We use glibc version 2.5 and
LLVM version 3.2. All applications were compiled as 64-bit
executables with the optimization level set to -O1 in order
to maintain accurate source code line number information.

Evaluated Applications. This paper evaluates two popular
benchmark suites, Phoenix (with large input) [25] and PAR-
SEC (with simlarge input) [3]. We were unable to include
two of the benchmarks. LLVM does not compile Facesim
successfully, reporting an undefined template. Canneal com-
piles but then aborts unexpectedly. We also evaluate PREDA-
TOR on six real applications: MySQL, Boost, Memcached,
aget, pbzip2 and pfscan.

4.1 Detection and Prediction Effectiveness
For every detected or predicted false sharing problem,
PREDATOR reports source code information and detailed
memory access information. Figure 5 shows an example
for the linear_regression benchmark. This report shows that
the heap object starting with 0x40000038 potentially causes
numerous cache invalidations. The allocation callsite is pro-
vided to help locate culprits. In addition, PREDATOR also
reports word-level access information of this object, which
makes it possible for the developer to identify where and
how false sharing occurs. From this information, we can see
that this instance is a latent false sharing problem predicted
by PREDATOR, since different threads are accessing differ-
ent hardware cache lines.

4.1.1 Benchmarks
Table 1 provides detection results across the Phoenix and
PARSEC benchmark suites. The first column lists the pro-
grams with false sharing problems. The second column
shows precisely where the problem is. Because all discov-
ered false sharing occurs inside heap objects, we present
callsite source code information here. The third column,
New, indicates whether this false sharing was newly dis-
covered by PREDATOR. A checkmark in the following two
columns indicates whether the false sharing was identified
without prediction and/or with prediction. The final column,
Improvement, presents the performance improvement after
fixing false sharing.



FALSE SHARING HEAP OBJECT: start 0x40000038 end 0x40000238 (with size 200).
Number of accesses: 5153102690; Number of invalidations: 175020; Number of writes: 13636004.

Callsite stack:
./stddefines.h:53
./linear_regression-pthread.c:133

Word level information:
......
Address 0x40000070 (line 16777217): reads 339508 writes 339507 by thread 1
Address 0x40000080 (line 16777218): reads 2716059 writes 0 by thread 2
......
Address 0x400000b0 (line 16777218): reads 339507 writes 339508 by thread 2
Address 0x400000c0 (line 16777219): reads 2716061 writes 0 by thread 3
Address 0x400000c8 (line 16777219): reads 339507 writes 0 by thread 3

Figure 5. An example report by PREDATOR indicating false sharing in the linear_regression benchmark.

Benchmark Source Code New Without Prediction With Prediction Improvement
histogram histogram-pthread.c:213 4 4 4 46.22%
linear_regression linear_regression-pthread.c:133 4 1206.93%
reverse_index reverseindex-pthread.c:511 4 4 0.09%
word_count word_count-pthread.c:136 4 4 0.14%
streamcluster streamcluster.cpp:985 4 4 7.52%
streamcluster streamcluster.cpp:1907 4 4 4 4.77%

Table 1. False sharing problems in the Phoenix and PARSEC benchmark suites.

As the table shows, PREDATOR reveals two previously
unknown false sharing problems. It is the first tool to de-
tect false sharing problems in histogram and in line 1908
of streamcluster. In histogram, multiple threads simulta-
neously modify different locations of the same heap ob-
ject, thread_arg_t. Padding this data structure eliminates
false sharing and improves performance by around 46%.
In streamcluster, multiple threads simultaneously access and
update the same bool array, switch_membership. Simply
changing all elements of this array to a long type reduces
the false sharing and improves performance by about 4.7%.

Other false sharing problems reported here were also
discovered by previous work [17]. We do not see signif-
icant performance improvement for the reverse_index and
word_count benchmarks. They are reported here because the
number of cache invalidations in these two programs crosses
our predefined threshold. Increasing PREDATOR’s report-
ing threshold would avoid reporting these cases, which are
relatively insignificant. Nonetheless, it is worth noting that
these two benchmarks do indeed have false sharing prob-
lems, which can be confirmed by the word-level information
generated by PREDATOR.

The streamcluster benchmark has another false shar-
ing problem located at line 985. Different threads repeat-
edly update the work_mem object. The authors of stream-
cluster were clearly aware of this issue and provide a
CACHE_LINE macro for padding. Unfortunately, the de-
fault value of this macro is set to 32 bytes, which is smaller
than the actual cache line size of the experimental machine.
Setting it to 64 bytes instead improves performance by about
7.5%.

The linear_regression benchmark has an unusually severe
false sharing problem. Fixing it improves performance by
more than 12×. In this benchmark, different threads repeat-
edly update their thread-specific locations inside the tid_args
object inside a tight loop. Interestingly, Nanavati et al. ob-
serve that this false sharing problem occurs when using
clang and disappears when using gcc with the -O2 and -O3
optimization levels [21]. However, we observe a different re-
sult when using our version of clang and the custom mem-
ory allocator: the false sharing problem does not occur at all
because the offset of the starting address of the potentially
falsely-shared object and the start of cache line is 56 bytes
(see Figure 2). As we discuss below,PREDATOR’s prediction
mechanism identifies this latent false sharing problem, high-
lighting the value of predictive detection.

4.1.2 Real Applications
We evaluate PREDATOR’s effectiveness on several widely-
used real applications. These applications include a MySQL,
a database server [20]; Boost, a standard C++ library [19];
Memcached, a distributed memory object caching system;
aget, a download accelerator; pbzip2, a parallel bzip2 file
compressor; and pfscan, a parallel file scanner.

MySQL-5.5.32 and boost-1.49.0 are known to have
false sharing problems. The other applications we exam-
ine (memcached-1.4.15, aget-0.4.1 and pbzip2-1.1.6) do not
have any known false sharing problems.

MySQL’s false sharing problem caused a significant scal-
ability problem and was very difficult to identify. Accord-
ing to the architect of MySQL, Mikael Ronstrom, “we had
gathered specialists on InnoDB..., participants from MySQL



struct
{
pthread_t tid; POINT_T *points;
int num_elems; long long SX;
long long SY; long long SXX;
long long SYY; long long SXY;

} lreg_args;

void * lreg_thread ( void * args_in ) {
struct lreg_args * args = args_in ;
for(i=0; i<args->num_elems; i++) {
args->SX+=args->points[i].x;
args->SXX+=args->points[i].x*args->points[i].x;
args->SY+=args->points[i].y;
args->SYY+=args->points[i].y*args->points[i].y;
args->SXY+=args->points[i].x*args->points[i].y;

}
}

Figure 6. The false sharing problem inside the lin-
ear_regression benchmark: multiple threads simultaneously
update their entries in lreg_args.

support... and a number of generic specialists on computer
performance...”, “[we] were able to improve MySQL perfor-
mance by 6× with those scalability fixes” [20]. The false
sharing inside Boost is caused by the usage of a spinlock
pool. Different threads may utilize different spinlocks lo-
cated in the same cache line in this case. Fixing it brings
a 40% performance improvement. PREDATOR is able to pin-
point the false sharing locations in both MySQL and the
Boost library. For the other four applications, PREDATOR
does not identify any severe false sharing problems.

4.1.3 Prediction Effectiveness
In this section, we describe in detail our experience with
a particular benchmark that demonstrates the value of our
approach. We use the linear_regression benchmark as a case
study for the following reasons: (1) the false sharing problem
of this benchmark cannot be detected without prediction; (2)
false sharing severely degrades performance when it actually
occurs. Hence, it is a serious problem that should always be
detected.

Figure 6 shows the data structure and the source code
experiencing false sharing. The size of this data structure,
lreg_args, is 64 bytes when the program is compiled to a
64-bit binary. For this benchmark, the main thread allocates
an array containing as many elements as the number of
underlying hardware cores. Each element is a lreg_args type
with 64 bytes. This array is then passed to different threads
(lreg_thread function) so that each thread only updates its
thread-dependent area. False sharing occurs if two threads
happen to update data in the same cache line.

Figure 2 shows how sensitive linear_regression’s perfor-
mance is to different starting addresses of a falsely-shared
object. When the offset is 0 or 56 bytes, this benchmark
achieves its optimal performance and has no false sharing.
When the offset is 24 bytes, the benchmark runs around 15×
slower because of false sharing.

4.2 Performance Overhead
Figure 7 presents runtime overhead for using PREDATOR.
All measurements are based on the average of 10 runs, ex-
cluding the maximum and minimum values. PREDATOR im-
poses an average of 5.4× performance overhead. There is no
noticeable difference on performance whether the prediction
mechanism is enabled or not.

Five of these (histogram, kmeans, bodytrack, ferret, and
swaptions), have more than 8× performance overhead. The
histogram benchmark runs more than 26× slower because
tracking detailed accesses to cache lines with false sharing
exacerbates the false sharing effect (see Section 2.4.3). Al-
though bodytrack and ferret have no false sharing, PREDA-
TOR detects numerous cache lines with writes that exceed
the TrackingThreshold, causing it to track detailed access in-
formation. We have not identified the exact cause of PREDA-
TOR’s high performance overhead for kmeans.

As expected, PREDATOR imposes relatively little over-
head for I/O-bound applications (matrix_multiply, blacksc-
holes, x264, aget, Memcached, pbzip2, and pfscan).

4.3 Memory Overhead
Figure 9 and 8 present PREDATOR’s relative and absolute
memory overhead, respectively. We compute PREDATOR’s
physical memory consumption via the proportional set size
(PSS) obtained from the /proc/self/smaps file [14].
We periodically collect this data and use the sum of all
memory mappings as the total physical memory usage of
running an application.

PREDATOR imposes less than 50% memory overhead for
17 out of 22 applications. For swaptions and aget, PREDA-
TOR introduces high relative memory overhead because their
original memory footprints are extraordinarily small: both
have sub-megabyte footprints. MySQL’s increase in memory
consumption, from 132 MB to 512 MB, is due to PREDA-
TOR’s heap organization, which does not aggressively re-
claim memory held by individual threads. In all cases where
PREDATOR’s imposes substantial memory overhead, the ap-
plications continue to comfortably fit into RAM on modern
platforms.

4.4 Sensitivity to Different Sampling Rates
Section 2.4.3 describes PREDATOR’s sampling approach to
reduce tracking overhead. This section evaluates the effect of
different sampling rates on performance and effectiveness.
Note that running an application with different sampling
rates does not affect its memory usage.

The default sampling rate used by PREDATOR is 1%. To
test PREDATOR’s sensitivity to this choice, we evaluate per-
formance on a representative subset of the benchmarks with
two other sampling rates: 0.1% and 10%. Figure 10 presents
the results. As expected, PREDATOR introduces lower per-
formance overhead at lower sampling rates. Even when us-
ing the 0.1% sampling rate, PREDATOR is still able to detect



0"

3"

6"

9"

12"

15"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
mu
l:p
ly" pc

a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
:o
ns
""

x2
64
""

Re
alA
pp
lic
a:
on
s"
ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

AV
ER
AG
E"

N
or
m
al
iz
ed

+R
un

/
m
e+

Execu/on+Time+Overhead+

Original+

PREDATOR;NP+

PREDATOR+

23" 26"

Figure 7. Execution time overhead of PREDATOR with and without prediction (PREDATOR-NP).

0"

200"

400"

600"

800"

1000"

1200"

1400"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
M
ul:
ply
"

pc
a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
:o
ns
""

x2
64
""

Re
alA
pp
lic
a:
on
s"

ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

M
em

or
y'
U
sa
ge
'(M

B)
'

Absolute'Memory'Overhead'

Original'

PREDATOR'

Figure 8. Absolute physical memory usage overhead with PREDATOR.

0"

0.5"

1"

1.5"

2"

2.5"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
mu
l8p
ly" pc

a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
8o
ns
""

x2
64
""

Re
alA
pp
lic
a8
on
s"

ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

AV
ER
AG
E"N

or
m
al
iz
ed

+M
em

or
y+
U
ag
e+

Rela1ve+Memory+Overhead+

Original+

PREDATOR+

7.8+ 6.8+ 3.8+

Figure 9. Relative physical memory usage overhead with PREDATOR.

all false sharing problems reported here, although it reports
a lower number of cache invalidations.

5. Discussion
5.1 Instrumentation Selection
Dynamic binary instrumentation and compiler-based in-
strumentation are two alternative approaches for perform-
ing instrumentation [12]. They exhibit different tradeoffs of
performance and generality. Dynamic binary instrumentors,
such as Valgrind [22], Pin [18], and DynamoRIO [6], typ-
ically analyze the program’s code just before execution in
order to insert instrumentation. They introduce significant
performance overhead, mostly caused by run-time encoding
and decoding, but the fact that they operate directly on bi-

naries makes them extremely convenient. By contrast, com-
piler instrumentation inserts instrumentation in the compila-
tion phase, which requires re-compilation of all source code.
PREDATOR employs compiler-based instrumentation both
because of its better performance and its greater flexibility,
as discussed in Section 2.4.2.

5.2 Effectiveness
Several factors can affect PREDATOR’s ability to identify
false sharing.

Different Inputs. Different inputs trigger distinct execu-
tions of a program. If a specific input does not exercise the
code with false sharing problems, PREDATOR cannot nec-
essarily detect them. However, PREDATOR does generalize



0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"

his
to
gra
m
*

lin
ea
r_
re
gr
es
sio
n*

re
ve
rse
_in
de
x*

wo
rd
_c
ou
nt
*

str
ea
m
clu
ste
r*

AV
ER
AG
E*

N
or
m
al
iz
ed

*R
un

<
m
e*

Sample*Rate*Sensi<vity*

SampleRate*0.1%*

Default*SampleRate*1%*

SampleRate*10%*

Figure 10. Sampling rate sensitivity (execution time).

over inputs to find latent false sharing problems on those
exercised code. When any reasonably representative set of
inputs are exercised, as is required by any testing regime,
PREDATOR can effectively predict false sharing.

Input Size. Input size may affect detection results. As dis-
cussed in Section 2.4, PREDATOR introduces several thresh-
old values to reduce tracking overhead, which can be ad-
justed as needed. If the input size is so small that it can-
not generate enough false sharing events to cross the prede-
fined thresholds, then the detection mechanism will not be
triggered. In such cases, PREDATOR will miss actual cases
of false sharing. However, realistically large inputs should
be enough to trigger PREDATOR’s detection mechanisms. In
our experience, running applications for at least 150 seconds
is sufficient to expose false sharing problems.

Hardware Independence. PREDATOR’s compiler-based
approach make it independent of the underlying hardware
platform. This approach increases generality, but may lead
it to over-report false sharing. PREDATOR conservatively as-
sumes that different threads are running on different cores
and detects false sharing problems based on possible cache
invalidations. However, if multiple threads involved in false
sharing are on the same core, then there will be no perfor-
mance impact.

6. Future Work
We have identified several directions along which PREDA-
TOR could be enhanced.

Use Across the Software Stack. PREDATOR’s architecture
should in principle let it detect and predict false sharing in
the entire software stack, including hypervisors, operating
systems, libraries, and applications using different threading
libraries.

Improved Performance. PREDATOR currently imposes
approximately 6× performance overhead. In the current im-
plementation, every memory access is instrumented with a
library call to notify the runtime system. A library call en-
tails not only normal function call overhead but also Global
Offset Table (GOT) and/or Procedure Linkage Table (PLT)

lookup overhead. We plan to improve PREDATOR’s perfor-
mance by inserting relevant code directly, rather than via
function calls.

Suggest Fixes. Finally, we would like to enhance PREDA-
TOR’s reporting. We believe that leveraging memory trace
information will make it possible for PREDATOR to prescribe
fixes to the programmer to help them eliminate false sharing.

7. Related Work
This section describes related work in detecting or prevent-
ing false sharing; no prior work predicts false sharing.

7.1 False Sharing Detection
Schindewolf et al. designed a tool based on the SIMICS
functional simulator to report different kinds of cache us-
age information, such as cache misses and cache invalida-
tions [26]. Pluto relies on the Valgrind dynamic instrumen-
tation framework to track the sequence of memory read and
write events on different threads, and reports a worst-case
estimation of possible false sharing [9]. Similarly, Liu uses
Pin to collect memory access information, and reports to-
tal cache miss information [16]. These tools impose about
100−200× performance overhead.

Zhao et al. present a tool based on the DynamoRIO
framework to detect false sharing and other cache contention
problems for multithreading programs [28]. It uses a shadow
memory technique to maintain memory access history and
detects cache invalidations based on the ownership of cache
lines. However, it can only support at most 8 threads. In ad-
dition, it cannot differentiate cold cache misses from actual
false sharing problems.

Intel’s performance tuning utility (PTU) uses Precise
Event Based Sampling (PEBS) hardware support to de-
tect false sharing problems [10, 11]. PTU cannot distinguish
true sharing from false sharing. In addition, PTU aggregates
memory accesses without considering memory reuse and
access interleavings, leading to numerous false positives.
Sanath et al. designed a machine learning based approach
to detect false sharing problems. They train their classi-
fier on mini-programs and apply this classifier to general
programs [13]. Instead of instrumenting memory accesses,
this tool relies on hardware performance counters to collect
memory accesses events. This approach operates with ex-
tremely low overhead but ties false sharing detection to a
specific hardware platform.

In addition to their individual disadvantages, all ap-
proaches discussed above share a common shortcoming:
they cannot pinpoint the exact location of false sharing in
the source code, so programmers must manually examine
the source code to identify problems.

Pesterev et al. present DProf, a tool that help program-
mers identify cache misses based on AMD’s instruction-
based sampling hardware [24]. DProf requires manual anno-
tation to locate data types and object fields, and cannot detect



false sharing when multiple objects reside on the same cache
line.

7.2 False Sharing Prevention
Jeremiassen and Eggers use a compiler transformation to
automatically adjust the memory layout of applications
through padding and alignment citefalseshare:compile. Chow
et al. alter parallel loop scheduling in order to avoid false
sharing [7]. These approaches only works for regular, array-
based scientific code.

Berger et al. describe Hoard, a scalable memory allocator
that can reduce the possibility of false sharing by making
different threads use different heaps [1]. Hoard cannot avoid
false sharing problem in global variables or within a single
heap object: the latter appears to be the primary source of
false sharing problems.

7.3 False Sharing Detection and Prevention
SHERIFF provides two tools to handle false sharing based on
its “threads-as-processes” framework [17]. SHERIFF’s detec-
tion tool reports false sharing accurately and precisely with
only 20% performance overhead. However, it can only detect
write-write false sharing, and only works for programs that
use the pthreads library. It can also break programs that
communicate across different threads with stack variables or
ad hoc synchronizations. These shortcomings limit SHER-
IFF’s usefulness for real-world applications. PREDATOR can
detect all kinds of false sharing and imposes no limitations
on the kind of applications it works on.

SHERIFF’s prevention tool prevents false sharing alto-
gether, eliminating the need for programmer intervention.
However, in programs with many synchronization calls, the
overhead imposed by SHERIFF could lead to performance
degradation.

Plastic leverages the sub-page granularity memory remap-
ping facility provided by the Xen hypervisor to detect and
tolerate false sharing automatically [21]. However, the sub-
page memory remapping mechanism is not currently sup-
ported by most existing operating systems, reducing its gen-
erality. In addition, Plastic cannot pinpoint the exact source
of false sharing. In order to utilize Plastic’s prevention tool,
a program has to run on the Xen hypervisor, limiting the
applicability of their prevention technique.

8. Conclusion
This paper introduces predictive false sharing detection, and
presents a prototype system that performs this detection
called PREDATOR. By collecting and analyzing informa-
tion through instrumented reads and writes, the runtime sys-
tem detects false sharing based on cache invalidations and
only reports those potentially causing severe performance
degradation. PREDATOR predicts potential false sharing that
could be caused by a change of hardware cache line size or
the starting addresses of objects. By identifying latent false

sharing problems that can occur in the wild but which are
unobserved in the test environment, PREDATOR overcomes
a key limitation of all previous false sharing detection ap-
proaches.

Our evaluation shows that PREDATOR can effectively de-
tect and predict several previously unknown and existing
false sharing problems in two popular benchmark suites,
Phoenix and PARSEC. We also evaluate PREDATOR on six
real applications. It successfully detects two known false
sharing problems inside MySQL and the Boost library. Fix-
ing these false sharing problems improves performance by
6× and 40%, respectively.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1012195-CCF. The au-
thors thank Junjie Gu for his assistance with LLVM. The
authors also thank Charlie Curtsinger, Dimitar Gochev, John
Altidor and the anonymous reviewers for their helpful sug-
gestions during the development of this work. Tongping Liu
was supported by an internship while at Huawei US Re-
search Center.

References
[1] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-

son. Hoard: A scalable memory allocator for multithreaded
applications. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 117–128, Cam-
bridge, MA, Nov. 2000.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing
high-performance memory allocators. In Proceedings of the
ACM SIGPLAN 2001 conference on Programming language
design and implementation, PLDI ’01, pages 114–124, New
York, NY, USA, 2001. ACM.

[3] C. Bienia and K. Li. PARSEC 2.0: A new benchmark suite
for chip-multiprocessors. In Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[4] W. J. Bolosky and M. L. Scott. False sharing and its effect on
shared memory performance. In SEDMS IV: USENIX Sym-
posium on Experiences with Distributed and Multiprocessor
Systems, pages 57–71, Berkeley, CA, USA, 1993. USENIX
Association.

[5] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of
Linux scalability to many cores. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010.
USENIX Association.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In Proceedings of the
international symposium on Code generation and optimiza-
tion: feedback-directed and runtime optimization, CGO ’03,
pages 265–275, Washington, DC, USA, 2003. IEEE Com-
puter Society.



[7] J.-H. Chow and V. Sarkar. False sharing elimination by selec-
tion of runtime scheduling parameters. In ICPP ’97: Proceed-
ings of the international Conference on Parallel Processing,
pages 396–403, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[8] David Dice. False sharing induced by card table
marking. https://blogs.oracle.com/dave/entry/false_sharing_
induced_by_card, February 2011.

[9] S. M. Günther and J. Weidendorfer. Assessing cache false
sharing effects by dynamic binary instrumentation. In WBIA
’09: Proceedings of the Workshop on Binary Instrumentation
and Applications, pages 26–33, New York, NY, USA, 2009.
ACM.

[10] Intel Corporation. Intel Performance Tuning Utility 3.2 Up-
date, November 2008.

[11] Intel Corporation. Avoiding and identifying false sharing
among threads. http://software.intel.com/en-us/articles/
avoiding-and-identifying-false-sharing-among-threads/,
February 2010.

[12] T. Iskhodzhanov, R. Kleckner, and E. Stepanov. Combining
compile-time and run-time instrumentation for testing tools.
Programmnye produkty i sistemy, 3:224–231, 2013.

[13] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amaras-
inghe, H. De Silva, S. Rathnayake, X. Meng, and Y. Liu. De-
tection of false sharing using machine learning. In Proceed-
ings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages
30:1–30:9, New York, NY, USA, 2013. ACM.

[14] Justin L. A way to determine a process’s "real" memory
usage, i.e. private dirty RSS? http://stackoverflow.com/
questions/118307/a-way-to-determine-a-processs-real-
memory-usage-i-e-private-dirty-rss, October 2011.

[15] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Opti-
mization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] C.-L. Liu. False sharing analysis for multithreaded programs.
Master’s thesis, National Chung Cheng University, July 2009.

[17] T. Liu and E. D. Berger. SHERIFF: Precise detection and auto-
matic mitigation of false sharing. In Proceedings of the 2011
ACM International Conference on Object-Oriented Program-
ming Systems Languages and Applications, OOPSLA ’11,
pages 3–18, New York, NY, USA, 2011. ACM.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[19] mcmcc. False sharing in boost::detail::spinlock pool?
http://stackoverflow.com/questions/11037655/false-sharing-
in-boostdetailspinlock-pool, June 2012.

[20] Mikael Ronstrom. Mysql team increases scala-
bility by >50mysql 5.6 labs release april 2012.
http://mikaelronstrom.blogspot.com/2012/04/mysql-team-
increases-scalability-by-50.html, April 2012.

[21] M. Nanavati, M. Spear, N. Taylor, S. Rajagopalan, D. T.
Meyer, W. Aiello, and A. Warfield. Whose cache line is it
anyway?: operating system support for live detection and re-
pair of false sharing. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, EuroSys ’13, pages
141–154, New York, NY, USA, 2013. ACM.

[22] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings
of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’07, pages 89–100,
New York, NY, USA, 2007. ACM.

[23] K. Papadimitriou. Taming false sharing in parallel programs.
Master’s thesis, University of Edinburgh, 2009.

[24] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache
performance bottlenecks using data profiling. In EuroSys ’10:
Proceedings of the 5th European conference on Computer
systems, pages 335–348, New York, NY, USA, 2010. ACM.

[25] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and mul-
tiprocessor systems. In HPCA ’07: Proceedings of the 2007
IEEE 13th International Symposium on High Performance
Computer Architecture, pages 13–24, Washington, DC, USA,
2007. IEEE Computer Society.

[26] M. Schindewolf. Analysis of cache misses using SIMICS.
Master’s thesis, Institute for Computing Systems Architec-
ture, University of Edinburgh, 2007.

[27] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: a fast address sanity checker. In Pro-
ceedings of the 2012 USENIX Annual Technical Conference,
USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012.
USENIX Association.

[28] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and
S. Amarasinghe. Dynamic cache contention detection in
multi-threaded applications. In The International Conference
on Virtual Execution Environments, Newport Beach, CA, Mar
2011.

https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/
http://stackoverflow.com/questions/118307/a-way-to-determine-a-processs-real-memory-usage-i-e-private-dirty-rss
http://stackoverflow.com/questions/118307/a-way-to-determine-a-processs-real-memory-usage-i-e-private-dirty-rss
http://stackoverflow.com/questions/118307/a-way-to-determine-a-processs-real-memory-usage-i-e-private-dirty-rss
http://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool
http://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool
http://mikaelronstrom.blogspot.com/2012/04/mysql-team-increases-scalability-by-50.html
http://mikaelronstrom.blogspot.com/2012/04/mysql-team-increases-scalability-by-50.html

	Introduction
	False Sharing Detection
	Overview
	Compiler Instrumentation
	Runtime System
	Tracking Cache Invalidations
	Reporting False Sharing

	Optimizations
	Threshold-Based Tracking Mechanism
	Selective Compiler Instrumentation
	Sampling Mechanism


	False Sharing Prediction
	Overview
	Basic Prediction Workflow
	Searching for Potential False Sharing
	Verifying Potential False Sharing

	Experimental Evaluation
	Detection and Prediction Effectiveness
	Benchmarks
	Real Applications
	Prediction Effectiveness

	Performance Overhead
	Memory Overhead
	Sensitivity to Different Sampling Rates

	Discussion
	Instrumentation Selection
	Effectiveness

	Future Work
	Related Work
	False Sharing Detection
	False Sharing Prevention
	False Sharing Detection and Prevention

	Conclusion

