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Abstract
Humans can perform many tasks with ease that remain difficult or
impossible for computers. Crowdsourcing platforms like Amazon’s
Mechanical Turk make it possible to harness human-based compu-
tational power on an unprecedented scale. However, their utility as
a general-purpose computational platform remains limited. The lack
of complete automation makes it difficult to orchestrate complex
or interrelated tasks. Scheduling human workers to reduce latency
costs real money, and jobs must be monitored and rescheduled when
workers fail to complete their tasks. Furthermore, it is often difficult
to predict the length of time and payment that should be budgeted
for a given task. Finally, the results of human-based computations
are not necessarily reliable, both because human skills and accu-
racy vary widely, and because workers have a financial incentive to
minimize their effort.

This paper introduces AUTOMAN, the first fully automatic
crowdprogramming system. AUTOMAN integrates human-based
computations into a standard programming language as ordinary
function calls, which can be intermixed freely with traditional
functions. This abstraction allows AUTOMAN programmers to focus
on their programming logic. An AUTOMAN program specifies a
confidence level for the overall computation and a budget. The
AUTOMAN runtime system then transparently manages all details
necessary for scheduling, pricing, and quality control. AUTOMAN
automatically schedules human tasks for each computation until
it achieves the desired confidence level; monitors, reprices, and
restarts human tasks as necessary; and maximizes parallelism across
human workers while staying under budget.

1. Introduction
Humans can perform many tasks with ease that remain difficult
or impossible for computers. For example, humans are far better
than computers at performing tasks like vision, motion planning,
and natural language understanding. Most researchers expect these
“AI-complete” tasks to remain beyond the reach of digital computers
for the foreseeable future [17].

Recent systems have streamlined the process of hiring humans
to perform computational tasks. The most prominent example
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is Amazon’s Mechanical Turk, a general-purpose crowdsourcing
system that acts as an intermediary between labor requesters and
workers [1, 9]. Employers now use Mechanical Turk to perform jobs
like image classification and accurate audio transcription.

However, harnessing of human-based computation at scale faces
the following challenges:

• Difficult to scale up complexity. Current crowdsourcing plat-
forms make it possible to create many standalone tasks, but lack
support for interrelated or iterative tasks.

• Hard to determine pay and time for tasks. Employers must
decide in advance the time allotted to a task and the payment for
successful completion. It is both difficult and important to choose
these correctly: workers will not accept jobs whose deadline is
too short or where the pay is too low.

• Scheduling complexities. Employers must manage the trade-
off between latency (humans are relatively slow) and cost (more
workers means more money). Because workers may fail to
complete their tasks in the allotted time, jobs need to be tracked
and reposted as necessary.

• Low quality responses. Finally, human-based computations
always need to be checked: worker skills and accuracy vary
widely, and they have a financial incentive to minimize their
effort. Manual checking does not scale, and voting is inadequate,
since workers may agree by random chance.

Contributions
This paper introduces AUTOMAN, a programming system that inte-
grates human-based and digital computation. AUTOMAN addresses
the challenges of harnessing human-based computation at scale:

Transparent integration of human and digital computation. AU-
TOMAN incorporates human-based computation as function calls in
a standard programming language. The AUTOMAN runtime system
transparently manages scheduling, budgeting, and quality control.

Automatic scheduling and budgeting. The AUTOMAN runtime
system schedules tasks to maximize parallelism across human
workers while staying under budget. AUTOMAN tracks job progress,
rescheduling failed tasks and repricing jobs as needed.

Automatic quality control. The AUTOMAN runtime system per-
forms automatic quality control management. AUTOMAN automati-
cally creates enough human tasks for each computation to achieve
the confidence level specified by the programmer.

For example, given a desired confidence level of 95% and a
function with five possible answers, AUTOMAN initially schedules
at least three tasks (human workers). Because the chances of all



three agreeing due to random chance is under 5%, a unanimous
response would be considered acceptable. If all three workers do
not agree, AUTOMAN will schedule another three tasks, at which
point 5 out of 6 must agree to achieve a 95% confidence level.

Outline
The remainder of this paper is organized as follows. Section 2
presents background information on crowdsourcing platforms. Sec-
tion 3 provides an overview of AUTOMAN’s operation with a sam-
ple program. Section 4 describes the algorithms AUTOMAN uses to
perform scheduling, budgeting, and quality control, and Section 6
provides details of AUTOMAN’s software architecture. Section 7
presents an overview of our experience with AUTOMAN. Finally,
Section 8 discusses related work, Section 9 describes planned future
work, and Section 10 concludes.

2. Background: Crowdsourcing Platforms
Since crowdsourcing is a novel application domain for program-
ming language research, we start by summarizing the necessary
background on crowdsourcing platforms. Our discussion in this
section focuses on Amazon’s Mechanical Turk, but other existing
crowdsourcing platforms are similar.

Mechanical Turk acts as an intermediary between employers
(known as requesters) and employees (workers, or colloquially,
turkers) for short-term assignments.

Human Intelligence Tasks (HITs). In Mechanical Turk parlance,
individual tasks are known as HITs, which stands for human
intelligence tasks. HITs include a short description, the amount the
job pays, and other details. Most HITs on Mechanical Turk are for
relatively simple tasks, such as “does this image match this product?”
Compensation is also correspondingly small, since employers expect
that work can be completed on a time scale spanning from seconds to
minutes. Pay for HITs range from a single penny to several dollars.

Each HIT is represented as a question form, composed of
any number of questions, and associated metadata such as a title,
description, and search keywords. Questions can be one of two types:
a free text question, where workers can provide a free-form textual
response, or a multiple-choice question, where workers make one of
more selections from a list of possible options. We refer to the former
as open-ended questions and the latter as closed-ended questions;
AUTOMAN currently only supports closed-ended questions.

Requesters can also use Mechanical Turk as a transaction man-
ager, allowing a third-party website to control the interaction with
the worker by embedding the site in a browser IFrame. This third
option is typically reserved for interactive tasks.

Requesters: Posting HITs. Mechanical Turk allows HITs to be
posted manually, but also exposes a Web service API that allows
basic details of HITs to be managed programmatically [1], including
posting HITs, collecting completed work, and paying workers. Us-
ing this API, it is straightforward to post similar tasks to Mechanical
Turk en masse. HITs sharing similar qualities can be grouped into
HIT groups.

A requester may also instruct Mechanical Turk to parallelize a
particular HIT by indicating whether each HIT should be assigned
to more than on worker. By increasing the number of assignments,
Mechanical Turk allows additional workers to accept work for the
same HIT, and the system ensures that the parallel workers are
unique (i.e., that a single worker cannot complete the same HIT
more than once).

Workers: Performing Work. Mechanical Turk workers can choose
any of the available tasks on the system for which they are qualified
(see below): as of this writing, there are approximately 275,000
HITs posted. When workers choose to perform a particular HIT, they

accept an assignment, which grants them a time-limited reservation
for that particular piece of work; that is, no other worker may accept
it.

HIT Expiration. HITs have two timeout parameters: the amount
of time that a particular HIT should remain in the listings, known as
the lifetime of a HIT, and the amount of time that a worker has to
complete an assignment once it is accepted, known as the duration of
an assignment. If after accepting an assignment for a HIT, a worker
exceeds the assignment’s duration without submitting completed
work, the reservation is cancelled, and the work is returned to the
pool of available assignments. If a HIT reaches the end of its lifetime
without its assignments having been completed, the HIT expires and
is removed from the job board.

Requesters: Accepting or Rejecting Work. Once a worker com-
pletes and submits an assignment, the requester is notified. The
requester then can accept or reject the completed assignment. Ac-
ceptance of an assignment indicates that the completed work is
satisfactory, and the worker is then automatically paid for his or
her efforts. Rejection withholds payment, and the requester, if so
inclined, may provide a textual justification for the rejection. (AU-
TOMAN automatically manages acceptance and rejection; see Sec-
tion 3.2.)

Worker Quality Control. A key challenge in automating work in
Mechanical Turk is attracting and retaining good workers, or at least
discouraging bad workers from participating. However, Mechanical
Turk provides no way for requesters to seek out specific workers.

Instead, Mechanical Turk provides a qualification mechanism
to limit which workers may perform a particular HIT. For exam-
ple, a common qualification is that workers must have an overall
assignment-acceptance rate of 90%. However, given the wide vari-
ation in tasks on Mechanical Turk, overall worker accuracy is of
limited utility.

For example, the fact that a worker who is skilled in and favors
audio transcription tasks may have a high accuracy rating, but there
is no reason to believe that this worker can also perform Chinese-to-
English language translation tasks. Worse, workers who cherry-pick
easy tasks and thus have a high accuracy rating actually may be less
qualified than a worker who routinely performs difficult work that
is occasionally rejected.

3. AUTOMAN Overview
AUTOMAN is a domain-specific language embedded in Scala [14].
Figure 1 presents a complete AUTOMAN program. The goal of
AUTOMAN is to abstract crowdsourcing so that the important parts
of a program’s logic can be understood clearly, and so that large-
scale crowdsourcing applications can be built without a programmer
having to worry about complicated human interaction logic.

3.1 Using AUTOMAN

Figure 1 presents an example AUTOMAN program. The program
“computes” which of a set of cartoon characters does not belong
in the group. Notice that the programmer does not specify details
about the chosen crowdsourcing backend (Mechanical Turk) except
for account credentials.

Crucially, all details of crowdsourcing are hidden from the
AUTOMAN programmer. The AUTOMAN runtime, discussed below,
manages budgeting for the cost and time limits of the computation,
task validation, or even what it means to have confidence in a
particular computational result.

Initializing AUTOMAN. After importing the AUTOMAN and
Mechanical Turk adapter libraries, the first thing an AUTOMAN
programmer does is to declare a configuration for the desired



1 import edu.umass.cs.automan.core._
2 import edu.umass.cs.automan.MTurk._
3

4 object WhichOneNotBelongSimple {
5 def main(args: Array[String ]) {
6

7 // AutoMan configuration for MTurk:
8 val config = MTurkConfig { c =>
9 c.access_key_id = "XXXX" // account info

10 c.secret_access_key = "XXXX"
11 }
12

13 // Set up AutoMan parameters .
14 val a = Automan { automan =>
15 automan.budget = 8.00 // dollars
16 automan.config = config // declared above
17 }
18

19 // Define a human function.
20 val WhichOne = a.Task[String] { t =>
21 t.confidence = 0.95 // the default
22 t.title = "Which one of these doesn’t belong?"
23 t.description = t.title
24 t.question = a.MultipleChoiceQuestion(
25 question_text = t.title ,
26 selection_texts =
27 Map(’oscar -> "Oscar the Grouch",
28 ’kermit -> "Kermit",
29 ’spongebob -> "Spongebob Squarepants",
30 ’cookie -> "Cookie Monster",
31 ’count -> "The Count")
32 )
33 }
34

35 // Call the human -based function.
36 val fd = WhichOne ()
37

38 // Start execution and print result.
39 a.run()
40 println(fd.value)
41 }
42 }

Figure 1. A complete AUTOMAN program. This program com-
putes, by invoking humans, which cartoon character does not belong
in a given set. The AUTOMAN programmer specifies only creden-
tials for Mechanical Turk, an overall budget, and the question it-
self; the AUTOMAN runtime manages all other details of execution
(scheduling, budgeting, and quality control).

crowdsourcing platform. This step provides implementations for
AUTOMAN’s platform-specific abstract classes. The programmer
then instantiates and initializes an AUTOMAN runtime object, which
is tied to the crowdsourcing system platform configuration.

Specifying AUTOMAN functions. Specifying a function in AU-
TOMAN differs considerably from defining a function in a conven-
tional programming language. In AUTOMAN, functions are formu-
lated as questions that the workers must answer.

Confidence level. An AUTOMAN programmer can optionally
specify the degree of confidence they want to have in their compu-
tation, on a per-function basis. AUTOMAN’s default confidence is
95% (0.95), but this can be overridden as needed.

Metadata and question text. Each question requires a title and
description, used by the crowdsourcing platform’s user interface.
Here, these fields map to Mechanical Turk’s fields of the same name.
A question also includes a textual representation of the question,
together with a map between symbolic constants and strings for
possible answers.

Question variants. AUTOMAN supports two types of multiple-
choice questions: questions where only one answer is correct (“radio-

Which%one%of%these%doesn’t%belong?%
[95%%conf.]%

AUTOMAN:%spawns%3%tasks%@%$0.06;%30s%work%%

t1# t2# t3#

AUTOMAN:%inconclusive;%spawns%3%more%

1m%50s%

2m%30s%

2m%50s%

t4# t5# t6#

7m%

18m%50s%

51m%AUTOMAN:%task%6%Jmed%out;%
spawn%t7%@%$0.12;%60s%work%
%

t7#

1h%9m%50s;%
cost%=%$0.36%

AUTOMAN:%5%out%of%6%
%�%95%%confidence;%
return%%%

Figure 2. An actual execution of the example program on the
left, with time advancing from top to bottom. AUTOMAN first
spawns 3 tasks, which (for five choices) suffice to reach a 95%
confidence level if all workers agree. Since the 3 workers do not
agree, AUTOMAN doubles the number of tasks (5 of 6 must now
agree). When task 6 times out, AUTOMAN spawns a new task and
doubles both the budget and time allotted. Once task 7 completes,
AUTOMAN returns the result.

button” questions), or where any number of answers may be correct
(“checkbox” questions). Section 4.3 describes how AUTOMAN’s
quality control algorithm handles these different types of questions.

Invoking a function. An AUTOMAN programmer can invoke a
function as if it were any ordinary (digital) function. Here, the
programmer calls the just-defined function WhichOne with no input.
The function returns a FutureData object, which can be passed to
other AbstractTasks in an AUTOMAN program before the human
computation is complete.

Running AUTOMAN. To invoke AUTOMAN, the programmer
simply calls the run() function. The program submits its jobs, and
eventually prints the result. AUTOMAN returns the selected item
from the set of symbols defined in the question’s definition.

3.2 AUTOMAN Execution
Figure 2 depicts an actual trace of the execution of the program
from Figure 1, obtained by executing it with Amazon’s Mechanical
Turk. This example demonstrates that ensuring valid results even
for simple programs can be complicated.



Starting Tasks. At startup, AUTOMAN examines the form of
the question field defined for the task and determines that, in
order to achieve a 95% confidence level for a question with five
possible choices, at minimum, it needs three different workers to
unanimously agree on the answer (see Section 4.3). AUTOMAN then
spawns three tasks on the crowdsourcing backend, Mechanical Turk.
To eliminate bias caused by the position of choices, AUTOMAN
randomly shuffles the choices in each task.

AUTOMAN’s default strategy is optimistic. For many tasks,
human workers are likely to agree unanimously. Whenever this is
true, AUTOMAN saves money by spending the least amount required
to achieve the desired statistical confidence.

However, AUTOMAN also allows users to choose a more ag-
gressive strategy that trades increased cost for reduced latency; see
Section 4.2.

Quality Control. At 1 minute, 50 seconds, worker 1 accepts the
task and submits “Spongebob Squarepants” as the answer. At 2
minutes, 30 seconds, worker 2 accepts the task and submits the
same answer. However, at 2 minutes, 50 seconds, worker 3 accepts
the task and submits “Kermit”. In this case, AUTOMAN’s optimism
did not pay off, since worker 3’s answer does not agree with worker
1 and 2. Because this result is inconclusive, AUTOMAN doubles the
number of tasks.

Doubling is a simple but effective strategy because at worst,
AUTOMAN will spawn no more than twice the amount of tasks
actually needed for a valid computation. At this point, AUTOMAN
recomputes the minimal number of agreements, which turns out to
be five out of six. The Appendix presents a full derivation of the
closed-form formulas that AUTOMAN uses to compute these values.

Note that doubling may, by providing added incentive to workers,
speed the overall computation.

Initial Time Estimates. When defining a task, the programmer
can indicate how much time they expect the worker to spend on
working on a task. On Mechanical Turk, this number serves as an
indication to the worker of the difficulty of the task. In AUTOMAN,
this figure is set to 30 seconds by default.

A second time parameter, the “lifetime” of a task, indicates
how long the crowdsourcing backend should keep the task around
without any response from workers. In AUTOMAN, the task lifetime
is set to 100 times the timeout.

At 51 minutes into the computation, task 6 reaches its lifetime
expiration. Since AUTOMAN does not yet have a statistically valid
result, it reschedules the task, this time extending both the task
timeout and task lifetime by a factor of two.

Rebudgeting: Time and Pay. AUTOMAN does not require the
programmer to specify exactly how much each worker should
be paid. AUTOMAN currently uses the timeout parameter and
calculates the base cost for the task using the US Federal minimum
wage. For 30 seconds’ worth of work at the current minimum wage,
the result is $0.06 US dollars.

AUTOMAN automatically manages worker compensation, us-
ing the same doubling strategy to find the wage that the worker
marketplace is willing to accept (see Section 4.1). In the absence
of an automatic mechanism, programmers would be required to
determine the fair wage of the task marketplace manually. Given the
subjectivity of a “fair wage”, knowing the appropriate wage a priori
is complex at best.

At the same time that AUTOMAN extends the time allowed
to work on a task, it also increases the pay. AUTOMAN’s first 6
tasks were spawned with a reward of $0.06; after the timeout, the
compensation for the seventh task was set to $0.12.

Automatic Task Acceptance and Rejection. One hour and 9 min-
utes into the computation, a worker submits a sixth answer, “Sponge-
bob Squarepants”. AUTOMAN again examines whether the answers

1 // default parameters
2 confidence = 0.95
3 MAX_WORKERS = 30
4 DEF_ASSN_TIMEOUT = 30 seconds
5 DEF_HIT_TIMEOUT = DEF_ASSN_TIMEOUT * user_constant
6

7 // initial # workers , reward , and timeout
8 n = unanimous_n(confidence , num_choices)
9 min_agree = n

10 reward = minimum_wage_for(DEF_ASSN_TIMEOUT)
11 timeout = DEF_HIT_TIMEOUT
12

13 // adjust for time_value (cost/latency tradeoff)
14 remaining_n = n * max(1, time_value/minimum_wage)
15

16 // scheduler loop
17 while (remaining_n > 0 && n < MAX_WORKERS) {
18 // create new tasks as needed
19 spawn_task (n, reward , timeout , DEF_ASSN_TIMEOUT)
20 wait until (timedout || got_all_answers)
21 if (timedout) {
22 // double pay and time
23 reward *= 2
24 timeout *= 2
25 remaining_n -= answers.size
26 } else {
27 if (agree(answers) < min_agree) {
28 // insufficient responses;
29 // double tasks and compute new threshold
30 remaining_n *= 2
31 min_agree = min_thresh(remaining_n , confidence)
32 }
33 }
34 }
35 if (n >= MAX_WORKERS) {
36 FailedComputationException;
37 } else {
38 // Success.
39 return argmax(answers)
40 }

Figure 3. Pseudo-code for AUTOMAN’s scheduling loop, which
handles posting and re-posting jobs, budgeting, and quality control;
the Appendix includes a derivation of the formulas for the quality
control thresholds.

agree and it finds that 5 out of the 6 answers agree. AUTOMAN
can now reject the null hypothesis, i.e., that 5 workers agreed by
choosing the same answer randomly, with a 95% confidence level.
The runtime system then returns the answer to the program, and the
user’s regular program resumes.

AUTOMAN then informs the crowdsourcing backend to pay
the five workers whose answers agreed. Four workers are paid
$0.06, and one is paid $0.12. The one worker whose answer did not
agree was not paid. For Mechanical Turk, which supports rejection
notifications, AUTOMAN inform workers who provided incorrect
responses that their work was not accepted, and why not.

The fact that AUTOMAN does not pay for incorrect work reduces
its cost, especially as the number of workers increases. For example,
for a question with 5 choices, only 7 of 12 workers need agree
to achieve a 95% confidence level. As the number of workers
increases, the proportion required for agreement drops further,
making rejecting incorrect work even more desirable.

4. AUTOMAN Scheduler
Figure 3 presents pseudo-code for AUTOMAN’s main scheduler
loop, which comprises the algorithms that the AUTOMAN runtime
uses to manage scheduling, budgeting price and time, and quality
control.



4.1 Budgeting: Time and Pay
AUTOMAN uses a doubling strategy to manage both the time
allotted to individual tasks, and their pay for successful completion.
AUTOMAN’s overriding goal is to find workers willing to perform
the task. When not enough workers have accepted tasks, it may be
either because the pay is too low or the time is too short. AUTOMAN
punts on this distinction and simply doubles both the time allotment
and the pay.

This simple strategy both works well in practice and is straight-
forward to analyze. Suppose the ideal amount of pay required to
entice workers to perform a task is t. In the worst case, AUTOMAN
will double an amount that was just slightly below t (e.g., t − ε),
and thus pay no more than twice as much as optimal.

The doubling strategy may appear to run the risk that a worker
will “game” the computation into paying a large sum of money for
an otherwise simple task. However, even if all workers adopted the
same strategy, market dynamics would prevent the amount of money
from spiraling upward. Once the wage reaches an acceptable level
for some proportion of the worker marketplace, those workers will
accept the task. Forcing AUTOMAN to continue doubling to a very
high wage would require collusion between workers on a scale that
we believe is infeasible.

4.2 Trading Off Latency and Money
AUTOMAN’s default strategy for spawning tasks is optimistic: it
creates the smallest number of tasks required to reach the desired
confidence level in the hope that the results will be unanimous.

However, AUTOMAN also allows programmers to specify a
time-value for the computation. This time-value denotes the value
of the programmer’s time, rather than the wage paid to workers.
AUTOMAN multiplies the number of tasks initially spawned by the
ratio of the time-value to the minimum wage, and thus creates a far
larger number of initial jobs. If enough jobs complete to achieve
statistical confidence, AUTOMAN cancels any outstanding jobs.

This strategy runs the risk of paying substantially more for a
computation, but can yield dramatic reductions in latency. We re-
ran the example program given in Figure 1 with a time-value set
to $50, which is 7× larger than the current U.S. minimum wage.
In two separate runs, the computation completed in 68 and 168
seconds; we also ran the first computation with the default time-
value (minimum wage), and those computations took between 1 and
3 hours to complete.

4.3 Quality Control
AUTOMAN’s quality control algorithm is based on collecting enough
consensus for a given question to rule out the possibility (with a
desired level of confidence) that the results are due to random chance.
Section 5 justifies this approach.

Initially, AUTOMAN spawns just enough workers to meet the
desired confidence level if they all agree. Figure 4 provides a graph-
ical depiction of the initial confidence level function. Computing
this value is straightforward: if k is the number of choices, and n is
the number of tasks, the confidence level reached is 1− k(1/k)n.
AUTOMAN simply finds the lowest value of n where the desired
confidence level is reached.

Variants of Multiple Choice Questions. For ordinary multiple
choice questions where only one choice is possible (“radio-button”
questions), k is exactly the number of possible answers. For multiple
choice questions with c choices and any or all may be chosen
(“checkbox” questions), k is much larger: k = 2c.

For these questions, k is so high that a very small number of
workers is required to reject the null hypothesis (random choice).
However, it is reasonably likely that two lazy workers will simply
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(workers) required quickly drops.

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

2	
   3	
   4	
   5	
   6	
  

Fr
ac
%o

n	
  
ne

ed
ed

	
  fo
r	
  9

5%
	
  c
on

fid
en

ce
	
  

Choices	
  

Frac%on	
  of	
  tasks	
  that	
  must	
  agree	
  
to	
  reach	
  95%	
  confidence	
  

5	
  tasks	
  

10	
  tasks	
  

15	
  tasks	
  

20	
  tasks	
  

25	
  tasks	
  

Figure 5. A graph of the fraction of tasks that must agree in order to
achieve a 95% confidence level, for questions with a given number
of choices. The fraction needed to agree drops as the number of
choices increases, and as the number of tasks (workers) increases.

select no answers, and AUTOMAN will erroneously accept that
answer is correct.

To compensate for this possibility, AUTOMAN treats any-number
multiple choice questions specially. The AUTOMAN programmer
must specify not only the question text, but also an inverted question.
For instance, if the question is “Select which of these are true”, the
inverted question should read, “Select which of these are NOT true.”
AUTOMAN then ensures that half of the HITs are spawned with the
positive question, and half with the inverted question. This strategy
makes it less likely that lazy workers will inadvertently agree.

Quality Control Algorithm. Formally, the quality control algo-
rithm depends on two functions, t and `, and two parameters α (one
minus the confidence level) and β. The t and ` functions determine
when it is safe to reject the null hypothesis, and when one should
abandon a computation because there is no apparent consensus.

The algorithm proceeds as follows:

1. n = min{m : t(m,α) 6=∞}



2. Ask n workers to vote on the answer of a question given k
options.

3. If there is an option that has more than t(n, α) votes, return the
most frequent option.

4. If n < `(p∗, β), double n and repeat from step 2.

The t(n, α) and `(p∗, β) in the algorithm are chosen so that:

• If the workers are voting randomly (each answer is chosen with
equal probability), then the probability that an answer meets the
threshold of t(n, α) when n votes is cast is at most α.

• If there is a “popular” option such that the probability a worker
chooses it is p > p∗ (and other options are equally likely), then
the above process terminates with an answer.

In the current implementation, AUTOMAN uses the t formula
but adopts a fixed threshold that determines when a computation
has failed. This approach is driven by the desire to keep the number
of parameters required by an AUTOMAN programmer low; in any
event, the threshold chosen is extremely conservative and dominates
` for most reasonable values. The Appendix includes derivations of
closed-form formulas for t and `.

Figure 5 uses the value of t to compute the normalized fraction
of tasks that need to agree in order to reach α = 0.05 (a confidence
level of 95%). As the number of tasks and the number of choices
increase, the fraction of the number of tasks needed for agreement
decreases. For example, with 25 tasks and a question with 4 choices,
only 48% (12 of 25) need agree in order to achieve 95% confidence.
In other words, as the number of workers increases (with doubling),
AUTOMAN needs an ever smaller fraction of those workers to agree,
speeding convergence to a correct answer.

5. Quality Control Discussion
For AUTOMAN’s quality control algorithm to work, two assump-
tions must hold:

• Workers are independent.
• Random choice is the worst-case behavior for workers; that is,

they will not deliberately pick the wrong answer.

5.1 Worker Independence
Workers may break the assumption of independence in three ways:
(1) a single worker may masquerade as multiple workers; (2) a
worker may perform multiple tasks; and (3) workers may collude
when working on a task.

Scenario 1: Sybil Attack. The first scenario, where one real user
creates multiple electronic identities, is known in the security
literature as a “Sybil attack” [5]. The practicality of a Sybil attack
depends directly on how easy it is to generate multiple identities.

Carrying out a Sybil attack on our default backend, Mechanical
Turk, would be extremely burdensome. Since Mechanical Turk
provides a payment mechanism for workers, Amazon requires
that workers provide uniquely identifying financial information,
typically a credit card or bank account. These credentials are
difficult, although not impossible, to forge.

Scenario 2: One Worker, Multiple Tasks. AUTOMAN avoids
the second case (one worker performing multiple tasks) via a
workaround of Mechanical Turk’s existing mechanisms. Mechanical
Turk provides a mechanism to ensure worker uniqueness for a
given HIT (i.e., a HIT with multiple assignments), but it lacks the
functionality to ensure worker uniqueness across multiple HITs. For
example, when AUTOMAN decides to respawn a task, it must be
certain that workers who participated in previous instantiations of
that task are excluded from future instantiations.

Our workaround for this shortcoming is to use Mechanical Turk’s
“qualification” feature in an inverse sense. Once a worker completes
a HIT that is a part of a larger computation, AUTOMAN grants
that worker special qualification (effectively, a “disqualification”)
that precludes them from participating in future tasks of the same
kind. Our system ensures that workers are not able to request
reauthorization.

Scenario 3: Worker Collusion. While it would be possible to
attempt to lower the risk of worker collusion by ensuring that
they are geographically separate (e.g., by filtering workers using
IP geolocation), AUTOMAN currently does not take any particular
action to prevent worker collusion. We view preventing this scenario
as essentially impossible. Nothing prevents workers from colluding
via external channels (e-mail, phone, word-of-mouth) to thwart the
assumption of independence. We instead assume that, by spawning
large numbers of tasks, AUTOMAN makes it difficult for any single
group to monopolize them.

5.2 Random Worst Case
AUTOMAN’s quality control function is based on excluding the
possibility of random choices by workers; that is, workers who
minimize their effort or make errors. It is possible that workers could
instead act maliciously and deliberately choose incorrect answers.

We argue that participants in crowdsourcing systems have both
short-term and long-term economic incentives to not deliberately
choose incorrect answers, and that random choice is in fact the
worst-case scenario.

First, a correct response to a given task yields an immediate
monetary reward. If a worker has any information about what
the correct answer is, it is against their own short-term economic
self-interest to deliberately avoid it. In fact, as long as there is a
substantial bias towards the correct answer, AUTOMAN’s algorithm
will eventually accept it.

Second, while a participant might out of malice choose to forego
the immediate economic reward, there are long-term implications
of deliberately choosing incorrect answers. Crowdsourcing systems
like Mechanical Turk maintain an overall ratio of accepted answers
to total answers submitted, and many requesters place high qualifica-
tion bars on these ratios (typically around 90%). Incorrect answers
thus have a lasting negative impact on workers, who, as mentioned
earlier, cannot easily discard their identity and adopt a new one.

Anecdotally, we have found that Mechanical Turk workers are
quite concerned when AUTOMAN rejects their answers, even when
they know what the correct answer is and thus why their answer
has been rejected. Several workers sent pleading e-mails justifying
their answer and requesting approval, or apologizing for having
misunderstood the question (for jobs whose reward was 6 cents).

6. System Architecture and Implementation
In order to cleanly separate the concerns of delivering reliable data
to the end-user, interfacing with an arbitrary crowdsourcing system,
and specifying validation strategies in a crowdsourcing system-
agnostic manner, AUTOMAN is implemented in tiers.

6.1 Domain-specific language
The programmer’s interface to AUTOMAN is a set of function
calls, implemented as an embedded domain-specific language for
the Scala programming language. The choice of Scala as a host
language was motivated primarily by the desire to have access to a
rich set of language features while maintaining compatibility with
existing code. Scala is fully interoperable with existing Java code;
the crowdsourcing system compatibility layer heavily utilizes this
feature to communicate with Amazon’s Mechanical Turk system.
Scala also provides access to powerful functional language features



that simplify the task of implementing a complicated system. These
function calls act as syntactic sugar, strengthening the illusion that
crowdsourcing tasks really are just a kind of function call with an
extra error tolerance parameter.

When using the AUTOMAN DSL, programmers first create an
AutoMan instance, specifying an AutomanConfig object, which
indicates which crowdsourcing system should be used (e.g., Me-
chanical Turk) and how it should be configured (e.g., user creden-
tials, total budget, etc.). Next, the Task function is declared, and
programmers provide the desired statistical confidence level, a
QuestionForm object, and any other crowdsourcing-specific task
parameters as required. When programmers call their Task func-
tion with some input data, the input is automatically boxed into a
FutureData object, and an output FutureData object is returned.

From this point on, AUTOMAN handles communication with
the crowdsourcing backend, task scheduling, quality control, and
returning a result back to the programmer under budget and in a
timely manner. The outputted FutureData object is available to use
immediately, and may be passed as input to other Task function calls.
If a FutureData object is accessed by native (non-AUTOMAN)
functions, they will block if the runtime has not yet completed
computation and propagated values into those objects.

Since our aim was to make task specification as simple as
possible, and to automate as many functions as possible, our
Mechanical Turk compatibility layer provides sane defaults for many
of the parameters. Additionally, we delegate control of task timeouts
and rewards to AUTOMAN, which will automatically adjust them
to incentivize workers. Maximizing automation allows for concise
task specification for the common cases. When our defaults are not
appropriate for a particular program, the programmer may override
them.

6.2 Abstract tasks and concrete tasks
The main purpose of the DSL is to help the programmer construct
AbstractTask objects, which represent the system’s promise to
return a unit of data to the end-user. In reality, many actual tasks,
which we call ConcreteTasks, may be created in the process of
computing a single AbstractTask, however, this fact is hidden
from the programmer.

AUTOMAN handles scheduling of all real tasks in the target
crowdsourcing system. After programmers have defined their task
in terms of an AbstractTask using the Task DSL keyword, they
can then call the task as if it were a function. In other words, they
provide input as arguments to the function, and receive output as a
return value from the function, which can be fed as input to other
tasks as desired.

In the background, AUTOMAN constructs a graph represent-
ing an abstract execution plan, identifying data dependencies by
automatically boxing input and unboxing output parameters in
FutureData objects which are embedded into the graph. The ab-
stract execution plan allows AUTOMAN to inspect the planed work
and to exploit all possible data parallelism present in the program.
As soon as a task is called with some input data, AUTOMAN immedi-
ately begins scheduling jobs, only waiting if a given data dependency
is not yet resolved.

6.3 Validation strategies
The manner in which jobs are scheduled and errors handled depends
on the chosen ValidationStrategy. By default, we provide the
ReplicateAndAggregate strategy, which performs the form of
statistical error handling we outlined in earlier sections. However,
in the event that more sophisticated error handling is required, the
programmer may either extend or completely replace our base error-
handling strategy by implementing the ValidationStrategy in-
terface.

6.4 Third-party implementors
Implementors who wish to adapt the AUTOMAN runtime for addi-
tional crowdsourcing systems need only implement the following
interfaces: AutomanConfig, AbstractTask, ConcreteTask, and
QuestionForm. Programs for one crowdsourcing backend thus can
be ported to a new system by including that compatibility code and
specifying the proprietary system’s configuration details.

7. Experience Report
A conventional evaluation of AUTOMAN is complicated by several
factors. First, AUTOMAN is an entirely new programming paradigm.
There are no comparable systems, and thus no suite of benchmarks
to use to compare AUTOMAN to other approaches. We view AU-
TOMAN primarily as an enabling technology that will allow pro-
grammers to explore an entirely new class of applications.

Second, running on crowdsourcing platforms adds an unprece-
dented level of non-determinism. There can be a wide variance
in runtimes due to factors such as the time of day or day of the
week. Because the population of workers is constantly in flux, no
experiments are repeatable.

Instead, we report on our experience using AUTOMAN. We have
written a number of AUTOMAN programs, including the cartoon
character classifier described in Section 3, and a “good vs. evil”
classifier. The good vs. evil question is “which of these Star Wars
characters are GOOD” (and the inverted question, “which...are
EVIL”). The question provides obfuscated links to images of five
different Star Wars characters: Princess Leia, Han Solo, Luke
Skywalker, Darth Vader, and Darth Maul (the latter two are evil).

The cartoon character classifier is a single-choice multiple choice
question, while the Star Wars classifier is an any-number multiple
choice question. We have also experimented with the time-value
option to trade money for reduced latency (Section 4.2). The only
feature that these programs do not exercise is AUTOMAN’s support
of complex control structure; we plan to build more complex
applications that further show off AUTOMAN’s unique features.

We have found AUTOMAN to be surprisingly easy to use, and
that in every case to date, every one of AUTOMAN’s features ends
up getting exercised, including automatic scheduling, budgeting,
and quality control. In particular, the quality control mechanism is
robust and tremendously effective.

Because AUTOMAN handles all the low-level details of manag-
ing crowdsourcing, we have found ourselves spending more time on
issues like the need to unambiguously phrase questions, and coming
up with an appropriate and attractive title for questions (to entice
workers).

8. Related Work
Programming the Crowd. While there has been substantial ad hoc
use of crowdsourcing platforms, especially Amazon’s Mechanical
Turk, there has been little effort to manage workers programatically.
Amazon’s Mechanical Turk exposes a low-level API allowing jobs
to be submitted, tracked, and checked programatically.

TurKit is a scripting system designed to make it easier to manage
Mechanical Turk tasks [13]. TurKit Script extends JavaScript with
a templating feature for common Mechanical Turk tasks, and adds
checkpointing to avoid re-submitting Mechanical Turk tasks if a
script fails. CrowdForge is a web tool that wraps a MapReduce-
like abstraction on Mechanical Turk tasks [4, 11]. Programmers
decompose tasks into partition tasks, map tasks, and reduce tasks.
CrowdForge automatically handles distributing tasks to multiple
users and collecting the results. Unlike AUTOMAN, neither TurKit
nor CrowdForge automatically manage scheduling, pricing, or
quality control; in addition, TurkIt’s embedding in JavaScript also
limits its usefulness for compute-intensive tasks.



CrowdDB models crowdsourcing as an extension to relational
databases, providing annotations to traditional SQL queries that
trigger the SQL runtime to crowdsource database cleansing tasks [8].
The SQL runtime is crowdsourcing-aware, so that the SQL’s query
planner can minimize operations that would otherwise be very
expensive. Unlike AUTOMAN, CrowdDB is not a general platform
for computing, and relies on majority voting as its sole quality
control mechanism.

Turkomatic aims to crowdsource an entire computation, includ-
ing the “programming” of the task [12]. Tasks are provided to the
system in plain English, and the Turkomatic runtime proceeds in
two steps: a map step and a reduce step. In the map step, workers
provide an execution plan, which is then carried out in the reduce
step. Like AUTOMAN, Turkomatic can be used to construct arbitrar-
ily complex computations. However, Turkomatic does not handle
budgeting or quality control, and also cannot be integrated with a
traditional programming language.

Quality Control. CrowdFlower is a closed-source, web service
that targets commercial crowdsourcing platforms [15]. To enhance
quality, CrowdFlower uses a “gold-seeding” approach to identify
likely erroneous workers, sprinkling questions with known answers
into the question pipeline. CrowdFlower incorporates methods to
programmatically generate this data via “fuzzing” as the system
processes real work, in an effort to ease the gold-generation burden
on the requester. Recognizing new types of errors remains a manual
process. Like other work in this area, this approach focuses on
establishing trust in the quality of a particular worker [10]. Rather
than trust that one can extrapolate quality of work on a new task from
a worker’s past performance, AUTOMAN addresses work quality
directly.

Shepherd provides interactive feedback between task requesters
and task workers in an effort to increase quality; the idea is to train
workers to do a particular job well [6]. This approach requires ongo-
ing interaction between requesters and workers, while AUTOMAN
requires none.

Soylent introduces the find-fix-verify pattern of quality control for
written documents. The idea is to crowdsource three distinct phases:
finding errors, fixing errors, and verifying the fixes [2]. Soylent can
handle open-ended questions, which AUTOMAN currently does not
support. However, unlike AUTOMAN, Soylent’s approach does not
make any quantitative guarantees about the quality of the output.

9. Future Work
We plan to build on the existing AUTOMAN prototype in the
following directions:

Broader question classes. The current AUTOMAN prototype sup-
ports multiple-choice questions where exactly one of the answers
is correct, or when zero or more may be correct. We plan to extend
AUTOMAN to support questions with free-form answers (that is,
open-ended questions). The validation strategy will add an inter-
mediate step that depends on workers to rank answers, and then
perform quality control on the rankings.

Exposing a Java API. AUTOMAN currently is implemented as a
domain-specific language in Scala. While Scala makes it extremely
simple to use human-based computations as if they were ordinary
functions, we want to extend the benefits of AUTOMAN to users
who are more comfortable programming in Java. We plan to extend
AUTOMAN with an API that can be invoked from Java. We are
planning to expose an API that virtualizes the existing Amazon
Mechanical Turk SDK: programmers using the SDK will actually
interact with AUTOMAN, which will manage scheduling, budgeting,
and quality control automatically.

Persistent/restartable jobs. Programming humans can lead to sub-
tle “bugs”: for example, the wording of a question may turn out to
be ambiguous, or have unintended interpretations. We expect AU-
TOMAN programs, like their counterparts in conventional program-
ming environments, to be refined over time. However, we would also
like to save the results of previous computations whenever possible
to avoid wasting money. We plan to provide a facility that allows
previous computations to be persisted and restored, like TurkIt [13].

Visualization tools. While AUTOMAN hides the management
details of human-based computation beneath an abstraction layer, it
can be useful for debugging to peel back this layer to see how tasks
are progressing. AUTOMAN currently provides a simple logging
mechanism, but as the number of jobs becomes large, navigating logs
quicky becomes onerous. Building on the fact that the AUTOMAN
runtime system already acts as a server, we plan to extend it with
a web service that will allow AUTOMAN programmers to view the
jobs in the system. We are initially planning to include visualizations
of the execution graph (including summaries) and allow searching
for jobs matching certain criteria.

10. Conclusion
Humans can perform many tasks with ease that remain difficult or
impossible for computers. This paper presents AUTOMAN, the first
crowdprogramming system. Crowdprogramming integrates human-
based and digital computation. By automatically managing quality
control, scheduling, and budgeting, AUTOMAN allows programmers
to easily harness human-based computation for their applications.
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A. Quality Control Threshold Derivation
Given parameters n ∈ N0 and 0 ≤ p1, p2, . . . , pk ≤ 1 with∑k
i=1 pi = 1, we say Z = (Z1, . . . , Zk) is a multinomial distribu-

tion with parameters (n, p1, p2, . . . , pk) if for any z1, z2, . . . ∈ N0

with
∑k
i=1 zi = n

Pr [∀i : Zi = zi] =
n!

z1!z2! . . . zk!
px11 . . . p

xk
k

For example, if n voters are given k options and each voter (indepen-
dently) picks option i with probability pi then Zi will correspond to
the number of votes received by the ith option.

To compute the probability of a multinomial distribution, we
follow the approach outlined by DasGupta [3].

Lemma A.1. For 0 ≤ ai ≤ bi ≤ n and i ∈ [k],

Pr [∀i : Zi ∈ [ai, bi]] = n! · coeffλ,n

(
k∏
i=1

(
bi∑
j=ai

(piλ)j

j!

))
,

where coeffλ,n(f(λ)) is the coefficient of λn in the polynomial f .

Proof. Let N ∈ Poi(λ) be a random variable distributed ac-
cording to the Poisson distribution with parameter λ. Then let
ZN = (ZN1 , . . . , Z

N
k ) is a multinomial distribution with param-

eters (N, p1, p2, . . . , pk). Note that Z = Zn. It’s known (e.g., [7,

pp. 216]) that

Pr
[
∀i : ZNi ∈ [ai, bi]

]
=

k∏
i=1

Pr
[
ZNi ∈ [ai, bi]

]
=

(
k∏
i=1

(
bi∑
j=ai

(piλ)je−piλ

j!

))

=

(
e−λ

k∏
i=1

(
bi∑
j=ai

(piλ)j

j!

))
.

But

Pr
[
∀i : ZNi ∈ [ai, bi]

]
=

∞∑
m=0

Pr [N = m] · Pr [∀i : Zmi ∈ [ai, bi]]

=

∞∑
m=0

λme−λ

m!
· Pr [∀i : Zmi ∈ [ai, bi]]

and hence
∞∑
m=0

λm

m!
· Pr [∀i : Zmi ∈ [ai, bi]] =

(
k∏
i=1

(
bi∑
j=ai

(piλ)j

j!

))
.

The result follows by equating the coefficients of λn.

Let X and Y be multinomial distributions with parameters
(n, 1/k, . . . , 1/k) and (n, p, q, . . . , q) where q = (1− p)/(k − 1)
respectively. The next lemma follow from Lemma A.1.

Lemma A.2.

Pr
[
max
i
Xi < t

]
= E1(n, t)

Pr

[
max
i≥2

Yi < t ≤ Y1

]
= E2(p, n, t)

where

E1(n, t) =
n!

kn
· coeffλ,n

(
(

t−1∑
j=0

λj/j!)k
)

and

E2(p, n, t) = n!·coeffλ,n

(t−1∑
j=0

(qλ)j

j!

)k−1

·

(
∞∑
j=t

(pλ)j

j!

) .

Note that E1(n, n) = 1− 1/kn−1 and define

t(n, α) :=

{
min{t : E1(n, t) ≤ α} if E1(n, n) ≤ α
∞ if E1(n, n) > α

. (1)

This ensures that when n voters each randomly chose an option, the
probability that an option passes the threshold t(n, α) is at most α.
Next we define

`(p∗, β) := min{n : E2(p∗, n, t(n, α)) ≤ β} . (2)

This ensures that if the voters have a bias of at least p∗ towards a
certain popular option (and all other options are equally weighted),
then when we ask `(p∗) voters, the number of votes cast for the
popular option passes the threshold (and all other options are below
threshold) with probability at least β.
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