
Page-Level Cooperative Garbage Collection

Matthew Hertz, Yi Feng and Emery D. Berger
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003

{hertz, yifeng, emery}@cs.umass.edu

ABSTRACT
Programs written in garbage-collected languages like Java often
have large working sets and poor locality. Worse, a full garbage col-
lection must visit all live data and is likely to touch pages that are no
longer resident, triggering paging. The result is a pronounced drop
in throughput and a spike in latency. We show that just a slight re-
duction in available memory causes the throughput of the SPECjbb
benchmark to drop by 66% and results in garbage collection pauses
lasting for several seconds.

This paper introduces page-level cooperative garbage collection,
an approach in which the garbage collector works with the virtual
memory manager to limit paging. We present a novel, coopera-
tive garbage collection algorithm called Hippocratic collection. By
communicating with the virtual memory manager and “bookmark-
ing” objects, the Hippocratic collector eliminates paging caused by
garbage collection. Our approach requires only modest extensions
to existing virtual memory management algorithms. We present
empirical results using our modified Linux kernel. We show that
the Hippocratic collector runs in smaller footprints than traditional
collectors while providing competitive throughput. Under mem-
ory pressure, Hippocratic collection improves the throughput of
SPECjbb by a factor of two over the next best garbage collector.

1. Introduction

As to diseases, make a habit of two things – to help, or
at least, to do no harm. —Hippocrates [18]

Garbage collection, and the numerous software engineering advan-
tages it provides over explicit memory management [20, 26], is one
primary reason for the popularity of languages like Java and C#.
However, garbage collection suffers from large working set sizes
and poor page-level locality [12]. The result is that fewer garbage-
collected applications can fit in a given amount of RAM and that in-
dividual garbage-collected applications need more space than their
explicitly-managed counterparts. When a garbage-collected appli-
cation does not fit in RAM, its behavior interacts especially poorly
with virtual memory management.

Figure 1 illustrates this problem with the SPECjbb Java Beans
benchmark [21] executing on the HotSpot JVM [1] on a Linux box

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to OOPSLA 2004, Vancouver, BC, Canada
Copyright 2004 ACM 1-11111-111-1/11/1111 ..$5.00

with 512MB of RAM. Exceeding available memory by just 20 MB
triggers paging. Garbage collection while paging causes thrashing
and reduces throughput by 66%.

The root cause of this problem is the lack of cooperation be-
tween the garbage-collector and the virtual memory manager. Vir-
tual memory managers do not communicate memory pressure to
the garbage collector and garbage collectors lack any mechanism
to respond. The collector’s activity disrupts the reference behav-
ior tracked by the virtual memory manager and marches over heap
pages with no regard to which are resident in RAM. Full heap col-
lections may trigger massive paging and have been known to cause
systems to become unresponsive for minutes.

This paper introduces the Hippocratic collector (HC), a page-
level cooperative garbage collector. HC and the virtual memory
manager work together to avoid paging. When needed, HC com-
pacts the heap with a novel copying algorithm that does not need a
copy reserve, allowing it to need up to 50% less heap space while
delivering performance competitive with existing collectors. As
memory pressure rises, HC guides virtual memory eviction deci-
sions. Whenever possible, the Hippocratic collector returns gar-
bage pages to the operating system because these do not require
I/O. When these cannot be found, the collector bookmarks the tar-
gets of outgoing pointers from a victim page. Using these as roots,
HC can perform full memory-resident garbage collections without
paging. We present empirical results demonstrating a factor of two
performance improvement for the SPECjbb benchmark over the
next best garbage collector.

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

S
P

E
C

jb
b

S
co

re

Number of Measurement Seconds

SPECjbb Score vs. Number of Measurement Seconds

Heap size = 460MB
Heap size = 480MB
Heap size = 500MB

Figure 1: SPECjbb transactions per second (higher is better).
A lack of available RAM triggers paging, reducing throughput
by 66% and causing pauses lasting for seconds.

The remainder of this paper is organized as follows. We discuss
related work in Section 2. We describe our Hippocratic garbage
collector in detail in Section 3, and discuss our modest extensions
to the Linux virtual memory manager in Section 4. We present our
experimental methodology in Section 5. Section 6 presents detailed
simulation results and empirical results. We discuss future work
and conclude in Section 7.

2. Related Work
In this section, we discuss related work. We first classify garbage
collection algorithms into four categories, based on their degree
of involvement with the virtual memory manager. Those collec-
tors that ignore virtual memory altogether we call VM-oblivious.
Wilson’s survey and Jones and Lins’ text contain numerous refer-
ences for traditional garbage collectors which almost all fit into this
category [13, 27]. A garbage collector designed for use in virtual
memory environments, especially one intended to limit paging, is
VM-sensitive. A VM-aware garbage collector either receives infor-
mation from or sends information to the virtual memory manager.
We know of no previous garbage collector that is VM-cooperative,
that is, where there is two-way communication between the garbage
collector and the virtual memory manager. We therefore address
only VM-sensitive and VM-aware garbage collectors here.

2.1 VM-Sensitive Garbage Collection

Fenichel and Yochelson first introduced semispace collection as a
means of reducing the impact of paging by compacting live data [11].
Moon developed ephemeral garbage collection [17] to improve
the paging behavior of garbage collection. Ephemeral collection
relies on hardware-supported write barriers to track pointers into
the ephemeral area, which holds short-lived objects. Generational
garbage collection achieves the same result without hardware sup-
port [5, 15, 24], allowing short-lived objects to be reclaimed with-
out the need for full-heap garbage collections. Reducing the fre-
quency of full-heap garbage collections reduces paging. One vari-
ant of the Hippocratic collector that we present here also uses a
nursery generation to exploit this “weak generational hypothesis”
(that most objects die young), but goes further to avoid paging by
direct interaction with the virtual memory manager.

A number of researchers have focused on the problem of improv-
ing page-level locality of reference in the application by using the
garbage collector to modify object layout [9, 22, 23, 28]. These
studies demonstrate reductions in the total number of page faults,
but do not address the problem of paging caused by garbage collec-
tion itself, which we identify as the primary culprit.

Kim and Hsu examined garbage collection performance using
the SpecJVM98 suite of benchmarks [14]. They found that pag-
ing causes garbage collection performance to suffer significantly,
but that optimal heap sizes could be found. These optimal heap
sizes require that applications maintain a consistent amount of live
data and be running on a dedicated machine. Our system dynam-
ically adapts to memory pressure and is thus suitable for multi-
programmed environments and applications with fluctuating work-
loads.

2.2 VM-Aware Garbage Collection

We know of only two garbage collection algorithms that attempt
to incorporate information from or communicate with the virtual
memory manager.

The closest work to our own is by Cooper, Nettles, and Subrama-
nian, who used external pagers in the Mach operating system [16]
to allow the garbage collector to influence virtual memory paging
behavior [8]. Their garbage collector informed the pager of dis-
cardable (garbage) memory pages that can be removed from main

memory without being written back to disk. Their system suffered
from a number of limitations, some of which are related to their use
of the external pager, which cannot dictate policy decisions to the
virtual memory manager. First, their garbage collector may pro-
vide discardable pages to the virtual memory manager, but the VM
may nonetheless choose to evict a page that must be copied back
to disk. Their collector may also be over or under-aggressive at
flushing discardable pages. Either approach degrades performance.
Our system acts only under memory pressure signals from the vir-
tual memory manager and directly guides the VM’s eviction deci-
sions. HC also identifies discardable pages, but additionally per-
forms compaction, gives up non-discardable pages (with live data),
and continues to perform full memory-resident garbage collections
even when the heap does not fit in memory.

Alonso and Appel present a collector that can shrink the heap af-
ter each garbage collection based upon the current level of available
memory, which they obtain from an “advisor” that calls vmstat [2].
Our work can also be viewed as shrinking the size of the heap by
giving up discardable pages under memory pressure, but does not
need to wait until the next collection suffers the effects of paging.
More importantly, however, HC cooperates closely with the virtual
memory manager on eviction decisions.

3. Hippocratic Garbage Collection
In this section, we first present an overview of our new Hippocratic
collector and then discuss in detail the new algorithm’s design and
how it improves garbage collection paging performance. We then
discuss aspects of HC that ensure high performance even when
there is no memory pressure.

3.1 Hippocratic Algorithm Overview

The Hippocratic collector divides the heap into superpages, page-
aligned groups of contiguous pages. Our superpages consist of
four pages (16K total). HC allocates objects using segregated size
classes: objects of different sizes are allocated onto different super-
pages. When the heap fills, HC usually uses mark-sweep garbage
collection. While mark-sweep collection provides good through-
put, it is unable to compact the heap. HC’s use of fixed-size su-
perpages and segregated size classes permits compacting the heap
through copying collection without needing a copy reserve, as we
describe in Section 3.3.

We augment both our collector and the virtual memory manager
with simple means of communicating important information. Com-
munication with the virtual memory manager only occurs under
memory pressure. When notified by the virtual memory manager
that increased memory pressure will soon cause paging, the Hip-
pocratic collector works to keep heap memory resident and avoid
mutator page faults. When heap pages must be evicted, a “book-
marking” algorithm allows HC to collect only those objects in main
memory and eliminates page faults caused by the garbage collector.

3.2 Superpages and Size Classes

In order to be able to manage page evictions, we need a heap or-
ganization that is page-oriented. HC uses groups of pages that we
call superpages, which it manages using segregated size classes [7].
This organization allows HC to manage objects in superpages with-
out the need for additional per-object metadata.

To maximize the utilization of our superpages, we chose size
classes which minimize both internal and external fragmentation.
We use exact (word-aligned) size classes for allocations up to 64
bytes. At larger object sizes, we considered only those sizes that
minimize the external fragmentation in our superpages. From this
large set of potential size classes, we selected sizes that came clos-
est to a target worst-case fragmentation of 12.5%. Because we

(a) During the marking phase, HC finds and marks
all of reachable objects. We show marked objects
using a darker grey.

(b) HC selects the minimum needed superpages to
serve as targets. Diagonal hashing marks the target
superpages selected.

(c) HC copies reachable objects not already on a
target page. Our collector does this in one pass us-
ing a Cheney scan. The arrows show where HC
copies objects in this compacting collection.

(d) Once copying is complete, non-target super-
pages only contain garbage objects. HC frees these
superpages.

Figure 2: An illustration of how the Hippocratic collector performs copying collection without any copy reserve. After marking the
reachable objects, HC compacts the heap into the minimum set of superpages. HC then frees the garbage superpages.

could not minimize the fragmentation for objects larger than half
the superpage size, we keep them in a separate large object space.

3.3 Mark-Sweep + Mark-Compact Collection

HC typically collects the heap with mark-sweep collection. We
use mark-sweep for two reasons. First, it usually provides good
throughput. More importantly, it does not increase memory pres-
sure by needing the “ copy reserve” of pages required by most copy-
ing collectors 1. However, the inability of mark-sweep to compact
the heap can itself increase memory pressure. Using mark-sweep,
HC cannot reclaim a superpage even if it contains just one reach-
able object.

We therefore extend our design with a novel copying collection
algorithm that does not need a copy reserve. When a full garbage
collection does not free enough pages to fulfill the current alloca-
tion request or sufficiently reduce memory pressure, HC compacts
the heap. Because our compacting collection does not the addi-
tional copy reserve it will not add to memory pressure during col-
lection. In fact, it often reduces memory pressure after collection
by reducing the number of superpages the heap uses.

Figure 2 illustrates this copying collection. HC begins with a
marking phase (Figure 2(a)). During this phase, HC counts the
number of objects of each size class it marks. Once marking is
complete, HC uses these counts to compute the minimum number
of superpages needed for each size class and selects a minimum set
of superpages as “ targets.” HC then sweeps through the superpages
(Figure 2(b)). Afterwards, HC begins the copying phase. During
copying, HC tests if each visited object is on a target superpage.
If not, HC copies it onto an empty location on a target superpage
(Figure 2(c)). HC does not move objects that are already on a tar-
get superpage. After this pass, all reachable objects are on target
superpages, and HC can therefore free all non-target superpages
(Figure 2(d)).

Our compacting algorithm copies objects without needing a copy
reserve only because HC organizes the heap through superpages
and segregated size classes. HC knows the exact number of ob-
jects each superpage can hold because segregated size classes fill

1Usually this copy reserve is half of the size of the heap, but Sachindran
et al. present a copying collector that allows the use of much smaller copy
reserves [19].

the superpages without external fragmentation. After counting the
number of reachable objects, HC computes exactly how many su-
perpages are needed to hold each size class. Superpages avoid the
need for a memory reserve because by checking if an object lies on
a target superpage, HC knows if an object will move.

3.4 VM-Cooperative Approach

HC cooperates with the virtual memory manager to perform well
when under memory pressure. This cooperation allows the HC to
adjust and adapt to changing memory pressure while the virtual
memory manager uses HC’s knowledge of the heap to make good
paging decisions.

Keeping the Heap Memory Resident

HC tracks superpages it has used previously and superpages cur-
rently being used while it runs. Communication between the vir-
tual memory manager and HC begins when the virtual memory
manager notifies the collector of the pending eviction of one of
its pages. When this happens, HC looks for previously used su-
perpages that it is not currently using. Rather than evict a useful
page, HC directs the virtual memory manager to reclaim one of
these discardable pages whose contents do not need to be saved.
If a discardable page cannot be found, HC collects the heap. After
collection, HC can direct the virtual memory manager to discard
one of the newly-emptied pages. This approach allows HC to keep
the entire heap memory resident whenever possible.

The signal also notifies HC of increasing memory pressure and
the current amount of available memory. Unlike VM-oblivious col-
lectors, HC will not grow at the expense of paging. Instead, our col-
lector shrinks the heap to stay within the limits of physical memory.
If memory pressure continues to increase, HC will discard addi-
tional pages and shrink the heap further. So long as the program
continues running, HC shrinks the heap if this will avoid paging.
By resizing the heap in response to this fine-grained information
provided by the virtual memory manager, HC is often able to avoid
the poor performance resulting from collecting the heap while pag-
ing and slow mutator response times caused by page faults.

Bookmarking

If memory pressure is sufficiently high, it may be impossible for
HC to either shrink the heap to fit in main memory or fulfill an al-

(a) The heap after HC scans for bookmarked
objects, shown with bookmarks. Objects on
evicted pages are outlined.

(b) After completing the marking phase,
reachable objects are either marked or
evicted. Marked objects are dark gray.

(c) HC uses bookmarks to sweep only
memory-resident pages during mark-sweep
collections.

Figure 3: The Hippocratic collector performing in-core mark-sweep collection using bookmarks (HC also uses bookmarks during
copying compaction).

location within the available physical memory. In these situations,
even our Hippocratic collector cannot prevent heap pages from be-
ing evicted. However, using an approach we call bookmarking, HC
is able to limit the impact of these evictions. Despite parts of the
heap not being resident in memory, bookmarking allows HC to per-
form full memory-resident garbage collection without paging. HC
thus greatly improves garbage collection performance even when
it has pages evicted to disk by eliminating page faults caused by
allocation and garbage collection.

We now describe how the Hippocratic collector uses bookmarks
to perform mark-sweep and copying collection without causing
page faults and then discuss how HC processes pages to set and
remove these bookmarks.

Garbage Collection with Bookmarks

Before a garbage collector can reclaim objects in the heap, it first
determines which objects are reachable. While paging, VM-oblivious
garbage collection performance suffers because the garbage collec-
tor visits all reachable objects, including those on evicted pages,
to find the objects to which they refer. HC instead bookmarks
objects that are the target of references on evicted pages. These
bookmarks act as roots that allow full memory-resident collections
without accessing the evicted pages and thus without triggering any
page faults.

Figure 3 shows HC performing the marking phase of collection
using bookmarks. While heap pages are evicted, HC begins each
garbage collection by scanning the superpages for memory resi-
dent, bookmarked objects. During this scan, HC marks the book-
marked objects and treats them as if they were root-referenced (Fig-
ure 3(a)). After completing this scan, HC knows all the references
on evicted objects and does not need to fault pages back in. HC
now follows its usual marking phase except to ignore references
to evicted objects. When the marking phase completes, all the
reachable objects will be either marked or evicted (Figure 3(b)).
During mark-sweep collections, HC sweeps the memory-resident
pages and the collection completes (Figure 3(c)).

For copying collection, only slightly more processing is needed.
After marking the heap, HC updates the marked counts to reserve
space for every possible object on an evicted page. HC then selects
all superpages containing bookmarked objects or evicted pages as
targets. Since their superpages must be targets, this ensures HC
never moves evicted objects. Similarly, HC never copies book-
marked objects and will not update (evicted) pointers to the object.
HC can then select any other needed targets and is now able to per-
form its usual copying collection.

Page Eviction

HC eliminates page faults during garbage collection because it can
bookmark objects before the virtual memory manager evicts pages.
If HC is notified of an upcoming eviction and cannot shrink the

heap or find a discardable page, it selects a victim page. Our current
strategy chooses victim pages that have not recently been evicted
and prefers those that contain few pointers.

Having selected the victim page, HC now scans each of the page’s
objects. During this scan, HC looks for references, bookmarks the
target, and increments a counter in the target superpage’s header.
Once all HC processes all of the objects on the page, it can be
evicted. Because the page has just been touched, however, the vir-
tual memory manager would normally not evict it soon. HC com-
municates with the virtual memory manager one more time, speci-
fying that the page should be evicted.

The mutator could change the references on the page after its
eviction, but the page would first have to be brought back into main
memory. Therefore, HC can rely on the bookmarks to remember
the evicted objects’ references until the evicted page is faulted back
into memory.

Page Reloading

HC eliminates page faults within the garbage collector, but cannot
prevent mutator page faults. Our extended virtual memory manager
notifies the collector whenever a heap page is faulted in. Because
the notification arrives before the page becomes memory resident,
HC can remove the bookmarks created when the page was evicted.

By determining the size class of the objects on the page, HC can
find each of the objects on the page. The collector scans each object
and, analogous to HC’s processing during eviction, HC decrements
the bookmark counter for referenced objects’ superpages.

Superpages whose bookmark counters are reduced to zero no
longer contain any objects referred to from evicted objects. Since
all references to the object can be found during collection, HC
clears all the bookmarks on the superpage.

Limitations of Bookmarking

Bookmarks guarantee that reachable objects are never reclaimed
and eliminate page faults caused by the garbage collector. How-
ever, there is a space cost to bookmarking. Because HC must target
all superpages containing bookmarked objects and evicted pages,
compacting collection cannot always minimize the size of the heap.
Additionally, HC must treat all bookmarked objects as reachable.
We believe that avoiding paging during garbage collection is worth
this potential cost in excess space retention.

3.5 Collector Throughput

Collector performance when there is no memory pressure is just
as important as performance under memory pressure. We have de-
signed the Hippocratic collector to maintain good throughput both
while paging and when not paging. While the mutator primarily ac-
cesses newly-allocated objects, HC’s segregated superpages cannot
take advantage of this. HC instead allocates into a bump pointer-
based nursery. Allocation into this nursery is faster than into segre-

gated superpages, and, because most objects die young, collecting
this nursery is also very cheap. While this nursery cannot support
bookmarking, the frequency of mutator accesses would make these
pages poor eviction choices. Including this nursery within the Hip-
pocratic collector improves collector throughput without adding
significantly to memory pressure.

Collecting this nursery requires a copy reserve, which could add
memory pressure. However, HC’s space management quickly shrinks
the size of both the nursery and the copy reserve when memory
pressure increases. As a result of this careful management, adding
the nursery does not change HC’s memory demands.

This nursery also allows us to consider generational collection.
Generation collection often improves garbage collector performance.
It also improves page-level locality by focusing both garbage col-
lector and mutator activity on the nursery [17]. We therefore also
implemented a generational Hippocratic collector (GenHC).

GenHC needs a method of remembering pointers from the older
to the younger generation. GenHC normally stores these point-
ers in page-sized write buffers, which allow fast storage but could
demand unbounded amounts of space. GenHC limits this space
overhead by processing buffers when they fill. During this pro-
cessing, GenHC removes pointers from the older generation and
replaces them with an object-based card marking scheme. This fil-
tering provides the fast storage of the write buffers but need only a
single page. Given the increased throughput of generational collec-
tion, using an extra page from the heap is not a significant problem.

3.6 HC Implementation

We have implemented the Hippocratic collector using JMTk within
the Jikes RVM version 2.2.2 [3, 4]. When implementing the HC
algorithm within JMTk and Jikes, we needed to make two small
modifications. In Jikes, object headers for scalars are found at the
end of the object while object headers for arrays are placed at the
start of an object. This placement is useful for optimizing bounds
checks [4], but makes it difficult for HC to find object headers when
scanning pages. We solve this problem by further segmenting our
allocation and allowing superpages to hold either only scalars or
only arrays. Within each superpage header, HC stores the type of
objects contained in the superpage. With the type and size class
information from the superpage header, HC quickly locates the ob-
jects and their headers.

4. Kernel Support
The Hippocratic collector improves garbage collection paging per-
formance primarily by cooperating with the virtual memory man-
ager. In this section, we describe our extensions to the Linux kernel
that enable cooperative garbage collection.

We implemented these modifications on the 2.4.20 Linux ker-
nel. This kernel uses the global LRU replacement algorithm. User
pages are either kept in the active list (managed by the clock algo-
rithm) or the inactive list (a FIFO queue). Evictions are made from
the pages at the end of the inactive list.

We added notification for processes at three separate events: when
a page is initially scheduled for eviction, when a page is actually
evicted, and when a page is swapped back into memory. In ad-
dition to notifying the application of the specific event, the kernel
includes the address of the relevant page. To keep track of the own-
ing process(es) of a page, we applied Rik van Riel’s lightweight
reverse mapping patch [25]. This patch allows determination of the
owning process of only those pages in physical memory. We ex-
tended this reverse mapping to include pages on the swap partition.

HC needs memory residency information with sufficient time to
work with the virtual memory manager on the eventual decision.
To ensure the timeliness of this communication, we implemented

our notifications using Linux real-time signals. Real-time signals in
the Linux kernel are queueable. Unlike other notification methods,
we can use these signals without worrying about signals lost due to
other process activity.

In addition to these signals, we needed one new system call,
vm relinquish(). This call allows user processes to volun-
tarily surrender an arbitrarily large number of pages, which can
optionally be labeled as discardable. Our kernel can immediately
reuse discardable pages. Nondiscardable pages passed to the kernel
are placed at the end of the inactive queue and quickly swapped out.
Our cooperative garbage collector can keep heap pages resident by
first providing discardable pages to be evicted. When paging is in-
evitable, HC uses this system call to evict a different page after it
has been bookmarked.

5. Experimental Methodology
In this section, we present our experimental infrastructure and dis-
cuss our experimental methodology, which includes both empirical
evaluation and simulation studies.

5.1 Empirical Results Methodology

We have recently completed the implementation of our extended
Linux virtual memory manager. We include experiments using
the SPECjbb benchmark on our implemented kernel and plan to
include an extensive suite of experiments in the final version of
this paper. We performed these experiments on a 2.4GHz Pentium
4 Linux machine with 892MB of RAM and 2GB of local swap
space. This processor includes an 8KB L1 data cache and a 512KB
L2 cache. We ran each experiment five times with the system in
single-user mode and the network disabled. We report the average
performance of the five experiments.

5.2 Simulation Methodology

We performed our remaining experiments on a 1.7GHz Pentium 4
Linux machine with 512 MB RAM. This processor has a 8KB L1
data cache, a 12KB L1 instruction cache and a 256KB L2 cache.
For the experiments investigating paging behavior, we use a simu-
lated virtual memory manager. Running in a simulator allows us to
compare program performance independent of scheduler and I/O
effects. Simulations also make it easier to tease apart differences in
collectors’ paging behavior.

Our simulation infrastructure includes a simulated virtual mem-
ory manager based on a segmented queue [6]. Our LRU queue
algorithm traps accesses to all but a small number of the most re-
cently used pages. The protected pages are kept in strict LRU order.
Since most accesses are to these first few pages, leaving these pages
unprotected provides a high-quality approximation to LRU order at
reasonable cost. When Jikes touches a protected page, our simula-
tor moves this page into the upper region of the queue and removes
its protections. During start-up and until the unprotected region is
full, this completes the process. Otherwise, our simulator selects
an unprotected page at random, protects its contents, and moves it
to the head of the protected LRU queue.

For our simulation, all heap pages are initially mapped by Jikes
without read, write, or execute access. Any access to a page there-
fore generates a segmentation fault. We implement our simulator
within the Jikes segmentation fault handler using page protection as
a means of trapping accesses. While this simulation slows overall
program execution, nearly all of the extra time is spent within the
kernel. We estimate running times by combining user mode execu-
tion times with an aggressive 5ms penalty for each simulated page
fault.

Benchmark statistics
Benchmark Total Bytes Alloc Min. Heap Size Alloc/Min. Description
201 compress 314,289,252 11,534,336 27.25 Compression/decompression
202 jess 668,792,828 7,340,032 91.11 Java Expert System Shell problem solver
205 raytrace 384,138,556 8,388,608 45.79 Raytrace generator
209 db 311,160,772 13,631,488 22.83 Database-like query program
213 javac 991,272,712 14,680,064 67.86 Java compiler
228 jack 764,949,296 8,388,608 91.19 Code parser

pseudoJBB 757,154,424 30,408,704 24.90 Java beans benchmark

Table 1: Memory usage statistics for our benchmark suite.

6. Results
In this section, we present our experimental analysis of the Hip-
pocratic garbage collection algorithm. We first analyze the perfor-
mance of HC and GenHC when there is no memory pressure and
then examine how well they respond to memory pressure.

We compare the performance of our HC and GenHC collec-
tors with four of the collectors included with Jikes: SemiSpace,
CopyMS (a whole heap collector with a bump-pointer nursery and
mark-sweep mature space), GenCopy, and GenMS (Appel-style
generational collectors using bump-pointer and mark-sweep ma-
ture spaces, respectively)2. We evaluated the benchmarks listed in
Table 1 over a range of heap sizes. For these experiments, we use
“ OptOptFast” configurations. These configurations use the opti-
mizing compiler to build as much code as possible into the boot
image. Additionally, the optimizing compiler is used on the run-
ning program. While most virtual machines use an adaptive system
to optimize only “ hot” methods, research has found that this skews
results for short-running programs [10]. We thus use the optimiz-
ing compiler to ensure that each garbage collection algorithm runs
with an identical load.

6.1 Throughput without memory pressure

While we designed HC and GenHC to perform well while paging,
these algorithms would not be useful if they did not provide good
throughput when not paging. Figure 4 presents the results of ex-
periments for the case when there is adequate memory to run the
benchmarks without any paging. Limiting fragmentation and elim-
inating the copy reserve has additional benefits of allows HC to run
in very small heaps. HC runs in heaps smaller than CopyMS re-
quires for every benchmark we examine, while SemiSpace runs in
this minimum heap size only once. As Figure 4(f) shows, HC runs
in under 40% of the heap space SemiSpace needs and less than
20% of the heap CopyMS needs. Similarly, Figure 4(d) shows HC
needing less than 44% of the heap space needed by Copy MS and
36% of that needed by SemiSpace.

While this improved space utilization is helpful when paging, it
also enables HC to outperform other collectors at the smallest heap
sizes. As Figure 4(a) shows, using HC to run jess is at least 15%
faster than CopyMS and from 1% - 28% faster than SemiSpace.
Figure 4(c) and Figure 4(e) show the two benchmarks in which
SemiSpace significantly outperforms HC. Cache locality strongly
infl uences performance on db as Figure 4(c) refl ects. Figure 4(e)
shows HC’s performance on jack. HC suffers at the smallest heap
sizes because a large number of superpages are tied up by a small
number of objects.

Figure 4(g) shows the average increase in execution time rela-

2We are working on properly accounting for the page usage of the
MarkSweep collector in JMTk, and plan to include this collector in
the final version of the paper.

tive to HC at each relative heap size. Except for jack, HC can
run in heaps at least 25% smaller than that needed by SemiSpace;
these two smallest heap sizes include only results from jack. Just
as SemiSpace’s 50% runtime increase at 1.5 times the minimum
heap size is due to a single outlier (in that case, a 550% increase in
the time needed to run raytrace), so are the leftmost data. On av-
erage, HC outperforms CopyMS by at least 4%. While SemiSpace
performs slightly better on heaps almost four times HC’s minimum
size, the average improvement is at most 4%.

Few systems use whole heap collection, however. Most exist-
ing applications rely on a generational collector because they pro-
vide good throughput and limited garbage collection pauses. We
now discuss GenHC’s performance to two generational collectors
distributed with JMTk: GenCopy (using copying collection in its
older generation) and GenMS (which uses mark-sweep collection
for the older objects).

We find that, like HC, GenHC runs in significantly smaller heaps
than either of the other two generational collectors. We found that
our filtering remsets were so successful that they enabled GenHC
to run in heaps just as small as those needed by HC. As is the case
for whole-heap collectors, GenMS never completes within the min-
imum heap size needed by GenHC and SemiSpace can only match
GenHC’s heap utility for jack. Figure 4(d) shows that both GenMS
and GenCopy need heaps 50% larger than that needed by GenHC
to run javac. Similarly, in Figure 4(f) GenCopy needs a heap 50%
larger that that needed by GenHC. While the improvements to the
needed heap size are less dramatic for other collectors, this im-
proved space utilization provides a nice validation of fragmentation
approach.

GenHC’s performance on the locality-driven db is an outlier in
our experiments. As can be seen in Figure 4(c), while GenHC is
consistently within 4% of GenMS, it performs up to 14% worse
than GenCopy. Running javac, GenHC is at least 5% faster than
GenCopy at all but the largest heap sizes and, even at these large
sizes, remains slightly faster than the copying collector. It also
compares favorably with GenMS. Once GenMS catches up with
GenHC’s performance at 2.5 times the minimum heap size, execu-
tion times of the two collectors stay within 1% of each other.

Figure 4(h) shows that GenHC substantially outperforms the other
generational collectors at the smallest heap sizes. As the heap
grows, differences between the collectors largely averages out. At
the largest heap size, GenCopy runs a mere 3% faster. This small
runtime improvement comes at a significant cost, however. Run-
ning compress at four times the smallest heap size any collector
needs for this benchmark, GenMS is 6% faster than GenHC. While
this is the only instance where GenMS improves upon GenHC by
more than 4%, there is at least one heap size per benchmark where
GenMS runs at least 7% slower. Similarly, the time savings of-
fered by GenCopy must be weighed against its needing 3.5 times

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 10 15 20 25 30

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, Jess

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(a) Jess

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, Raytrace

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(b) Raytrace

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50 55

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, DB

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(c) DB

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40 45 50 55 60

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, Javac

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(d) Javac

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, Jack

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(e) Jack

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 30 40 50 60 70 80 90 100 110 120

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Heap Size (in MB)

Execution Time in seconds, PseudoJBB

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(f) pseudoJBB

-80

-60

-40

-20

 0

 20

 40

 60

 1 1.5 2 2.5 3 3.5 4

%
C

ha
ng

e
in

 E
xe

cu
tio

n
T

im
e

R
el

at
iv

e
to

 H
C

Relative Heap Size

Execution Time, Geometric Mean of all Benchmarks

GenHC
GenCopy

GenMS
SemiSpace

CopyMS

(g) Geo. Mean Relative to HC

-50

 0

 50

 100

 150

 200

 250

 1 1.5 2 2.5 3 3.5 4

%
C

ha
ng

e
in

 E
xe

cu
tio

n
T

im
e

R
el

at
iv

e
to

 G
en

H
C

Relative Heap Size

Execution Time, Geometric Mean of all Benchmarks

HC
GenCopy

GenMS
SemiSpace

CopyMS

(h) Geo. Mean Relative to GenHC

Figure 4: Relative performance of the collectors across a range of benchmarks when memory is plentiful. The generational Hippo-
cratic collector (GenHC) generally provides the best performance and is often able to run in smaller heaps than the other collectors.

as much time and 50% more space to run raytrace than GenHC
(at 1.5 times the smallest needed heap, GenHC completes in 16.86
seconds versus 228.01 seconds for GenCopy).

6.2 Fixed Memory Pressure

While HC and GenHC perform well when not paging, their through-
put while paging is even more impressive. Figure 5 shows the sim-
ulated execution times of runs using a single heap size and simu-
lating available memory from 45% to 100% of the heap size. Fig-
ure 5(a) examines runs of “ extended” pseudoJBB using an 87MB
heap. To increase the running time of the application and ensure
that compilation does not dominate behavior, these runs double the
usual number of transactions pseudoJBB performs. Figure 5(b)
shows results for runs of javac using a 49MB heap.

In both of these figures, there is little performance difference
between the whole-heap collectors when the heap fits entirely in
memory. HC prevents running with less physical memory from
having any substantial impact. HC runs 21% slower in 45% less
available memory. This contrasts with SemiSpace. Both graphs in
Figure 5 show that even the least number of evicted pages cause
SemiSpace runtime to soar. The effectively random access patterns
exhibited during garbage collection for SemiSpace leads paging to
dominate its performance and execute up to eight times slower than
HC. CopyMS focuses allocations onto a small number of nursery
pages and, as implemented within JMTk, rarely reallocates heap
pages once freed from the older space. While leading to a large
memory footprint, this minimizes paging while the nursery stays
resident. As can be seen in both benchmarks, however, CopyMS’s
performance resembles SemiSpace’s once nursery pages are evicted.
The Hippocratic collector offers significant savings when paging.

Even at the rightmost point on the graph, when the available
memory equals the heap size, GenMS triggers nearly 20,000 faults
and GenCopy causes over 30,000 faults when running the extended
pseduoJBB. Even with what should be the “ correct” heap size, pag-
ing causes these collectors run at least 45% slower than GenHC in
Figure 5(a) and to take at least 3 times as long in Figure 5(b).

As predicted by Moon [17], the collector and mutator’s focus on
accessing the nursery limits either collector from initially suffer-
ing any further significant paging penalties until available memory
becomes so limited that the VM starts evicting pages from the nurs-
ery. The left side of Figure 5(a) shows that, once nursery pages are
evicted, the collectors suffer significant performance penalties be-
cause of paging. By contrast, once notified by the VM of increas-
ing memory pressure, GenHC limits allocations to prevent heap
pages from being evicted. By cooperating with the VM, our gener-
ational collector can execute this workload faster with only 38MB
of available memory than either of the other generational collectors
execute with the full 87MB of memory.

6.3 Dynamic Memory Pressure

We now examine the effects of dynamic memory pressure on gar-
bage collection paging behavior. In particular, we consider the per-
formance impact of increasing memory pressure caused by an ap-
plication starting up or another application requesting memory. We
model this by rapidly reducing the number of available physical
pages until reaching our target memory size. Our simulated VM
reclaims the last page on the LRU every 20ms of program execu-
tion.

We run each three iterations of each benchmark. Figure 6 shows
the simulated time required for each collector. These graphs show
the final size of available memory along the X-axis. These target
memory sizes vary from 95% - 50% of the heap size.

We expected SemiSpace to perform poorly while paging, but
were surprised at the 7 to 14-fold increase in execution time rel-

ative to HC seen in Figure 6(a) and the 9 to 15-fold increases in
Figure 6(a). We discovered that SemiSpace suffers from poor pag-
ing behavior because it effectively loops through memory. Loop-
ing over more memory than available triggers LRU’s well-known
worst-case behavior. The remaining VM-oblivious collectors be-
have much as they did with fixed memory pressure.

Figure 6 show that the Hippocratic collectors adjust to changing
memory pressure while maintaining the high throughput they have
in all our experiments. Bookmarking is especially helpful here. At
the smallest memory sizes of Figure 6(a), GenHC spends over half
of its execution with an average of 101 pages evicted while HC
averages 167 pages evicted. Bookmarking allows both collectors
to proceed without suffering a single page fault.

6.4 Empirical Results

We have recently implemented our extended Linux virtual memory
manager, and Figure 7 shows our experiments with the different
collectors running pseudoJBB on this kernel. To generate equal
memory pressure for each run, we used a program that allocated
and locked memory at application start-up and then touched these
pages every 5 seconds. While two of these jobs ran in the back-
ground, we ran pseduoJBB on Jikes using each collector.

Figure 7(a) shows the average runtime for each collector at a
range of heap sizes over five executions. Not only do these re-
sults validate our simulations, they also show additional perfor-
mance penalties caused by a large number of page faults in a system
running multiple processes. Besides the collectors we previously
discussed, this graph includes data from two variants of GenHC:
w/o cooperation and w/o communication. The first receives signals
from the virtual memory manager, but does not cooperate to give
up discardable pages or suggest eviction targets. The second runs
GenHC in a purely VM-oblivious manner. When unable to com-
municate or cooperate, GenHC performs about as well as any other
algorithm. These final results make it clear that cooperation with
the virtual memory manager is vital in order to perform well while
paging.

7. Conclusion and Future Work
This paper introduces page-level cooperative garbage collection, in
which the garbage collector and virtual memory manager cooper-
ate to improve application performance while paging. We present
our Hippocratic collector, which cooperates with the VM to limit
mutator page faults and uses a novel “ bookmarking” approach that
eliminates paging caused by the garbage collector. When memory
pressure is low, the generational variant of the Hippocratic collector
requires up to 50% smaller heaps while performing competitively
with some of the best existing collectors. With our extended Linux
kernel and under memory pressure, the Hippocratic collector exe-
cutes pseudoJBB in almost half the time required by the next best
garbage collector.

While our results show that this approach already yields sign-
ficant performance improvements and robustness under memory
pressure, there are several directions we would like to advance this
work. Our Hippocratic collector currently focuses on finding a
heap size in which it can run that does not significantly increase
memory pressure. We are exploring extensions to the virtual mem-
ory manager which will allow HC to cheaply determine when it
is appropriate to grow the resident heap. We are also planning to
incorporate recency information from the kernel to decide which
non-discardable pages to evict.

Acknowledgements
Thanks to Eliot Moss, Pritesh Sharma, and Ben Zorn for their in-
sightful comments and feedback. We are especially grateful to

 0

 500

 1000

 1500

 2000

 2500

 3000

 8000 10000 12000 14000 16000 18000 20000 22000

S
im

ul
at

ed
 E

xe
cu

tio
n

T
im

e
in

 S
ec

on
ds

Available Pages

Simulated Execution Time By Available Pages for Extended PseudoJBB

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(a) Simulated execution time running extended pseudoJBB with
an 87 MB heap

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5000 6000 7000 8000 9000 10000 11000 12000 13000

S
im

ul
at

ed
 E

xe
cu

tio
n

T
im

e
in

 S
ec

on
ds

Available Pages

Simulated Execution Time By Available Pages for Javac

GHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(b) Simulated execution time running javac with a 49MB heap

Figure 5: Simulated execution time (lower is better) for all collectors when available memory is fixed. Both Hippocratic collector
variants outperform other collectors at almost every memory size.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

S
im

ul
at

ed
 E

xe
cu

tio
n

T
im

e
in

 S
ec

on
ds

Available Pages

Simulated Execution Time By Available Pages for Jess

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(a) jess with a 20MB heap

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5000 6000 7000 8000 9000 10000 11000 12000

S
im

ul
at

ed
 E

xe
cu

tio
n

T
im

e
in

 S
ec

on
ds

Available Pages

Simulated Execution Time By Available Pages for Javac

GenHC
HC

GenCopy
GenMS

SemiSpace
CopyMS

(b) javac with a 49MB heap

Figure 6: Simulated execution time when available memory is reduced at runtime.

Scott Kaplan for his invaluable contributions to our understanding
and assistance in the implementation of our modified Linux virtual
memory manager.

8. References
[1] Sun JDK 1.4.0 01. Available at http://java.sun.com/j2se.
[2] R. Alonso and A. W. Appel. An advisor for fl exible working sets. In

Proceedings of the 1990 SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 153–162, Boulder, CO,
May 1990.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalepeño virtual machine. IBM Systems Journal,
39(1), Feb. 2000.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd, and S. Smith.
Implementing Jalepeño in Java. In Proceedings of SIGPLAN 1999
Conference on Object-Oriented Programming, Languages, &
Applications, volume 34(10) of ACM SIGPLAN Notices, pages
314–324, Denver, CO, Oct. 1999. ACM Press.

[5] A. Appel. Simple generational garbage collection and fast allocation.
Software: Practice and Experience, 19(2):171–183, Feb. 1989.

[6] O. Babaoglu and D. Ferrari. Two-level replacement decisions in
paging stores. IEEE Transactions on Computers,
C-32(12):1151–1159, Dec. 1983.

[7] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A Scalable Memory Allocator for Multithreaded
Applications. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-IX),
pages 117–128, Cambridge, MA, November 2000.

[8] E. Cooper, S. Nettles, and I. Subramanian. Improving the
performance of SML garbage collection using application-specific
virtual memory management. In Conference Record of the 1992
ACM Symposium on Lisp and Functional Programming, pages
43–52, San Francisco, CA, June 1992.

[9] R. Courts. Improving locality of reference in a garbage-collecting
memory management system. Communications of the ACM, 31(9),
Sept. 1988.

[10] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java programs
interact with virtual machines at the microarchitectural level. In
Proceedings of the ACM SIGPLAN 2003 Conference on

 0

 10

 20

 30

 40

 50

 60

 70

 80

 70 75 80 85 90 95 100

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Heap Size

Total Execution Time By Heap Size for PseudoJBB

GenHC
GenHC w/o Cooperation

GenHC w/o Communication
GenCopy

GenMS
SemiSpace

CopyMS

(a) Actual execution time running pseudoJBB

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 70 75 80 85 90 95 100

N
um

be
r

of
 M

aj
or

 F
au

lts

Heap Size

Total Page Faults By Heap Size for PseudoJBB

GenHC
GenHC w/o Cooperation

GenHC w/o Communication
GenCopy

GenMS
SemiSpace

CopyMS

(b) Number of major faults running pseudoJBB

Figure 7: Actual execution time and page fault count for all collectors on our modified Linux kernel. Our cooperative, communicating
collector performs well while paging, requiring as little as half the time as other algorithms.

Object-Oriented Programming Systems, Languages and
Applications, volume 38(11), pages 169–186, Oct. 2003.

[11] R. R. Fenichel and J. C. Yochelson. A lisp garbage-collector for
virtual-memory computer systems. Communications of the ACM,
12(11):611–612, Nov. 1969.

[12] M. Hertz and E. D. Berger. Automatic vs. explicit memory
management: Settling the performance debate. Technical report,
University of Massachusetts, Mar. 2004.

[13] R. Jones and R. Lins. Garbage collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, New York, NY, 1996.

[14] K.-S. Kim and Y. Hsu. Memory system behavior of java programs:
Methodology and analysis. In Proceedings of the ACM SIGMETRICS
2002 International Conference on Measurement and Modeling of
Computer Systems, volume 28(1), pages 264–274, Santa Clara, CA,
June 2000.

[15] H. Lieberman and C. Hewitt. A real-time garbage collector based on
the lifetimes of objects. Commun. ACM, 26(6):419–429, June 1983.

[16] D. McNamee and K. Armstrong. Extending the Mach external pager
interface to accomodate user-level page replacement policies. In
Proceedings of the USENIX Association Mach Workshop, pages
17–29, 1990.

[17] D. Moon. Garbage collection in a large Lisp system. In Proceedings
of the ACM Symposium on Lisp and Functional Programming, pages
235–246, Austin, TX, Aug. 1984.

[18] S. Platt, editor. Respectfully Quoted: A Dictionary of Quotations
Requested from the Congressional Research Service. Government
Printing Office, Washington, D.C., 1989.

[19] N. Sachindran and J. E. B. Moss. Mark-Copy: Fast copying GC with
less space overhead. In Proceedings of the ACM SIGPLAN 2003
Conference on Object-Oriented Programming Systems, Languages
and Applications, Anaheim, CA, Oct. 2003.

[20] P. Savola. Lbnl traceroute heap corruption vulnerability.
http://www.securityfocus.com/bid/1739.

[21] Standard Performance Evaluation Corporation. SPECjbb2000 (Java
Business Benchmark) Documentation, release 1.01 edition, 2001.

[22] D. Stefanovic. Properties of Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis, University of Massachusetts,
1999.

[23] G. Tong and M. J. O’Donnell. Leveled garbage collection. Journal of
Functional and Logic Programming, 2001(5):1–22, May 2001.

[24] D. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 157–167,
Pittsburgh, Pennsylvania, Apr. 1984. ACM SIGPLAN Notices 19, 5
(May 1984).

[25] R. van Riel. rmap VM patch for the Linux kernel.
http://www.surriel.com/patches/.

[26] P. R. Wilson. Uniprocessor garbage collection techniques. In
Y. Bekkers and J. Cohen, editors, International Workshop on Memory
Management, number 637 in Lecture Notes in Computer Science, St.
Malo, France, Sept. 1992. Springer-Verlag.

[27] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of
the International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, pages 1–116, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

[28] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective “ static-graph”
reorganization to improve locality in garbage-collected systems. In
Proceedings of the 1991 ACM SIGPLAN Conference on
Programming Language Design and Implementation, volume 26(6),
June 1991.

