
Interaction-Based Programming with Classages

Yu David Liu Scott F. Smith

Department of Computer Science
The Johns Hopkins University

Baltimore, MD 21218, USA

{yliu, scott}@cs.jhu.edu

ABSTRACT
This paper presents Classages, a novel interaction-centric
object-oriented language. Classes and objects in Classages
are fully encapsulated, with explicit interfaces for all inter-
actions they might be involved in. The design of Classages
touches upon a wide range of language design topics, includ-
ing encapsulation, object relationship representation, and
object confinement. An encoding of Java’s OO model in
Classages is provided, showing how standard paradigms are
supported. A prototype Classages compiler is described.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features - classes and objects

General Terms
Languages, Design

Keywords
Classages, Interaction, Interface, Encapsulation, Relation-
ship, Confinement

1. INTRODUCTION
In this paper we define Classages, an object-oriented pro-

gramming language with more refined notions of interaction
between classes and objects. Classages provides explicit
support for the three interactions most commonly identi-
fied during the software design phase: static composition be-
tween two classes, peer-to-peer communication between ob-
jects, and whole-part communication between objects. These
object interactions have a strong relationship with UML as-
sociations : peer-peer communication models the common
form of UML’s association relationship, and whole-part com-
munication models a special form of UML association rela-
tionship, composition (UML’s term for aggregation where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

the part does not outlive the whole). Other aspects of
(UML) object associations, including lifespan, multiplicity,
navigatibility and statefulness, are also addressed by Clas-
sages.

Our goal is not to explicitly create a UML-based program-
ming language, but to create a language that does the best
job of expressing object interaction relationships; it just so
happens that UML does a better job of expressing object
interactions than is commonly found in OO language syn-
tax, and so our language shares several features of UML.
Some of the new features on the other hand do not have a
direct UML analogue. Having a language that more directly
expresses object interactions, such as those found in an ini-
tial UML design, will bring more explicit intuition about
the architecture into the program, which will help make the
programming phase a smooth continuation of the software
design process.

To achieve full encapsulation, Classages interactions in-
variably occur on explicitly defined interfaces of classes and
objects: there are no backdoor channels of interaction such
as nonlocal variables. Classes in Classages are equipped
with interaction interfaces to support the three sorts of in-
teractions defined above, and those interfaces are the com-
plete definition of how a class interacts with the outside
world.

The standard object model [1] based on inheritance and
messaging also is fundamentally centered on interaction, and
we are not claiming there is anything wrong with that model,
only that it can be refined via a more precise vocabulary of
interactions and relationships. Since the dawn of OO lan-
guages, a class has been defined as a collection of fields and
operations. Once this notion is fixed, the forms of inter-
action that can be expressed are narrowed: objects can in-
teract by invoking each others’ operations, and classes are
combined together by a means such as inheritance or mixing.
This is a less interaction-centric view than we pursue—in the
standard model, issues such as visibility control, object own-
ership [10, 11], environmental acquisition of data [12], and
explicit encapsulation policies [28, 26] are topics that must
be added on later. We show that by taking an interaction-
based view from the beginning, these ideas naturally fall out
in the course of language design.

Contributions of Classages include

• Building in a notion of strong object encapsulation,
by implicitly requiring all interactions a class or its
runtime instance might be involved in to be explicitly
declared on interfaces.



Figure 1: The UML Class Diagram for a Protein Folding Application (method signatures omitted)

• First-class support for class-class and object-object re-
lationships via explicit, named interfaces.

• First-class support for whole-part interactions where
the part object is confined and owned by the whole.

• A new flexible class composition model where overrid-
ing can happen either statically or dynamically, mes-
sage dispatch can happen statically or dynamically,
and novel forms of feature composition are possible.

The Classages compiler, together with the language man-
ual and examples, can be downloaded at

http://www.cs.jhu.edu/~yliu/Classages

2. A HIGH-LEVEL ACCOUNT
In this section, we give a high-level account of impor-

tant concepts in Classages. From this point on, we refer to
classes in our language as classages, and their corresponding
instances as objectages. The terms class and object are still
used to refer to the standard OO concepts.

2.1 A Running Example
We illustrate our ideas with an example protein folding

simulation application 1. The application goal is to simu-
late the structure-forming process of proteins when the se-
quence of amino acids is given. The simplified design is
illustrated by a UML class diagram in Fig. 1. The design
follows the classic model-view-controller pattern. The model
part, a protein sequence, is modeled by the Sequence class,
the instance of which is composed of multiple AminoAcid in-
stances. The 3D structure of the sequence is recorded by

1This oversimplified illustration is inspired by LINUS [29],
a program developed by two biophysicists at Johns Hop-
kins. The original program was written in Python with OO
features.

the AminoAcid instances, each of which records its torsion
angles with respect to the previous amino acid in the se-
quence; the getTA and setTA methods are used for access
to these values. The core algorithm is modeled by the con-
troller class MoveCtrl, whose major method fold repeatedly
selects at random three consecutive amino acids on the se-
quence and move-s them in a way such that the resulting 3D
structure has a lower energy. Every successful move of the
sequence is recorded, modeled in the diagram by a SnapShot

class, which follows the Memento design pattern [16]. After
thousands of successful moves, the final structure of the pro-
tein is obtained by analyzing the statistical distribution of
the snapshots. For human interaction, the folding process is
typically illustrated by 3D graphs (View3D) and/or text out-
put (ViewTxt), following the Observer pattern. For now,
readers can ignore the particular meanings of the methods
in the diagram.

How such a UML diagram can be implemented in Java is
known. We now give a brief overview of how this design is
implemented in Classages, and along the way will introduce
the most important language concepts.

2.2 Classages Statics and Dynamics
Fig. 2 shows how the design of Fig. 1 is implemented in

Classages; (a) shows the static code blocks, and (b) shows
one runtime snapshot of the application. As with classes and
objects, each classage can have multiple objectage instances
at runtime; for example, there are two instances of ViewTxt
in the Figure, indicating that the application currently has
two different windows showing a textual display.

2.2.1 The Static View
The static view closely corresponds with the UML class

diagram in Fig. 1. Every object-object association of the
general form in the diagram results in two interaction inter-
faces called connectors being defined, one on each classage.



ProteinFolding

regViewinitinit fold

View CtrlMdl

Mn

MoveCtrl

DtView3D
refresh

getTA
getKind

Mn

Sequence
getTA
update

getTA setTA getTAisCmpd

refresh

getTA
getKind

foldstart

Mn
start
init

DtCtrlView

Elem Snpt

MnMn

getTA setTA getTAisCmpd

regViewinit

getTA
update

DtViewTxt
refresh

getTA
getKindMn

start
init

main

Main

Amino
 Acid

Snap
Shot

ProteinFolding

regViewinitinit fold

View CtrlMdl

Mn

MoveCtrl

DtView3D
Mn

Sequence

Amino
 Acid

fold

start

Mn

start

init

DtCtrlView

Elem Snpt

Mn

regViewinit

DtViewTxt

refresh

getTA

Mn

start

init

main

Main

Amino
 Acid

Mn

Snap
Shot

Mn

Snap
Shot

Mn

...... ......

DtViewTxtMn

start

init

View3D
Amino
 Acid

Objectage PluggingConnection Part Instance

Dt

Connector

Mn SnptLegends

Mixer PluggerClassage

View3D

(a)

(b)

stop stop

setTA
setTA

getTA
update

stop

getTA setTA getTAisCmpd setTA

getKind

Figure 2: A Classages Design of the Application in Fig. 1 (a) The Static View (b) The Dynamic View



Memo

newMemo

� � � � �

Snpt
isCmpd

lock

SeqM

AAChain

� � � � �
Elem

Src

� � � � �

� � � � �
� � � � �

create

� � � � �
� � � � �

newMemo
getParam

lock

create

Ctrl

� � �
w

refresh

	 � � 
 � � �init

Mn

Cn
� � � � �

getKind

Src

Mem

� � � � �

stop
update

    Mixing

� � � � �

Legends see Fig. 2 for others

Figure 3: A Mixing Process to produce classage
Sequence

And, every composition relationship in the UML class dia-
gram results in two interaction interfaces, a plugger on the
whole-classage, and a mixer on the part-classage (the reason
for the different sort of interface on the two sides originates
in the asymmetry of whole-part relationships, and will be de-
tailed below). By comparing the Sequence class in the UML
diagram and the one in Fig. 2, notice that the public visible
methods on Sequence in the UML diagram are split across
three different connectors and two pluggers. This is not just
good for program understanding, but is also important for
improved object encapsulation: the Sequence classage can
interact with different parties via different interfaces, always
exposing the least and demanding the most. This aspect of
our language is related to Encapsulation Policies [28, 26].

At compile time, static compositions can occur, as shown
in Fig. 3. This diagram details how the ultimate Sequence

classage can have its responsibilities distributed over several
smaller classages, and these can be pieced together via a
mixing process similar to mixin composition [9, 15] to pro-
duce Sequence. Here the three smaller classages are: the
AAChain classage taking charge of amino acid chain organi-
zation, the Memo classage taking charge of storing snapshots
and the final statistics over them, and the SeqM classage tak-
ing charge of forming the MVC pattern. Two mixings have
occurred: the first involving Memo and SeqM, and the second
involving AAChain and the result of the first mixing. The re-
sult of mixing is also a classage with mixers, connectors and
pluggers. Mixing happens between a pair of mixers; this is
different from mixins, where there is no explicit interface of
mixing, and as a result more name conflicts are likely. Fig. 3
can be defined in Classages by the following code snippet:

classage Sequence {
connector Mn {

export void init() {...}
export void regView(ViewI o) {...}
export void unregView(ViewI o) {...}

}
plugger Elem {

import double getTA()
import void setTA(double t)

}
plugger Snpt {

import double getTA(int i)
import void setTA(double[] a)
export boolean isCmpd() {...}

}
connector View {

import void refresh()
export double getTA(int i) = ::getTA
export int getKind() {...}
state Time lastUpdated

}
connector Ctrl {

import void stop()
export void update(double[] a) {

forall (c::View) { c-> refresh(); }
Snpt p = plugin Snapshot with Snpt >> Mn;
p..setTA(a);
if (::allLocked()) { stop(); }

}
export double getTA(int i) = ::getTA

}
boolean allLocked() {...}
double getTA(int i) {...}
...other local fields and methods ...

}

Figure 4: A Classages Code Snippet for Sequence

classage MemoSeq = SeqM + Memo with Mem >> Src

classage Sequence = MemoSeq + AAChain with Cn >> Src

Mixers are bi-directional interfaces composed of both import
and export declarations. The import declarations are “expec-
tations” of methods by the other party participating in the
mixing interaction, and the export declarations are “contri-
butions” of the methods to the other party. Mixing is a
method matching process where “contributions” meet “ex-
pectations”.

Note that connectors and pluggers are late-binding inter-
faces: they are only satisfied at runtime. At mixing time,
the Sequence classage takes on any pluggers and connectors
defined by its components, as can be seen by comparing
Figures 3 and 2.

2.2.2 The Dynamic View
The two fundamentally dynamic interactions in Classages

are connection and plugging. They are how runtime peer-
to-peer communication and whole-part communication can
be represented in Classages, respectively.

Connection is a form of long-lived and potentially state-
ful interaction between objectages, and whose legal actions,
such as what methods can be invoked, are well-defined via
interfaces. In Fig. 2 (b), there is a live connection between
the objectages ProteinFolding and View3D. At a high level,
a connection represents a long-lived relationship between
peers, and often embodies a UML association. A connec-
tion happens on a pair of connectors, another form of bi-



directional interface with import and export declarations.
To establish a connection between the View connector of
the Proteinfolding objectage and the Mn connector of the
View3D objectage, the ProteinFolding objectage at runtime
can evaluate the following expression, where v is reference
to objectage View3D:

c = connect v with View >> Mn;

This is again a process of “contributions” meeting “expecta-
tions”, only it happens at runtime. The result of the connect
expression, c, is called a connection handle, the first-class
incarnation of the peer-to-peer communication relationship.
During the connection, the ProteinFolding objectage can
call init to initialize the 3D view of protein structures, via
the Classages syntax c->init().

Plugging is another form of long-lived interaction, focus-
ing on whole-part and not peer-to-peer interactions. In
Fig. 2 (b), the objectage Sequence is holding multiple plug-
gings of Snapshot instances, indicating multiple snapshots
of the protein structures have been taken and recorded. Un-
like connection interaction which happens between two ob-
jectages, a plugging interaction can be figuratively thought
of as a “part” being plugged into the object memory space of
the objectage representing the “whole”. The illustration here
indeed is precise from a memory management point of view:
when the memory space for the whole is released, the part
is also released, and from an access control point of view,
outsiders of Sequence cannot have direct access to Snapshot

instances. Pluggings give the programmer a strong tool for
confining objects, of the general flavor of other work includ-
ing [10, 3, 11, 31, 8]. It also can be looked on as a method for
dynamically extending an already-created object. A plug-
ging represents a more tightly-coupled relationship than a
connection: it is analogous to a UML composition associ-
ation, which constrains the part to not outlive the whole.
Another implicit constraint in Classages is the part only
comes into being as part of the whole—there is no such
thing as an isolated part instance. Plugging happens on the
plugger interface of the whole and the mixer interface of
the part: the whole is a dynamic object, and at the time of
plugging the part is but a code template to be instantiated.
A plugging interaction between the the Snpt plugger of the
Sequence objectage and the Mn mixer of the Snapshot clas-
sage is established at runtime by the following expression
within Sequence:

p = plugin Snapshot with Snpt >> Mn;

The result of the plugin expression, p, is called a plugging
handle, the first-class incarnation of a whole-part communi-
cation relationship. After plugging, the Sequence objectage
can call getTA to query the torsion angles of the just-created
snapshot, expressed by p..getTA() in Classages. Similarly,
any Snapshot instance can check whether the data should
be stored in compressed form by the code isCmpd()—the
“whole” need not be explicitly mentioned, it is implicit that
the Sequence being communicated is the one the Snapshot

sits in.
A plugee can itself have plugees, giving explicit language

support for hierarchical containment relationships. Both
connections and pluggings can be terminated explicitly, via
disconnect c and unplug p expressions respectively, where c

is a connection handle and p is a plugging handle.

2.3 Interactions and Interaction Interfaces
As we have seen, three kinds of interactions play crucial

roles in Classages: mixing, connection and plugging. The
first-class representation of these relationships in Classages
are related to research in first-class object relationships [25,
18, 13, 6, 17]. At a high level, interaction interfaces indicate
a willingness to communicate, a role to play, and a rela-
tionship to participate in. In Classages, all interaction is
via these interfaces; there is no syntax for a message send
from one objectage to another independent of an established
interface. This may seem like a radical departure from the
norm, but we believe closing one door opens up many others.

2.4 A Classages Code Snippet
Fig. 4 gives the Classages code for the Sequence clas-

sage illustrated in Fig. 2, here written as a single code piece
and not via a composition as in Fig. 3. Its structure mir-
rors Fig. 2, with each interface declared directly. We show
code for the update method in connector Ctrl. Since the
Ctrl connector is going to be connected to the MoveCtrl

objectage at runtime, the update method will be invoked
by MoveCtrl every time it finds a new “folding” that has a
lower energy. In this case, all the GUI views are updated (via
the forall expression), and a new snapshot is stored (via the
plugin expression). By analyzing existing data, the Sequence
objectage can make a decision as to whether the current
“folding” is precise enough (via local method allLocked),
and if the case, inform MoveCtrl to terminate (by invoking
stop). Other details of this snippet will be explained below.

3. FROM PRINCIPLES TO CLASSAGES
In this section, we show how the Classages design emerged

from basic principles of language design. We believe the
seven principles presented below are not sufficiently sup-
ported by mainstream OO languages, and altogether they
help answer the important question of “why a new lan-
guage?”. Along the way, we expand on various aspects of
the language that were left out of the previous example.

3.1 On Separation of Statics and Dynamics

Principle 1. Static and dynamic behaviors of an entity
should be specified independently.

In OO languages, a class has two roles to play: it both serves
as a piece of code for reuse, and also as the “mold” via which
objects are generated. Although a class’s reuse behavior
is orthogonal to its runtime behavior, existing OO models
tend to treat a class’s interface for reuse as closely related
to its runtime interface. In mixin systems, the methods of
a mixin compound that can take messages at runtime hap-
pen to be the methods that each participating mixin exports
for static composition. Java is more advanced in this regard:
its protected visibility modifier provides a way to distinguish
between the two interfaces, because protected methods can
only be used for static reuse, and not for runtime method
invocation2. Overriding unfortunately muddies the waters
here for Java. Overriding—a code-reuse operation—is teth-
ered to dynamic dispatch, a runtime operation. The result
of this is that a programmer’s intent to reuse can conflict

2The modifier protected in Java also signifies package access,
a property that is orthogonal to the discussion here.



with their intent for runtime communication, and lead to
problems such as the fragile base class problem, detailed in
Sec. 6.1.

3.1.1 The Classages Solution
In Classages, how a classage is to be reused is completely

orthogonal to how its runtime instance is to communicate
with other objectages. The reuse (i.e. code composition)
behaviors are all specified on mixers, while the runtime be-
haviors are all specified on pluggers and connectors. Thus
there is a completely natural separation of concerns.

With this separation, overriding only happens on mix-
ers, and message dispatch only on connectors. Flexibility is
gained by this separation, as will be discussed in Sec. 6.1
below.

3.2 On Separation of Internals and Externals

Principle 2. At runtime, communication between an ob-
ject and its component parts is fundamentally of a different
flavor than communication with its peers.

How this principle is implemented in Classages is clear:
pluggings are used for the former, and connections for the
latter. What we want to justify is why this separation is
fundamentally important. In fact, the essence of this Clas-
sages guiding principle has been the center of philosophy for
centuries: self and others. For a real-world analogy,

• Connectors show how an objectage lives with its ex-
ternal world, i.e., how it communicates with others.
In the human world, it shows the “social” aspect of an
individual.

• Pluggers show how an objectage lives with its internal
world, i.e., how it is formed and how it evolves. In
the human world, it shows the “introspective” aspect
of an individual.

This separation has some interesting ramifications on lan-
guage design:

First, on protection of internal representations. Histori-
cally, protecting internal representations has been a major
dimension of programming language design, and is realized
in both ADTs and objects. In the standard object model,
internal objects can be placed in private fields, but this pro-
vides only partial protection because nothing prevents pri-
vate fields from being passed to other objects or returned as
values. In Classages we achieve a stronger protection of the
“part” from being accessed from outside of the “whole” via
the Classages type system, introduced in Sec. 5.

Second, for garbage collection. Since whole-part relation-
ships are explicitly supported and we have a guarantee the
part will not escape the whole, the part instance can al-
ways be safely garbage collected when the whole is garbage
collected.

Third, for serialization. By differentiating pluggers and
connectors, the programmers’ intent of how tightly coupled
two objects are related is expressed: the whole-part relation-
ship is more tightly coupled than peer-to-peer relationships.
A tight serialization policy could be defined that serializes
only parts of wholes, not objectages interacting only by con-
nectors. A broader policy could serialize all plugged and
connected objectages, but still not serialize objectages for

which only a reference was held in a field. In Java, all ob-
jects the current object has references to are also serialized,
provided they implement Serializable. This policy is not
based on the coupling of objects but on the sorts of objects,
and so cannot be as discriminating as a policy that can use
how objects are coupled.

3.3 On Interaction Bi-directionality

Principle 3. Interaction is fundamentally bi-directional.

The root inter- of the very word interaction already sug-
gests a reciprocal relationship.

It is important for OO programming because, even in ex-
isting languages, bi-directional interaction is also pervasive,
though sometimes in a less explicit way:

• For class-class interaction via inheritance, a naive per-
spective would be that the superclass provides and the
subclass consumes, but overriding reverses this: the
subclass provides and the superclass consumes. An-
other example is the abstract modifier of Java.

• For object-object interaction, a naive perspective would
be the message sender asks and the receiver answers,
but callbacks, where the sender sends this as a param-
eter, exist because there is a need for the receiver to
ask and the sender to answer. Other examples include
the Observer design pattern [16], event systems, Web
interactions, human-computer interaction applications
(GUI, robotics), etc.

In the realm of relationships, bi-directional interactions
suggest relationships with two-way navigatibility. The argu-
ment that bi-directional interaction can be modeled by two
uni-directional interactions is not satisfactory to us, since
the language cannot signify how the two uni-directional re-
lationships are related, or how they depend on each other.
It is about as intuitive as buying two cellphones, a “hear”
cellphone from one company and a “talk” phone from an-
other, and then using the two phones together every time
you want to have a phone conversation.

3.3.1 The Classages Solution
In Classages, all interaction interfaces are by default de-

fined as bi-directional, with both exports to indicate what it
provides to the other party engaged in the interaction, and
imports to indicate what it expects from the other to pro-
vide. Predictably, interactions (be it mixing, connecting, or
plugging) happen when two interacting parties match the
interfaces with each other and get expectations (imports)
satisfied by provisions (exports) of the other. Being “satis-
fied” is a type property enforced by the static typechecker.
The two interaction interfaces do not need to be strict re-
flections of each other: for instance in Fig. 3, it is fine for
Mem mixer to have extra exports, such as getParam. In fact,
for each matching import-export we only require the export
method is of a subtype of the import method.

With bi-directional interfaces, dependencies between classes
and objects are made explicit, thus reducing coupling be-
tween them and promoting understanding of classes in iso-
lation. In the context of GUI design in Fig. 2, how a view
objectage is controlled by other objectages, and how it can
take commands from users and to control other objectages,
are both clearly specified.



hhhhhhhhhhhhhhhSupport

Relationship Lifespan
Permanent Long-lived Ephemeral

Real World conceptual relationship concrete relationship concrete relationship
General OO class relationship object relationship object relationship

UML generalization association association
Java/C++ inheritance object reference in fields message passing
Classages mixing connection and plugging ephemeral invocation

Figure 5: The Spectrum of Relationship Lifespan

3.4 On Interactions with Least Privilege

Principle 4. Entities should declare the most precise in-
terface, i.e. the interface with the least privilege, for each
interaction they are involved with.

Corollary 1. Each class should be able to have multiple
interfaces for its static interactions. Each object should be
able to have multiple interfaces for its dynamic interactions.

The Principle of Least Privilege—a cornerstone of security
research—also impacts encapsulation in OO languages: a
class should only expose its components absolutely necessary
for static interactions (such as inheritance), and an object
should expose only the components absolutely necessary for
dynamic interactions.

Controlled by its various visibility modifiers, a Java class
can be viewed as only providing one monolithic interface
for its subclass, and a monolithic interface for its runtime
clients. These monolithic interfaces will not be least, be-
cause everything used by anyone needs to be put on the
monolithic interface.

3.4.1 The Classages Solution
In Classages, programmers can define multiple mixers in a

classage to adapt to different static composition needs, and
multiple connectors or pluggers in an objectage to support
associations with different peers or different parts. Fig. 2
gives one example: the Sequence classage has three connec-
tors, View, Ctrl and Mn, and two pluggers, Elem and Snpt.
By exporting init in connector Mn but not others, Classages
avoids accidental use of init by MoveCtrl and View3D.

Be clear that Java’s interface mechanism does not serve
this purpose, as pointed out in e.g. [28]: any variable de-
clared with an interface type can always be downcast to the
object type implementing the interface and then it will have
access to methods not belonging to the interface. This is
because Java interface types are designed for subtype poly-
morphism, not for encapsulation.

Note that we are defining an encapsulation mechanism,
and not a security mechanism, since connections are never
refused and so access to data can always be gained by pro-
viding the proper interface. For example, in Fig. 2, if an ob-
jectage BadGuy intends to communicate with the Sequence

objectage via connector Mn, it is not possible to have access
to method getTA of Sequence, and thus some accidental
bugs may be avoided. On the other hand, if BadGuy had an
interface for connecting with Ctrl, the getTA method would
then be accessible, since the name Ctrl is public.

3.5 On Relationship Lifespan

Principle 5. A relationship’s lifespan sits somewhere on
the spectrum from permanent to long-lived to ephemeral.

The design process of Classages is also a study of relation-
ships. One important aspect of relationships is its lifespan.
We summarize support, both from the real world and from
programming languages, in Fig. 5.

In the real world, a conceptual relationship is a law, or a
theorem: an invariant and unchanging relationship between
concepts. For example, the concept of carbon monoxide
is invariably a molecule consisting of one carbon and one
oxygen atom. The concrete molecule—such as a particular
carbon-oxygen molecule is formed dynamically by a reac-
tion, will be stable for some time, and will then decompose
by another reaction. Other relationships will be very short,
for example carbon monoxide from automobile exhaust that
quickly oxidizes to form ozone. In this case the carbon-
oxygen relationship was ephemeral.

Here we study how OO languages support relationships
of different lifespans. In mainstream OO languages, con-
ceptual relationships are classes permanently related by in-
heritance, and object message passing is an ephemeral re-
lationship, starting when a method is invoked and ending
when the return value is sent back. Two message sends to
the same object are independent ephemeral events. Using
message passing to model object-object relationships is ar-
guably weaker than what is implied by a UML association,
which is an explicit, potentially long-lived, object-object re-
lationship. In the standard OO model, it is the fields that
models long-term relationships, where one object can store
a reference to another object in a field. This is especially
true for the case of a UML aggregation or composition rela-
tionship [17]. The standard model is less precisely defining
a relationship, however: the communication is via messages
which is a semi-public channel since many other objects –
not just the objects being held in the fields – could also be
sending messages to the same object. We clarify this per-
haps subtle distinction with an example.

Suppose Fig. 1 was implemented in Java, and a model
checking tool is interested in ensuring a very simple temporal
constraint: every time the Sequence object refreshes the
View3D object, the latter should call back getTA, to get the
latest torsion angle data. An Observer design pattern will
lead to a View3D object being implemented this way:

class View3D {
private Sequence source;
. . .
public refresh() {

int x = source.getTA();
. . .

}
}

Since there is no static way to ensure the Sequence object
invoking refresh is indeed the value stored in source, the
simple callback constraint we want to check will be very



difficult to verify statically. The fundamental reason behind
this is Java does not have a way to indicate the longstanding
relationship between two objects, and thus how the getTA

invocation here is always part of such a relationship between
objects.

3.5.1 The Classages Solution
Mixing reflects the conceptual relationship between clas-

sages, since classages already mixed together cannot be sev-
ered at runtime, it represents a relationship with a perma-
nent lifespan.

Both connection and plugging represent long-lived rela-
tionships. A connection is explicitly established via the
connect expression, and it is alive until the connection is
explicitly terminated via the disconnect expression. Simi-
larly, plugging has its lifespan between the plugin expression
being evaluated and the unplug being evaluated. Since long-
term relationships are more explicitly supported than in the
standard object model, there is deeper knowledge about ob-
ject relationships. We can show this by revisiting the above
Observer example, in Classages:

classage View3D {
. . .
connector Dt {

import int getTA()
export refresh() {

int x = getTA();
. . .

}
}

}
A connection between a Sequence objectage and a View3D

objectage is established on the Dt connector on the View3D

side. When Sequence invokes refresh, the refresh() of the
connected View3D objectage is invoked, which leads to invo-
cation of the getTA method, always of the original Sequence.
This callback relationship is statically fixed, because there
is an explicit object-object interaction defined between the
Sequence and View3D objectages. A model checker will then
easily be able to verify the callback constraint.

Classages’ support for ephemeral relationships is to model
them as brief versions of long-lived relationships: Classages
reuses connectors for ephemeral relationships. To initiate an
ephemeral interaction with method m defined in the connec-
tor C of objectage o, one can use syntactic sugar o.m() at C.
This is de-sugared as a connection established with the C

connector of o, method m being invoked, and then the con-
nection terminated. The sugared syntax is intentionally sim-
ilar to Java/C++ method invocation, because they both
represent ephemeral relationships.

3.6 On Relationship Multiplicity

Principle 6. A dynamic relationship between two sorts
can be a one-to-one, one-to-many, or many-to-many rela-
tionship.

This obvious fact of relationships does not need further
justification; it is realized in UML class diagrams via multi-
plicity declarations.

In the example, a Sequence objectage might have multi-
ple View3D view objectages for display, and a View3D objec-
tage might at the same time display the shape of multiple
Sequence objectages.

3.6.1 The Classages Solution
Pluggers and connectors in Classages are by default gener-

ative, i.e. multiple pluggings or connections might be avail-
able to the same plugger or connector at the same time. For
instance in Fig. 2 (b), the View connector of the Sequence

objectage is connected to three views, because the same data
change might require multiple views to be notified. Likewise,
the Elem plugger is plugged in with multiple AminoAcid in-
stances and the Snpt plugger with multiple Snapshot in-
stances, showing the one-to-many multiplicity behind many
whole-part relationships.

One important issue in this context is how an objectage
can then distinguish different interactions on the same in-
terface. Recall that each connection is given first-class sta-
tus via a connection handle, and similarly a plugging gets
a plugging handle. According to Classages syntax, access
to methods defined in connectors is via a handle to a live
connection. For instance, for a ProteinFolding objectage
to invoke the init method defined by the View3D objectage,
the expression used is c->init(), where c is the connection
handle representing the connection with the View3D objec-
tage.

When a connector (or a plugger) is known to interact with
only one objectage at runtime, it is inconvenient for pro-
grammers to keep track of the connection handle (or the
plug handle) explicitly. For convenience, Classages also al-
lows programmers to specify a connector or a plugger as a
singleton, and then refer to an import or export method in
it without using a handle, via syntax I::m, where I is the
connector or plugger name and m is the method name.

3.7 On Relationship Statefulness

Principle 7. Relationships are frequently stateful in their
own right.

Long-lived relationships are rarely stateless. For instance
in a data-view relationship such as that between Sequence

and View3D objects, programmers might be interested in
when each view was last updated. A standard way for
Java/C++ programmers is to declare an object field either
in Sequence or in View3D to store the information, but since
the relationship between Sequence and View3D is many-to-
many an array has to be used; maintaining an array in
this case will require additional overhead. The fundamental
problem here is that the last updated information is fun-
damentally part of the state of the data-view relationship
itself.

3.7.1 The Classages Solution
Classages allows connections to hold their own state. It

is achieved by allowing connectors to declare connection-
specific fields. For example, see the lastUpdated state dec-
larations in connector View of Sequence shown in Fig. 4.
Every time a connection is established on the connector,
fresh connector state is allocated. The state is private to the
connection and cannot be directly accessed by other connec-
tions.

A related issue is whether pluggings should also hold their
plugging-specific states. The answer is yes, but due to the
asymmetry between plugger and plugee, each “part” has a
unique “whole” and so the private state can always rest as
a field of the part. This state is also not exposed, because
parts are kept internal to wholes.



program ::= atomic | compound | rename

atomic ::= classage cn {interface | local}
compound ::= classage cn = cn + cn with tn >> tn

| classage cn = cn + cn with tn >> tn as tn
rename ::= classage cn = cn rename tn >> tn
interface ::= mixer | plugger | connector
local ::= field | method

mixer ::= mixer tn {im | em}
plugger ::= plugger tn {im | em}

| singleton plugger tn {im | em}
connector ::= connector tn {im | em | connf }

| singleton connector tn {im | em | connf }
field ::= τ fn = e
method ::= τ mn(fml1, . . . , fmln) {e}
im ::= import methodSig
em ::= export method
connf ::= state field
methodSig ::= τ ln(formal1, . . . , formaln)
formal ::= τ varn

cn classage name
tn interaction interface name
mn method name
fn field name
varn variable name
e expression, see Fig. 7
τ declared type, see Sec. 5

Figure 6: Classages Top-level Abstract Syntax

4. CLASSAGES SYNTAX
The core syntax for Classages top-level structures is de-

fined in Fig. 6 and the core syntax for expressions is in Fig. 7.
This “core” is not all of the syntax accepted by the Classages
compiler: the current implementation also accepts Java ex-
pressions as it is based on an extensible Java compiler frame-
work [22]. This choice is made intentionally as core Clas-
sages itself does not define useful features such as arrays,
exceptions and rich primitive types. As Classages has its
own object model, we might in the future choose to disable
some Java features in the implementation, such as defining
Java classes within a Classages program. For brevity, Fig. 6
also omits classage constructors. This more predictable con-
struct is explained in the Classages homepage (weblink in
Sec. 1).

4.1 Top-Level Structures
A program in Classages is composed of classages, with

one of them being the bootstrapping classage with a special
connector Main. The ProteinFolding classage in Fig. 2 has
such a Main.

A classage has a unique name, and can be either defined
from scratch, with constructors, local fields, local methods,
and three kinds of interaction interfaces inside, or defined
as the mixing of two classages. The resulting classage of the
second case is called a compound. In addition to the basic
grammar for mixing demonstrated in Sec. 2, as is used for
combining the merged participating mixers to produce a new
mixer, with a name specified by the as clause. The under-
lying process of producing the merged mixer is very similar
to mixin composition. Renaming of interaction interfaces at
the top level is also supported.

Within interaction interfaces, an import declaration spec-
ifies the type information for the method to be imported;

e ::= () | varn | cst
| create cn (e1, . . . , en) instantiation
| plugin cn with tn >> tn plugin
| unplug e unplug
| connect e with tn >> tn connect
| disconnect e disconnect
| e = e | (τ)e assignment/cast
| forall(varn : tn){e} iteration
| fn | fn = e see Sec. 4.2 for below
| ::fn | ::fn = e
| mn(e1, . . . , en)
| ::mn(e1, . . . , en)
| n::mn(e1, . . . , en)
| e..mn(e1, . . . , en)
| e->mn(e1, . . . , en)
| e.mn(e1, . . . , en) at tn
| e; e

cst constant

Figure 7: Classages Expressions

an export declaration provides the method, with the stan-
dard syntax associating the method body directly with the
export declaration. As an example, the update method has
its body defined in the Ctrl connector of Fig. 4. For conve-
nience, some sugared syntax is also provided. Also in Fig. 4,

export double getTA(int i) = ::getTA

declares the exported method getTA has its method body
bound to the local method getTA of the classage. It is equiv-
alent to

export double getTA(int i) { return ::getTA(i); } .

Likewise,

export τ m(τ1 x1, . . . , τk xk) = n::m′

declares the exported method m has its method body bound
to a method m’ declared in interaction interface named n,
where n might be a mixer, a singleton plugger, or a singleton
connector. Syntactically, it is equivalent to

export τ m(τ1 x1, . . . , τk xk) {return n::m′(x1, . . . , xn); }

When no ambiguity arises, programmers may use expression
export τ m(τ1 x1, . . . , τk xk) directly, meaning the m being ex-
ported has its body defined in either of the aforementioned
cases, and there could only be exactly one definition match-
ing the method signature.

4.2 Expressions
Referring to local features always starts with symbol ::,

including local field read ::fn, write ::fn = e, and local
method invocation ::mn(e1, . . . , en). In contrast, an ex-
pression can refer to interface features (import, export and
connection-specific fields) directly by their names if the ex-
pression is also in the scope of the interface. This case in-
volves connection-specific field read fn, write fn = e and
import/export method invocation mn(e1, . . . , en). When the
expression is not in the scope of the interface where the
import/export method is defined, there are a few different
forms of method invocation, depending on the nature of the
interface:



• To invoke a method mn defined in a mixer, a singleton
plugger or a singleton connector, tn::mn(e1, . . . , en)
is used, where tn is the name of the interface.

• To invoke a method mn defined in a generative plugger,
e..mn(e1, . . . , en) is used, where e will eventually be
evaluated to a plugging handle.

• To invoke a method mn defined in a generative connec-
tor, e->mn(e1, . . . , en) is used, where e will eventually
be evaluated to a connection handle.

• To initiate an ephemeral interaction (Sec. 3.5), expres-
sion e.mn(e1, . . . , en) at tn is used. For this form of
invocation, tn must be a connector on objectage e
that does not contain import and state declarations.
This coincides with the fact that ephemeral interac-
tions should always be stateless with no control de-
pendencies.

Objectage instantiation is achieved by an expression create,
identical to Java’s new. The return value of this expression
is an objectage reference. We have explained other expres-
sions in previous sections.

5. CLASSAGE TYPING
Classages is a strongly typed language with explicit type

declarations. There are three main type sorts: objectage
types, connection types and plugging types. They type the
three important first-class values respectively: objectage ref-
erences, connection handles, and plugging handles. A pro-
grammer declares a plugging type by using a plugger name,
and the underlying plugging type being used by the type sys-
tem is the signature information for all invocable methods
during the plugging interaction. Predictably, the methods
of concern include all those declared either as an import or
an export on the plugging interface where the plugging hap-
pens. Similarly, a programmer declares a connection type by
using a connector name, and the underlying connection type
being used by the type system is the signature information
for all invocable methods during the connection interaction,
plus type information for connection-specific fields. We now
focus on a few important aspects of Classages’ type system.

5.1 Objectage Types and Polymorphism
As with other OO languages, Classages has a distinction

between classage types and objectage types. Unlike clas-
sages, an objectage’s runtime behavior, in view of its peers,
is solely dependent on its connectors. Thus, a programmer
declares a type for an objectage reference by using a classage
name, and the underlying objectage type used in the type
system is the type information of all its connectors, each of
which includes the connector’s name and the method sig-
natures of imports and exports declared inside. For conve-
nience, we call the type information for each connector a
connector signature. Thus, informally, an objectage type is
a set of connector signatures.

This representation follows Java in the use of a class name
to define an object type, but differs in other dimensions.
Object subtyping in Java is intensionally defined by extends
or implements, whereas Classages has a structural subtyping
system at heart, and classage names themselves are not part
of subtyping. The reason we take a different approach is to
achieve maximum polymorphism: ontologically, we believe

the essence of an objectage is how many ways it can commu-
nicate with peers, and what the ways are. Hence, as long as
objectage O1 can support at least as many and compatible
means of communications as O2, O1 should be allowed to
appear anywhere O2 appears.

This intuition leads to the following design for objectage
subtyping: O1 is a subtype of O2 iff O1 contains at least
as many connector signatures as O2, and for any pair of
connector signatures of the same name, the one contained
by O1 (say C1) must be more refined than that of O2 (say
C2). By “refined”, we mean structural subtyping in support
of both width subtyping and depth subtyping on connector
signatures: (1) Width-wise, C1 may have more exports (co-
variant) and fewer imports (contravariant); (2) Depth-wise,
for each pair of methods exported from both C1 and C2, the
one in C1 must have a signature being the subtype of that in
C2 (covariant); likewise, for each pair of methods imported
from both C1 and C2, the one in C2 must have a signature
being a subtype of that in C1 (contravariant).

5.2 Typing Interactions
Whether a Classages interaction (connection, plugging,

mixing) can be soundly established (even at runtime) is al-
ways checkable at compile time, by typechecking the inter-
face matching.

Intuitively, interactions between two parties are sound
only when each party provides what the other party ex-
pects. In type terms, for any method declared as an import
in one interface, the other interface must declare a method
of the same name as an export, which at the same time has
a signature being the subtype of that of the former. This
can be thought of as a “method specialization” happening
at interaction time.

5.3 Typing Parameter Passing
Classages has three fundamentally different interactions,

and to achieve appropriate encapsulation, different policies
for parameter passing are needed for the different interac-
tions. A table summarizing all the cases is presented in
Fig. 8.

First, a connection handle should not be passed across
connections. For instance in Fig. 2 if the Sequence objec-
tage were allowed to send connection handles to MoveCtrl,
it might send over the one representing its connection with
a View3D objectage. Thus, even though a MoveCtrl objec-
tage does not have any connector to indicate its intention of
communicating with an View3D objectage, a de facto inter-
action channel would be established. This would violate the
principle that interactions must occur on explicit interfaces
only. Note that this policy does not prevent an objectage
reference from being passed over connections, and so the
Sequence objectage can freely send an objectage reference
of View3D to MoveCtrl: by analogy with in the real world,
this is the standard “Mr. MoveCtrl, may I introduce Ms.
View3D?” process, and is crucial for objectages to learn of
each other. Once objectages are introduced, they need to
connect with each other to have any meaningful interaction.
By disallowing the passing of connection handles, we are
disallowing masquerading: “Mr. MoveCtrl, can you pretend
to be me and communicate with Ms. View3D?”

Second, a plugging handle should not be passed during a
connection. Passing plugging handles to other objectages is
the same to expose an objectage’s internal representation,



hhhhhhhhhhhhhInteraction
Parameters

Primitive Data Objectage References Plugging Handles Connection Handles

Mixing OK OK OK OK
Connecting OK OK No No
Plugging OK OK downward OK OK

Figure 8: Classages Parameter Passing

and violates the nature of encapsulation, access control, and
the essence of ADT’s. For instance, if a Sequence objec-
tage were allowed to pass the plugging handle representing
its interaction with an AminoAcid part, the receiver of this
value, say MoveCtrl, would be able to tamper with the in-
ternal representation of Sequence. Worse, since MoveCtrl

now would hold a reference, the lifetime of the AminoAcid

instance would not just depend on Sequence alone. This in
principle would violate the essence of UML’s composition
relationship, the aim of our support for plugging in the first
place.

Third, a plugging handle should not be passed from a
plugee to its plugger during a plugging interaction. Inter-
nal representations could be hierarchical: in Fig. 2(b), each
Sequence objectage contains multiple AminoAcid parts as
its internal representation, and an AminoAcid part might it-
self be composed of multiple Atom parts; Classages supports
such hierarchical plugging. For each AminoAcid instance,
the internal representation of how multiple Atom instances
are structured together is an internal matter, and should not
be tampered with by the Sequence objectage.

5.4 On Type Soundness
We have yet to formally prove the soundness of Classages,

but it is structurally similar to our Assemblages module cal-
culus [19] which was proved sound, and we are confident a
sound type system can be designed.

In the presence of disconnect and unplug expressions, a
connection handle or plugging handle may become stale be-
cause its connection has been disconnected/unplugged. Run-
time checks are thus needed to make sure the handles are
not stale.

Some runtime checks need to be performed for the use of
singleton connectors and pluggers. At runtime they should
be associated with at most one interaction at any given time.
When expression n::mn(e1, . . . , en) is evaluated, at least
one connection/plugging should be alive on interaction in-
terface n.

6. TECHNICAL ISSUES
In this section, we elucidate two technical aspects of Clas-

sages: overriding and message dispatch; and interaction in-
terfaces for compound classages.

6.1 Overriding and Message Dispatch
Overriding and message dispatch are closely related issues

in Java-like languages. The key innovation of Classages in
this regard is it decouples the two issues, so that program-
mers can separate the concern of how the code is composed
(overriding) from how an objectage should behave at run-
time (message dispatch), and thus achieve maximum flexi-
bility. We now use a very simple example – a class C with
a method m – to answer how a classage can be defined such
that (1) m is overridable; (2) a message targeted to m is stati-

m

m

m
C

m

Inner C'

m

Super

m

m

m

m

m
C

m

Inner C'

m

Super

m

m

m

mC

m

Inner C'

m

Super

m

m

(a)

(b)

(d)

Legends m

Local Definition Name Binding

Public

Public

Public

m

C'

m

Super
(c)

"SuperClass" "SubClass"

m

C

m

Inner

m

m

Public

see Fig. 2 for others

Figure 9: Overriding and Message Dispatch (a)
static overriding and dynamic dispatch (b) static
overriding and static dispatch (c) static overriding
and dynamic dispatch, with no fragile base class
problem (d) dynamic overriding and dynamic dis-
patch

cally dispatched; (3) a message targeted to m is dynamically
dispatched.

The various cases are shown in Fig. 9. Note that in a
static composition-based language, there is no distinction
between a superclass and a subclass. We here only use it in
the informal sense, analogous to a similar situation like in



Java. Also note that the “subclass” here is just the extension
code, and needs to be composed with the “superclass” to get
what is called a subclass in Java.

6.1.1 Overriding
In Classages, the question of whether a method is overrid-

able is solely a concern for mixers, i.e., interfaces for code
composition. Instead of introducing an “overridable” mod-
ifier for mixer methods, an overridable method in a mixer
is defined by declaring the same method both as an export
and an import. The export is the default, but overridable,
implementation and the import indicates the interest to take
in an overriding method which will take precedence over the
default exported. An example is shown in Fig. 9 (a), where
method m is defined as an overridable method in mixer Inner
of classage C. Anywhere in the code of C that m of Inner is
referred to, the body of m is (1) the export m of Inner if
mixer Inner is not matched up via mixing; otherwise (2)
the export provided by the other classage involved in the
mixing interaction—in Fig. 9 (a), this means the export m

provided by mixer Super of classage C’.

6.1.2 Dynamic & Static Dispatch
On the other hand, dispatching messages from peer ob-

jectages is solely a concern for connectors, i.e., runtime in-
terfaces. Examples of dynamic dispatch and static dispatch
for method m are shown in Fig. 9 (a) and (b) respectively.
In (a), the export m in the connector Public is defined to
be the m of Inner (referred to by expression Inner::m), i.e.
the overridable method, while in (b) the export m in the con-
nector is defined to be the local m (referred to by expression
::m).

6.1.3 The Fragile Base Class Problem
We have just mentioned two cases where other objectages

might invoke m. Note that even inside the body of classage
C, the “self-calls” follow the same pattern: programmers can
still use the same pair of expressions – either Inner::m() or
::m() to distinguish whether the dynamically bound method
or the statically bound one should be called. Interestingly,
this obvious way of programming helps programmers avoid
the Fragile Base Class Problem [30], the problem that self-
calls defined in the superclass might be accidentally overrid-
den by a subclass. By equipping a language both with dy-
namic dispatch and static dispatch, the “superclass” author
can have the choice of whether overriding should happen.

This however is just part of the solution Classages pro-
vides. Indeed, any language that supports static dispatch
can achieve similar effect explained earlier. A flip side of the
Fragile Base Class problem is whether the “subclass” author
can have a choice over whether overriding should happen. In
Classages, even when the base class uses dynamic dispatch,
the “subclass” can still use discretion to avoid accidental
overriding, as is illustrated in Fig. 9 (c). Suppose when
classage C is written, its author is unable to anticipate the
overriding behaviors of its future “subclasses”, and there-
fore defines the “self-calls” by using dynamic dispatch, so as
not to lose expressiveness and generality. In Classages, the
“subclass” author has a way of refusing overriding without
making sacrifices over the runtime interface, by simply not
export-ing it on the Super interface. Note that in C++, this
is an impossible task.

6.1.4 Super and Inner
Readers might wonder how a Java-style super call can be

made. In both Fig. 9 (a) and (b), notice that classage C’

on its Super mixer also declares method m as both import
and export, i.e., overridable. The effect is one of mutual
overriding, where C and C’ can use each other’s m method.
Hence when C’ is interested in calling method m defined in
C, it can simply use Super::m.

Not only that, the essence of Beta-style [20] message dis-
patch is also supported. Fig. 9 (b) shows the case where
message dispatch is always directed to C, and inside the body
of the locally defined m, programmers can write Inner::m to
call the one defined by C’.3

6.1.5 Dynamic Overriding
So far we have discussed static method overriding, the

canonical form of overriding as found in Java and C++.
Classages does not stop there: it also elegantly supports
a form of dynamic overriding, i.e. object methods being
dynamically changed at runtime. In Fig. 9 (d), note that
plugger Inner of C here declares m as overridable, and m in
connector Public is now defined as the method provided by
this plugger. Similarly to the static overriding case, lan-
guage semantics ensures anywhere in the code of C where
m of Inner is referred to, the body of m is (1) the export m

of Inner if plugger Inner is not plugged in with a plugee;
and otherwise is (2) the export provided by the plugee. The
difference between Fig. 9 (a) and (d) is that plugging in
Fig. 9(d) is a dynamic interaction. From the perspective of
peer objectages, the instance of C has an ability to dynami-
cally change the body of its public methods.

6.2 Interfaces for Compound Classages
When explaining Fig. 3, we claimed the result of the two

mixing processes is a compound classage no different from
the Sequence classage in Fig. 2. In Classages, the difference
between compound classages and atomic classages are only
syntactical; semantically, a compound classage can always
be “flattened out” and is equivalent to an atomic classage
with mixers, pluggers and connectors. In fact, this is also
how the compiler currently implements it.

With mixins, Traits [27] and many other existing code
composition systems, such a “flattening-out” process would
be fairly standard, if it were not for pluggers and connec-
tors. Pluggers and connectors are interfaces for runtime in-
teractions and mixing interactions do not directly happen on
them, but since they are associated with classages, mixing
must consider how a compound classage should carry over
the pluggers and connectors of the classages participating in
mixing.

6.2.1 Intuition
We now consider a compound C from the mixing of A and

B. The following discussion only focuses on the case for
connectors. The case for pluggers is nearly identical.

Each declared connector signifies one means for its run-
time instance to communicate with the outside world. Intu-
itively, objectages instantiated from the compound classage
of A and B should be able to communicate with the outside

3There is a weakness in modeling the use of inner inside a
Beta-class at the bottom of the hierarchy from this view, be-
cause the meaning of the corresponding expression Inner::m
could be wrong. But this case also needs special care in Beta.



world both by A’s means and B’s means, i.e. the compound
should have connectors both defined by A and by B.

One special case is A and B might declare connectors of the
same name. Only two possibilities exist: accidental name
clash or intentional name correspondence. For the first case
programmers can just rename connectors so that name clash
does not happen at mixing time. The second case is interest-
ing because on a high level, a connector name can be viewed
as the “keyword” of the “communication policies”, and the
overlapping of connector names signifies A and B intend to
be involved in interactions of the same nature. An example
is when mixing happens between two classages both with a
Public connector indicating interactions with the “general
public”. Such a name correspondence is usually not an acci-
dental clash. The mixing process should allow the merging
of such connectors, indicating their common interest in com-
municating with the “general public”. Since a connector is
composed of imports, exports and connection-specific fields,
we need to separate our discussion into three parts to make
clear what we mean by merging connectors.

First, declaring an import on a connector shows an expec-
tation the classage has for the outside at runtime. Suppose
now A has a connector Cn with import m defined, and yet
in B’s connector Cn, m is not an import. If the resulting
compound C were to include m as an import, it would raise
B’s expectation for the outside world. One can imagine a
connect o with Cn >> Cn’ typechecked in B would fail in C,
if objectage o in the expression happened not to provide m.
On the other hand, if C were not to include m as an import,
it would lower A’s expectation for the outside world. But
remember when A is written, it has already assumed the
expectations (imports) will be satisfied when connection is
established. Thus it might contain code such as h->m() (h is
a connection handle on connector Cn), which would fail to
typecheck if C did not import m. This shows that A and B

must always have the same import declaration in connector
Cn to be mergeable in a type-safe way.

Second, declaring an export on a connector simply shows
a classage’s willingness to contribute to the outside world.
Thus, as long as A and B do not compete to contribute the
same method, the merged connector should have all export
method from A and from B. By “compete” we mean the two
methods are not distinguishable, which would confuse the
party receiving the “contributions”.

Third, declaring a connection-specific field simply shows
an objectage holds some private data to the connection to be
established on the holding connector. If A and B each hold
some connection-specific field, they should both show up in
the merged connector. In the case of name clash, they should
be α-renamed, since such a name clash is purely accidental
from the perspective of A and B.

6.2.2 The Classages Solution
In summary, there are two conditions a mixing process

must satisfy: (1) If both A and B define connectors by name
Cn, the two connectors in concern must have identical import
declarations. (2) If both A and B define a connector by name
Cn, the two connectors in concern cannot export two methods
which are not distinguishable from overloading sense.

The following describes how connectors of the two mixing-
participating parties are carried over to the compound:

• If A or B (but not both) defines a connector by name
Cn, the connector Cn also belongs to C.

• If both A and B defines a connector by name Cn and
the conditions above are satisfied, C should also contain
a connector Cn, with import declarations to be either
of the two parties (they are the same anyway), with
export merged, and connection-specific fields merged
with free α-conversion.

How mixers are carried from the mixing-participating par-
ties to the compound is standard: they are either matched
and consumed (via classage C = A + B with tn >> tn) or
matched and re-exported as a new mixer of the compound
(via classage C = A + B with tn >> tn as tn), or unmatched
and carried over to the compound.

7. IMPLEMENTATION
A prototype Classages compiler has been implemented us-

ing the Polyglot compiler framework [22]. The extensibility
of Polyglot allows programmers to reuse Java’s existing fea-
tures. The current implementation provides its own clas-
sage/objectage model and relies on Polyglot’s base imple-
mentation of Java to provide useful language features such
as arrays, exceptions and rich primitive types.

The implementation covers all language features intro-
duced in the syntax (Sec. 4), including translation to target
Java code and the type system. All Classages code exam-
ples used in this paper can be successfully compiled. The
current status of implementation is that it lacks explicit li-
brary support, and advanced features such as reflection are
not included.

The compilation process consists of several standard passes
including parsing, type-building, disambiguation, typecheck-
ing and Java code generation, performed by a series of vis-
itor traversals on the AST. An important issue is when
compound classages are “flattened-out” into atomic clas-
sages. Since mixing is a purely static interaction, the com-
piler could in theory perform flattening right after parsing.
This approach however would lead to duplicate compilation:
when a classage A is also used to form a compound B, a
flattening of B early on would lead to the code inside A be-
ing typechecked twice. Our compiler hence does not flatten
compound classages until the last pass, when the target code
is produced. Compared with the specification of Sec. 6.2,
the implementation is a bit more complicated due to the
need for α−conversion of local fields and methods during
flattening. The classage cn = cn + cn with n >> n syntax
involves consumption of mixers; the current implementa-
tion handles it by giving the consumed mixers some internal
names not overlapping with programmers’ name space. The
classage cn = cn + cn with n >> n as n syntax involves in-
terface renaming.

7.1 The Translation
Each classage is translated into a top-level Java class,

and its interaction interfaces are translated into Java in-
ner classes, the use of which eases up implementation issues
such as scoping. The Java top-level class contains factory
methods for the creation of each inner class.

All top level classes contain the fields cstore recording
live connections, and pstore recording live pluggings. Book-
keeping operations on these fields are defined in a common
Java interface SYS CLASSAGE that all top-level classes im-
plement. All inner classes contain one field named other:
recording the other party communicating on the interaction



interface. Recall both connections and pluggings happen
between a pair of interaction interfaces. Bookkeeping oper-
ations for this field are defined in a common Java interface
SYS I all inner classes implement. Inside each inner class,
every export method is mapped to a public method, while
every import method is implemented as a redirection to the
method on other by the same name.

A connect o with n1 >> n2 expression is translated to Java
code instantiating the two inner classes representing n1 and
n2 respectively, and updating the other fields of the two and
the live connection stores. Without considering the subtyp-
ing intricacies discussed below in Sec. 7.2, the translation
is:

x = this.factorymethod n1();
y = o.factorymethod n2();
x.other = y;
y.other = x;
this.cstore.add(y);
o.cstore.add(x);

A plugin expression can be similarly translated. Other
expressions are relatively straightforward.

7.2 Implementing Structural Subtyping in Java
One of the most challenging implementation issues is how

Classages’ structural subtyping system is to be implemented
in Java, which uses nominal and not structural subtyping.
Consider the following example, where B is a subtype of A,
by structure:

classage A {
connector Q {export void f(int x){. . . }}

}
classage B {

connector Q {
export void f(int x) {. . . }
export void g(double x){. . . }

}
connector Z {. . . }

}
classage C {

connector P {. . . }
int m(A x) {

P c = connect x with P >> Q;
c->f(3);

}
}

The tricky issue is the polymorphism supported by struc-
tural subtyping: local invocation ::m(b) in C should type-
check, where b is an objectage of B. To make the same
type-checkable Classages expression get through the Java
typechecker, a naive implementation might just use cast-
ing. But Java’s casting only allows casts up and down in-
heritance hierarchies, and casting one class to an unrelated
class will fail. Some tricks can be attempted to build more
nominal subtype relationships by introducing additional in-
terfaces and implements relationships, but these approaches
give incomplete results, especially considering Java does not
support depth subtyping with its interface mechanism.

7.2.1 Our Solution
We first state the guiding rules of our solution:

R1. Any objectage variable declaration is translated to a

variable declaration with top type SYS CLASSAGE in
the target Java program. This includes variables in
the form of method formal parameters, fields and lo-
cal variables.

R2. If a classage has an interaction interface named A, its
implementing top-level Java class must implement a
top-level one-method Java interface containing method
void factorymethod A().

R3. If an interaction interface contains an export method
named m, its implementing Java inner class must im-
plement a top-level one-method Java interface contain-
ing the signature of method m, where, as per R1 above,
all formal parameters of m with objectage types are re-
placed with the type SYS CLASSAGE.

R1 is applied to ensure expressions involving the use of
objectage subtyping should not be translated to target code
rejected by Java’s type checker. In the earlier example, if
the formal parameter x of m is translated with a top type,
one can imagine that invocation ::m(b) can always be trans-
lated as a Java-typecheckable expression, even when b is an
objectage of type B.

Now consider the translation of connect x with P >> Q.
In Sec. 7.1 we presented an incomplete translation, contain-
ing the Java statement y = o.factorymethod n2(). Notice
that now o according to R1 has a top type, so the invo-
cation does not typecheck in Java. One might be tempted
to use downcasting, and fixing the statement in the form
such as y = ((A)o).factorymethod n2(). This approach
does get around Java’s static type checker, but at runtime,
it will likely throw an exception due to invalid downcasting:
although o is declared to have top type in the method of m,
it can still be instantiated with an object with type, say B.
As long as B is not nominally a subtype of A, the downcast
will fail at runtime.

R2 is introduced to avoid runtime exceptions at down-
casts. Using this rule, the same statement can be translated
as y = ((I)o).factorymethod n2(), where I is the one-
method Java interface containing method factorymethod n2.
Since the name n2 is known locally, such a translation also
does not depend on global information. Such a downcast al-
ways succeeds, because to ensure structural subtyping, any
o must contain interaction interface n2, and hence must have
implemented the same interface according to R2.

R3 is introduced in a similar vein as R2, only in this
case on a different level: Classages objectage subtyping hap-
pens on two levels, with one level ensuring the subtype has
at least as many as connectors as the supertype, and the
other ensuring within the same connector, the methods also
conform to the subtyping constraint. R3 is useful for the
method level.

7.3 On Efficiency
Since the solution here involves significant downcasting,

the compiler will suffer from inefficiencies, but it will allow us
to build a functional prototype with passable performance,
without the need to get involved in JVM modifications.

Independent of the choice of target languages, the inclu-
sion of some expressive language features in Classages inher-
ently leads to some decisions being made dynamically. Clas-
sages structural subtyping will lead to dynamic lookup for
method mn in expression e->mn(e1, . . . , en), where a con-
nection e is invoked. When n is a singleton plugger name,



abstract class A {
abstract public void a();
protected void c() {...}
private void l() {...}

}
interface Itr {

public void b();
}
class B extends A implements Itr {

final public void a() {...}
public void b() {...};
final protected void c() {...}

}

Figure 10: A Typical Java Snippet

a

c

A

c

Inner

B'

Super

c

Public

a
c

l
c
a

b

Public

b

Itr

b

Inner

b

c

a

c

b

a

B

Legends: see Fig. 9 for details

Figure 11: A Classages Illustration of Fig. 10

expression n::mn(e1, . . . , en) also needs to dynamically de-
cide whether the default export mn or the overridden one
should be invoked, depending on whether the plugger is cur-
rently plugged in with a classage.

8. ENCODING JAVA IN CLASSAGES
In this section we show how standard notions of class,

object, inheritance, etc can be encoded in Classages. As
an example, a Java snippet and its corresponding Classages
implementation is shown in Fig. 10 and Fig. 11 respectively.
(For simplicity, we have left out the technicality that class
Object is the default root class of all Java classes.)

Classages can encode Java class, interface, methods with
various modifiers (public, protected, private, final and abstract),
private fields, overriding, dynamic dispatch, super invocation
and subtyping. Non-private fields can always be modeled
with a pair of getter/setter methods.

8.1 Intuition
Intuitively, a simple Java class without interface declara-

tions can be thought of as defining three interactions with
the outside world: (1) how it interacts with its superclass,
(2) how it interacts with its subclass, and (3) how its in-
stance communicates with peers at runtime. To support
these three interactions, the encoding classage will use for
(1) a mixer Super, for (2) a mixer Inner, and for(3) a con-
nector Public. In Java, a protected method can be invoked
inside the body of subclasses and cannot be invoked at run-
time by peers; such a method in a Classages context will
be exported to the Inner mixer, but not to the Public con-
nector. Comparatively, a public method should be exported
on both, and a private method should exported on neither.
Modifier abstract means a method must be imported from
a subclass, hence in Classages an import should be declared

in Inner for the method. The essence of final is to avoid
overriding, and this can be achieved by not including the
method as an import on Inner. To support overriding, the
actual encoding is more complicated, in a way we explained
in Sec. 6.1; see that section for the intuitions.

As explained in Sec. 3.4, Java’s interface is not intended
to strictly enforce encapsulation, but is meant to support
subtype polymorphism. In that sense, as long as the sub-
typing relations of Java can be modeled in Classages, we
do not need to encode this type-level language construct at
all. The subtyping relation can be easily preserved in the
encoding: Classages has a structural subtyping system, and
objectage subtyping is only concerned with connectors. It
can be easily seen in the encoding connector Public exports
all public methods of a Java class, and it must contain all
methods declared in a Java interface implemented by that
Java class.

Java-style inheritance is encoded in Classages by mixing.
In Java, a subclass B is defined based on the pre-knowledge
of what superclass A it inherits from. In a composition-style
language like ours, this pre-knowledge is not necessary, be-
cause the extension itself, i.e. what B has defined in its own
body, could be a unit of reuse as well. Thus, encoding a
Java-style subclass involves two steps: first define the ex-
tension using a classage, say B′, and then define B as mixing
of A and B′. This is exactly what is done in Fig. 11.

8.2 Encoding
We now formally define the encoding of Java classes into

classages. The encoding is defined on a linear inheritance
hierarchy only, but the encoding has an unambiguous map-
ping onto a hierarchy tree. We start off by defining a few
functions:

ι(C, N) ::= imports in interface N of classage C
ε(C, N) ::= exports in interface N of classage C

public(C) ::= public methods in Java class C
protected(C) ::= protected methods in Java class C

final(C) ::= final methods in Java class C
abstract(C) ::= abstract methods in Java class C
override(C) ::= overriding, i.e. not newly defined,

methods in C

Given a linear Java inheritance hierarchy C1, C2, . . . , Cn,
where C1 is the root class and Ci is a subclass of Ci−1 for
2 ≤ i ≤ n, the Classages encoding of Ci is a classage with a
connector Public, and two mixers Inner and Super. For the
root class C1, its encoding C1 has the following structure:

ι(C1,Public) = ∅
ε(C1,Public) = public(C1)
ι(C1, Super) = ∅
ε(C1, Super) = ∅
ι(C1, Inner) = (public(C1) ∪ protected(C1)) ∩ final(C1)

ε(C1, Inner) = (public(C1) ∪ protected(C1)) ∩ abstract(C1)

This definition has largely been explained by the informal
explanations earlier. Note that when both import and export
of an interaction interface are empty, the interface does not
exist: in our context, the root class does not have a Super
mixer.

For any class Ci on the hierarchy where 2 ≤ i ≤ n, we first
compute a classage ∆i, and then obtain Ci (the encoding
classage for Ci) by mixing Ci−1 and ∆i, with the Inner



mixer of the former matching the Super mixer of the latter.
∆i is defined as follows:

ι(∆i,Public) = ∅
ε(∆i,Public) = public(Ci) ∩ override(Ci)
ι(∆i, Super) = ε(∆i−1, Inner)
ε(∆i, Super) = ι(∆i−1, Inner)
ι(∆i, Inner) = (public(Ci) ∪ protected(Ci) ∪ ε(∆i, Super))∩

final(Ci)
ε(∆i, Inner) = (public(C1) ∪ protected(C1) ∪ ι(∆i, Super))∩

abstract(C1)

This definition is inductive because Java’s inheritance does
not just allow a direct subclass to use or override a method
defined by the superclass, it also allows use and overriding
by any indirect subclass on the inheritance hierarchy. In a
Classages context, this means a superclass method, no mat-
ter being used/overridden by the direct subclass or not, must
be forwarded from the Super mixer to Inner mixer, since an
indirect subclass might still use/override it. The presenta-
tion here is simply a mechanical encoding to demonstrate
expressiveness; in reality, when one programs in Classages,
one programs in a Classages way: Java’s coding pattern
is also optimized for inheritance. Programming in a lan-
guage featuring code composition, programmers should not
think of constructing deep hierarchies in the first place. For
instance, by coding a labeled color point, a typical Java
programmer will create an inheritance hierarchy: Point,
ColorPoint, LabeledColorPoint, where as a Classages im-
plementation would naturally be the composition of three
classages: Point, Color and Label.

Java’s method invocation is encoded by ephemeral invo-
cations on default connector Public. Other expressions, such
as new and field access can be encoded via the direct ana-
logues in classages.

9. PROGRAMMING IN CLASSAGES
This section explores a few practical issues of Classages

programming. The goal here is to illustrate how the lan-
guage performs in not-so-obvious or seemingly-not-supported
programming scenarios. It also aims to give readers a better
understanding of the language expressiveness and potential
limitations.

9.1 The Need for Self Reference
Self reference – such as Java’s expression this – is a central

issue for OO languages. this has two distinct purposes in OO
languages: 1) for sending messages to the object itself; 2) to
pass this to other objects to allow them to call back.

Classages does not currently include this in the language
syntax. This decision was made because the two aforemen-
tioned factors bolstering the inclusion of this in an OO lan-
guage are already supported in Classages: see Sec. 6.1 for
support of self-messaging and Sec. 3.5 for callbacks. That
said, there are still a few programming situations which are
easy in Java that become harder in Classages: for instance,
an objectage cannot register itself with another objectage,
but instead has to rely on a third party holding its objec-
tage reference to register it. If more engineering practices
point to such difficulties, we may decide to add this to the
language explicitly. But even if that were to happen, this in
Classages will still play a more minor role in Classages than
in mainstream OO languages.

9.2 Programming Collection Classes
We now explain how a Java programmer’s need to define

and use collection classes/interfaces such as List and Set is
met in Classages.

We first identify a few problems with Java’s solution. A
whole-part relationship between Sequence and AminoAcid

in Fig. 1 will typically be implemented in Java by having a
Sequence object holding a collection object, say LinkedList,
which subsequently holds a number of AminoAcid objects.
To refer to each AminoAcid object, some Iterator object
also needs to be created. Such a solution demonstrates
an impedance mismatch between design and implementa-
tion, in the sense that a simple 1:n binary relationship be-
tween Sequence and AminoAcid demonstrated by UML sud-
denly becomes complicated interactions among four classes:
Sequence, AminoAcid, LinkedList and Iterator. Such a
discrepancy not only introduces problems in understanding,
but also leads to subtle issues of alias protection [2].

Classages directly supports connectors and pluggers with
multiplicity. Thus, a 1:n relationship between Sequence

and AminoAcid in UML is faithfully implemented by only
two classages. Functionalities represented by Java’s List

are directly supported: Java List’s add can be analogously
thought of as the plugin/connect expressions, Java’s remove

on lists as the unplug/disconnect expressions, and iterations
as the forall expression.

This solution covers the cases where programmers need
relationship multiplicity but do not care what specific data
structure is used to achieve it. However, there are situa-
tions where programmers need to pick a specific data struc-
ture, for instance, choosing a HashMap over a LinkedList to
achieve efficiency. Classages also support the definition and
use of classages analogous to Java’s HashMap: the analogous
classage HashMappage would have some connector(s) to de-
fine how the hash map is maintained, including element ad-
dition, deletion and lookup. A second generative connector
of HashMappage can support iteration over the map; there
is no need to create a distinct Iterator object. A client
objectage can communicate with a HashMappage objectage
by establishing connections.

9.3 Self Mixing/Plugging/Connecting
Classages can be mixed with themselves, as long as they

have matchable mixers. For instance, given a classage A with
two mixers In and Out, where the import and export of these
two mixers complement each other, it is possible to create a
compound AA as follows:

classage AA = A + A with In >> Out

The resulting classage AA will still have two mixers, the Out

mixer carried over from the first A, and the In mixer carried
over from the second A.

An analogous scenario works for plugging as well: an ob-
jectage can plug in a classage of the same type to its run-
time, as long as they have a matched plugger/mixer pair.
For instance, given a classage B with one plugger Part and
one mixer Whole, where the import and export of these two
interfaces complement each other, it is fine to evaluate the
following expression inside an objectage of B:

plugin B with Part >> Whole

This particular coding pattern is useful to implement the
Composite design pattern, where the whole can itself be a
part of a whole of the same type.



Two objectages generated from the same classage can
be obviously connected together, analogously with how two
Java objects of the same class can communicate.

9.4 Reusable and Composable Connectors and
Pluggers

In a realistic language where library support is the norm,
it is desirable to predefine a few commonly used connectors
and pluggers as reusable building blocks in the library, and
users can compose their own connectors and pluggers out of
them. Although first-class connectors and pluggers are not
supported directly, they can easily be encoded in Classages.
We now explain the case for connectors; the case for pluggers
is identical.

For reusability, consider the following scenario Java pro-
grammers often encounter: an object MyButton should im-
plement a MouseListener interface to communicate with
the event source, inside which callback methods such as
mousePressed, mouseClicked are defined. In Classages,
MouseListener is naturally coded as a connector of the
MyButton objectage. The question is then how a Classages
library can define a reusable MouseListener connector so
that the MyButton programmer does not have to define de-
fault behaviors of MouseListener from scratch. A reusable
MouseListener can be encoded by defining a classage, say
MouseListenerage, with one connector MouseListener, and
one mixer, say, MouseListenerMix, where the mixer defines
default behavior which can be overridden by mixing with
other classages and the connector is defined as in Sec. 6.1.
Classage MyButton can thus be formed as the compound of
MouseListenerage and a classage implementing the button
functionalities. Such an encoding of reusable connectors also
facilitates connector composibility.

10. RELATED WORK
That interactions always happen on interfaces is the norm

in module and component system research. In this regard,
Classages is a way of cross-over thinking from module sys-
tems and components to the level of objects. Classages is
especially close to our module calculus Assemblages [19]. De-
spite the structural similarity between the two, there is a
fundamental semantical difference due to the difference be-
tween modules and objects. For instance, in Classages plug-
ging is designed to achieve better object encapsulation and
lifetime management; mixing is closely compared with in-
heritance; connecting is used to model association relation-
ships. All these issues, together with technical issues such
as overriding and object polymorphism, are not concerns
of a module system. This comment also applies to com-
parisons with other module and component systems, which
we do not list one by one. A few systems that particularly
affect our design of interaction interfaces, bi-directionality
for instance, include Units [14], CORBA [23], Cells [24] and
ArchJava [4]. Interested readers can refer to [19] for more
detailed discussions. In software engineering community, a
few architectural description languages [5, 21] also lay em-
phasis on interactions between different software parts, but
their focus is on modeling high-level software architectural
constraints, not designing fine-grained language constructs
such as classes and objects directly used by programmers.

On the object level, mixin systems [9, 15] address the issue
of class composition as a replacement of inheritance. Clas-
sage mixing is in a similar vein, but Classages separates the

interfaces for static behaviors from interfaces for dynamic
behaviors, and each mixin only has one interface playing
dual roles. In this regard, Traits [27] are also designed with
a separation of concern in mind: traits are only used for code
composition, and are not instantiatable. Instantiation can
only happen to a second language construct, classes, to glue
traits together. Classages can use one language construct to
model what both traits and classes are modeling, and still
preserve separation of concerns, by declaring different kinds
of interfaces on a single classage.

Encapsulation has always been a goal of OO languages.
This can be traced back to the design of object itself and
ADT. Recently, Encapsulation Policies (EP) [28, 26] have
been defined which allow a class to define multiple EPs,
specifying how it can be reused or its instances can be com-
municated at runtime. Classages can also allow a class to
define multiple policies for its encapsulation, by declaring
multiple mixers, pluggers and connectors. If the Classages
principles in Sec. 3 are used to evaluate EP, it has a focus
on the principle of least privilege (Principle 4), and a sep-
aration between statics and dynamics (Principle 1). EP
does not single out the case that one object might encapsu-
late another object as its part. All objects are peers. Since
the project is less focused on the interaction aspect of OO
languages, encapsulation policies are not bi-directional.

Ownership types [10, 8] and alias protection [3, 11] uses
type annotations for protecting an object’s internal repre-
sentation, with the ultimate goal that an object cannot be
accessed from outside its owner. In Classages, plugging in-
teraction defines an owner-ownee relationship, and the type
system’s restriction over parameter passing (see Sec. 5) de-
termines first-class plugging handles cannot be passed out-
side its owner, which is the same as the inaccessibility from
outside the owner. By distinguishing plugging handles and
connection handles, Classages also separates the “internal
references” within an objectage, and the “external refer-
ences” between objectages, and thus can also achieve the in-
teresting property of “external uniqueness is unique enough”
[11]. As this paper is not focused strongly on the topic of
ownership, we do not model more advanced notions of own-
ership such as borrow expression in [11], and lent in [3]. The
lifetime constraint between a whole and a part in a plugging
interaction makes Classages loosely related to region-based
memory management [31], where the part can be viewed
as holding a region with a shorter lifetime than that of the
whole.

Jacques [12] is a model proposed to support so-called
environmental acquisition. It aims to model UML’s aggre-
gation associations, loose whole-part relationships where the
part might outlive the whole, and Jacques focuses on how
the part can import fields and methods from the whole, the
environmental acquisition. Classages can model two dis-
tinct forms of aggregation, plugging or connecting. For UML
composition associations, plugging is an obvious choice, but
plugging restricts external objectages from possessing a ref-
erence to the part so that a lifetime constraint can be guar-
anteed. If this external access were needed, a connector can
be used instead of a plugger to model the aggregation, and
in general our connectors can be used to model all of the
whole-part relationships of Jacques. Jacques’s acquires
declaration can be modeled by declaring imports in the part
connector, and Jacques’s contains declaration can be anal-
ogously thought of as the connector on the whole. Jacques



demands that each class declare what classes are allowed to
be a class’s whole (using contained). This intensional ap-
proach is not taken in Classages: any two objectages with
matched connectors can form the relationship.

UML allows designers to declare association classes to rep-
resent the relationship between two classes. At program-
ming language level, Rumbaugh [25] first pointed out the
importance of supporting first-class relationships, but main-
stream OO languages’ support for relationships is limited.
Recently, as a reverse engineering effort, a tool [17] was
proposed to recover binary relationships from Java. A few
projects, including complex associations [18], first-class de-
pendencies [13], and most recently, RelJ [6] have more ex-
plicit support for relationships than ours: relationships in
these projects are not just first-class values as in Classages,
they can also be independently defined by programmers as
a top-level construct. Comparatively, our approach is more
lightweight, but still covers the rich aspects of relationships
as these projects cover.

Classages has syntax for directly support concepts em-
bodied in several of the design patterns. Declaring explicit
interfaces for classages is related to Facade. The design of
interfaces with both imports and exports is a key component
of Observer, allowing maximum de-coupling of interacting
parties. By declaring imports on mixing interfaces, methods
can be defined by other classages, which corresponds with
Template Method. Plugging interaction is directly re-
lated to protecting internal representations. In Fig. 2 plug-
ging has been used to facilitate Memento, by protecting
the internal state. Programs using the Composite, Strat-
egy, State patterns gain more direct support in Classages.

For code reuse, Classages uses composition in place of in-
heritance. Although we have shown inheritance is encodable
in Classages from a language perspective, it is indeed de-
batable whether composition can totally replace inheritance
from the software engineering perspective. This perhaps can
only be answered by the mass of programmers, but some ex-
periments, e.g. refactoring Smalltalk’s collection hierarchy
using Traits [7], indeed have shown promising signs for com-
position. Another question that needs practical Classages
programming experience to decide is how much all the in-
terfaces on classages get in the way compared to how much
they help.

11. CONCLUSION
Classages models three fundamental interactions within

the object world: static composition, peer-to-peer commu-
nication and whole-part interaction. Despite the fundamen-
tally different nature of the three, they are unified under
the same rationale: each interaction involves two parties;
each party defines explicit interfaces on what it contributes
to the interaction and what it expects from the interaction,
and a successful interaction is established if the interfaces
from both parties match each other. Despite the wide range
of topics Classages touches upon, this unified view can both
keep the formal language core small for reasoning, and help
programmers learn the language quickly.

In the future, we are interested in exploring some lan-
guage features the core language may be able to positively
impact, in particular concurrency (see Sec. 3.7), serializa-
tion, and garbage collection (see Sec. 3.2). The current im-
plementation does not place efficiency as the primary goal;
improvement in this regard will become an immediate task.

12. REFERENCES

[1] Abadi, M., and Cardelli, L. A Theory of Objects.
Springer, 1996.

[2] Aldrich, J., and Chambers, C. Ownership
domains: Separating aliasing policy from mechanism.
In Proceedings of the 18th ECOOP (2004), pp. 1–25.

[3] Aldrich, J., Kostadinov, V., and Chambers, C.

Alias annotations for program understanding. In
OOPSLA ’02, pp. 311–330.

[4] Aldrich, J., Sazawal, V., Chambers, C., and

Notkin, D. Language support for connector
abstractions. In Proceedings of the 17th ECOOP
(2003), pp. 74–102.

[5] Allen, R., and Garlan, D. A formal basis for
architectural connection. ACM Transactions on
Software Engineering and Methodology 6, 3 (1997),
213–249.

[6] Bierman, G., and Wren, A. First-class relationships
in an object-oriented language. In FOOL ’05:
Proceedings of the 12th International Workshop on
Foundations of Object-oriented Languages.

[7] Black, A. P., Schärli, N., and Ducasse, S.

Applying traits to the smalltalk collection classes. In
OOPSLA ’03, pp. 47–64.

[8] Boyapati, C., Liskov, B., and Shrira, L.

Ownership types for object encapsulation. In
POPL’03, pp. 213–223.

[9] Bracha, G., and Cook, W. Mixin-based
inheritance. In Proceedings of OOPSLA/ECOOP’90
(1990), pp. 303–311.

[10] Clarke, D. Object Ownership and Containment. PhD
thesis, University of New South Wales, July 2001.

[11] Clarke, D., and Wrigstad, T. External uniqueness
is unique enough. In Proceedings of the 17th ECOOP
(2003), pp. 176–200.

[12] Cobbe, R., and Felleisen, M. Environmental
acquisition revisited. In POPL’05, pp. 14–25.

[13] Ducasse, S., Blay-Fornarino, M., and Pinna,

A.-M. A reflective model for first class dependencies.
In OOPSLA’95, pp. 265–280.

[14] Flatt, M., and Felleisen, M. Units: Cool modules
for HOT languages. In PLDI’98, pp. 236–248.

[15] Flatt, M., Krishnamurthi, S., and Felleisen, M.

Classes and mixins. In POPL’98, pp. 171–183.

[16] Gamma, E., Helm, R., Johnson, R., and

Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[17] Guéhéneuc, Y.-G., and Albin-Amiot, H.

Recovering binary class relationships: Putting icing on
the uml cake. In OOPSLA’04, pp. 301–314.

[18] Kristensen, B. Complex Associations: Abstractions
in Object-Oriented Modeling. In OOPSLA’94,
pp. 272–283.

[19] Liu, Y. D., and Smith, S. F. Modules with
interfaces for dynamic linking and communication. In
Proceedings of the 18th ECOOP (2004), pp. 414–439.

[20] Madsen, O. L., Møller-Pedersen, B., and

Nygaard, K. Object-oriented programming in the
BETA programming language. ACM
Press/Addison-Wesley Publishing Co., 1993.



[21] Medvidovic, N., Rosenblum, D. S., and Taylor,

R. N. A language and environment for
architecture-based software development and
evolution. In Proceedings of the 1999 International
Conference on Software Engineering, pp. 44–53.

[22] Nystrom, N., Clarkson, M. R., and Myers, A. C.

Polyglot: An extensible compiler framework for java.
In Proceedings of the 12th International Conference on
Compiler Construction (2003), pp. 138–152.

[23] Object Management Group. The Object
Management Group. URL: http://www.omg.org.

[24] Rinat, R., and Smith, S. F. Modular internet
programming with cells. In Proceedings of the 16th
ECOOP (2002), pp. 257–280.

[25] Rumbaugh, J. Relations as semantic constructs in an
object-oriented language. In OOPSLA’87,
pp. 466–481.

[26] Schärli, N., Black, A. P., and Ducasse, S.

Object-oriented encapsulation for dynamically typed
languages. In OOPSLA’04, pp. 130–149.

[27] Schärli, N., Ducasse, S., Nierstrasz, O., and

Black, A. P. Traits: Composable units of behaviour.
In Proceedings of the 17th ECOOP (2003),
pp. 248–274.

[28] Schärli, N., Ducasse, S., Nierstrasz, O., and

Wuyts, R. Composable encapsulation policies. In
Proceedings of the 18th ECOOP (2004), pp. 26–50.

[29] Srinivasan, R., and Rose, G. Linus: A hierarchic
procedure to predict the fold of a protein. PROTEINS:
Structure, Function, and Genetics 22 (1995), 81–99.

[30] Steyaert, P., Lucas, C., Mens, K., and D’Hondt,

T. Reuse contracts: managing the evolution of
reusable assets. In OOPSLA’96, pp. 268–285.

[31] Tofte, M., and Talpin, J.-P. Region-based memory
management. Information and Computation 132, 2
(1997), 109–176.


