

Topics

- Last time
- Common subexpression elimination
- Value numbering
- Global CSE
- This time
- Partial redundancy elimination

PRE Example

PRE: Problem

- Critical edge prevents redundancy elimination
- Connects node with two or more successors to one with two or more predecessors
- Why is it a problem?

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

PRE: Solution

- Split critical edges!
- Insert empty basic blocks
- Allows PRE to continue

PRE Dataflow Equations

- First formulation [Morel \& Renvoise 79] bidirectional dataflow analysis
- Ugly
- This version [Knoop et al. 92]
- Based on "lazy code motion"
- Places computations as late as possible
- Same reductions as classic algorithm
- Minimizes register pressure
- Most complex dataflow problem we've ever seen...

Step 1: Local Transparency

- Expression's value is locally transparent in a basic block if
- No assignments to variables that occur in expression
- Set of locally transparent expressions: TRANSloc(i)
- Note: Ignore expressions in branches

Step 2: Locally Anticipatable

- Expression is locally anticipatable in basic block if
- There is computation of expression in block
- Moving to beginning of block has no effect
- No uses of expression nor assignments of variable in block ahead of computation
- Set of locally anticipatable expressions: ANTloc(i)

Step 3: Globally Anticipatable

- Expression's value globally anticipatable on entry to basic block if
- Every path from that point includes computation of expression
- Expression yields same value all along path
- Set of globally anticipatable expressions: ANTin(i)

Globally Anticipatable Expressions: Dataflow Equations

- ANTout $($ exit $)=\varnothing$
- $\operatorname{ANTin}(\mathrm{i})=$

ANTloc(i) $\cup($ TRANSloc(i) \cap ANTout(i))

- $\operatorname{ANTout}(\mathrm{i})=$
$\cap_{\mathrm{j} \in \operatorname{Succ}(\mathrm{i})}$ ANTin(j$)$
- What's the analysis direction?

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Globally Anticipatable

Conclusion

- PRE
- Subsumes global CSE \& loop-invariant code motion
- Complex (but unidirectional) dataflow analysis problem
- Can only reduce number of computations and register pressure
- Next time
- Register allocation: ACDI ch.16, pp. 481-524

