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Topics

Last time
Common subexpression elimination

Value numbering
Global CSE

This time
Partial redundancy elimination
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Partial Redundancy

Partial redundancy:
Expression computed more than once
on some path through control-flow graph

Partial-redundancy elimination (PRE):
Minimizes partial redundancies

Inserts and deletes computations (adds temps)

Each path contains no more (usually fewer) occurrences of 
any computation than before

Dominates global CSE & loop-invariant code motion
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PRE Example
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PRE: Problem

Critical edge prevents redundancy elimination
Connects node with two or more successors to one with two 
or more predecessors

Why is it a problem?
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PRE: Solution

Split critical edges!
Insert empty basic blocks
Allows PRE to continue
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Big Example:
Critical Edges
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Big Example:
Critical Edges Removed
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PRE Dataflow Equations

First formulation [Morel & Renvoise 79]
bidirectional dataflow analysis

Ugly
This version [Knoop et al. 92]

Based on “lazy code motion”
Places computations as late as possible
Same reductions as classic algorithm
Minimizes register pressure

Most complex dataflow problem we’ve ever seen…
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Step 1: Local Transparency

Expression’s value is locally transparent in 
a basic block if

No assignments to variables that occur in 
expression

Set of locally transparent expressions:
TRANSloc(i)

Note: Ignore expressions in branches
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Local Transparency

TransLoc – no assignments
to variables in expression
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Step 2: Locally Anticipatable

Expression is locally anticipatable in basic 
block if

There is computation of expression in block
Moving to beginning of block has no effect

No uses of expression nor assignments of variable in 
block ahead of computation

Set of locally anticipatable expressions:
ANTloc(i)
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Locally Anticipatable

ANTloc – computes expr,
can move to front
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Step 3: Globally Anticipatable

Expression’s value globally anticipatable
on entry to basic block if

Every path from that point includes 
computation of expression
Expression yields same value all along path

Set of globally anticipatable expressions:
ANTin(i)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  • MHERST  • Department of Computer ScienceDepartment of Computer Science 15

Globally Anticipatable Expressions:
Dataflow Equations

ANTout(exit) = ∅
ANTin(i) =
ANTloc(i) ∪ (TRANSloc(i) ∩ ANTout(i))

ANTout(i) =
∩j ∈ Succ(i) ANTin(j)

What’s the analysis direction?
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Globally Anticipatable

ANTout(exit) = ∅
ANTin(i) =

ANTloc(i) ∪ (TRANSloc(i) 
∩ ANTout(i))

ANTout(i) = ∩j ∈ Succ(i) ANTin(j)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  • MHERST  • Department of Computer ScienceDepartment of Computer Science 17

Step 4: Earliest Expressions

Expression is earliest at entrance to block if
No block from entry to block both:

Evaluates expression and
Produces same value as at entrance to block

Defined in terms of local transparency and globally 
anticipatable expressions

EARLin(i) 
= ∪j ∈ Pred(i) EARLout(j)
EARLout(i) 
= inv(TRANSloc(i)) ∪ (inv(ANTin(i)) ∩ EARLin(i))
Initialize EARLin(entry) = Uexp
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Early Expressions

EARLin(i) = ∪j ∈ Pred(i)
EARLout(j)

EARLout(i) = 
inv(TRANSloc(i)) ∪
(inv(ANTin(i) ∩ EARLin(i))



4

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  • MHERST  • Department of Computer ScienceDepartment of Computer Science 19

PRE Transformation

We’ll cut to the chase:
Latest, Isolated expressions

Use earliest, globally anticipatable
OPT(i) = latest but not isolated
= LATEin(i) ∩ inv(ISOLout(i))
REDN(i) = used but not optimal 
= ANTloc(i) ∩ inv(LATEin(i) ∪ ISOLout(i))

Insert fresh temporaries for OPT 
expressions, replace uses in REDN 
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OPT, REDN, PRE

OPT(B1) = a+1
OPT(B2, B3a) = x*y
REDN(B1) = a+1
REDN(B2, B4, B7) = x*y
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Conclusion

PRE
Subsumes global CSE & loop-invariant code 
motion
Complex (but unidirectional) dataflow analysis 
problem
Can only reduce number of computations and 
register pressure

Next time
Register allocation: ACDI ch.16, pp. 481-524


