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Abstract 

Data-flow analysis computes its solutions over the paths in 
a control-flow graph. These paths-whether feasible or in- 
feasible, heavily or rarely executed-contribute equally to a 
solution. However, programs execute only a small fraction 
of their potential paths and, moreover, programs’ execution 
time and cost is concentrated in a far smaller subset of hot 
paths. 

This paper describes a new approach to analyzing and 
optimizing programs, which improves the precision of data 
flow analysis along hot paths. Our technique identifies 
and duplicates hot paths, creating a hot path graph in 
which these paths are isolated. After flow analysis, the 
graph is reduced to eliminate unnecessary duplicates of un- 
profitable paths. In experiments on SPEC95 benchmarks, 
path qualification identified 2-112 times more non-local con- 
stants (weighted dynamically) than the Wegman-Zadek con- 
ditional constant algorithm, which translated into l-7% 
more dynamic instructions with constant results. 

1 Introduction 

Data-flow analysis computes its solutions over the paths in 
a control-flow graph. The well-known, meet-over-all-paths 
formulation produces safe, precise solutions for general data- 
flow problems. All paths-whether feasible or infeasible, 
heavily or rarely executed-contribute equally to a solution. 
This egalitarian approach, unfortunately, is at odds with 
the realities of program behavior. Even moderately large 
programs execute only a few tens of thousands of paths (out 
of a universe of billions of acyclic paths) and, moreover, 
programs’ execution time and cost is concentrated in a far 
smaller subset of hot paths [BL96, ABL97]. 

This paper presents a new data-flow analysis technique 
that attempts to compute more precise solutions along the 
hot paths in a program. Improved analysis along these paths 
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can aid a compiler in optimizing these heavily executed por- 
tions of a program. Path-qualified data-flow analysis con- 
sists of the following steps: 

1. 

2. 

3. 

4. 

5. 

Identify hot paths by profiling a program. We use a 
Ba&Larus path profile [BL96] to determine how often 
acyclic paths in a program execute. 

Identify and isolate the hot paths in the program’s 
control-flow graph (CFG). This step produces a new 
CFG in which each hot path is duplicated. Since a 
hot path is separated from other paths, data-flow facts 
along the path do not merge with facts from other, 
overlapping paths. Moreover, as programs do not exe- 
cute many hot paths, this hot-path graph (HPG) is not 
much larger than the original graph. 

Perform data-flow analysis on the HPG. The solutions 
found by this technique are conservative in the hot 
path graph-not in the original control-flow graph. 

Reduce the graph to preserve only valuable solutions. 
The HPG duplicates code for paths whose solutions 
did not improve. Extra code both increases the cost 
of subsequent compiler analyses and adversely affects 
a processor’s instruction cache and branch predictor. 
Reduction uses results from the data-flow analysis and 
frequencies from the path profile to decide which paths 
to preserve in the TI&K~ hot-path graph (THPG). 

Translate the original path profile into a path pro- 
file for the rHPG, so profiling information is avail- 
able for subsequent analyses and optimizations. Ball- 
Lams path profiles are determined by a set of recording 
edges, which start and end paths. The algorithm that 
produces an HPG also identifies recording edges in the 
HPG, which allows interpretation of the original path 
profile as a path profile of the HPG. The reduction 
step properly maintains these recording edges. 

The technique can be applied to any data-flow prob- 
lem, although this paper focuses on constant propagation. 
In experiments on SPEC95 benchmarks, path qualification 
identified 2-112 times more non-local constants (weighted 
dynamically) than the Wegman-Zadek conditional constant 
algorithm, which translated into l-7% more dynamic in- 
structions with constant results. Moreover, the technique is 
practical. With the exception of the go benchmark, the hot- 
path graphs were 3-32% larger and the reduced hot-path 
graphs were only l-7% larger than the original CFG. On 
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go, the hot-path graphs were 184% larger and the reduced 
hot-path graphs 70% larger. 

1.1 Qualified Flow Analysis 
Our implementation is based on Holley and Rosen’s qual- 
ified flow analysis technique [HR~I]. A qualified data-flow 
problem is a conventional data-flow problem together with 
a deterministic finite automaton, A, whose transitions are 
labelled by the edges of the control-flow graph, G. A en- 
codes additional information about the program-in path- 
qualified analysis, it recognizes hot paths. Data-flow analy- 
sis answers questions of the form “What can be said about 
the data-flow value at vertex v?” Qualified data-flow analy- 
sis answers questions of the form “What can be said about 
the data-flow value at vertex v given that A is in state q?” 

Holley and Rosen used qualified data-flow analysis to 
identify infeasible paths and exclude them from analysis. 
They created an automaton in which infeasible paths ended 
in a failure state. The best solution at v, given that A is not 
in the failure state, is the meet over the non-failure states 
of A. For path qualification, we use the Aho-Corasick al- 
gorithm [Aho94] to construct an automaton that recognizes 
hot paths in a path profile. 

Holley and Rosen describe two techniques for solving 
qualified problems, data-flow tracing and conted tupling. 
This paper uses data-flow tracing, which constructs a new 
graph GA whose vertices encode the vertex from G and the 
state from A. The qualified problem is then solved as a con- 
ventional data-flow problem over GA-qualified solutions in 
G have become true solutions in GA. GA is, of course, our 
hot-path graph. 

The qualified solution is never lower in the lattice than 
the unqualified solution. To see why, consider the solution 
at vertex v of G. If P is the set of all paths from routine 
entry to v and I, is the data-flow value from path p E P, 
then the meet-over-all-paths solution 1, at v is given by 

1, = A 1,. 
PEP 

Now partition P by the state of A. If Q is the set of 
states of A, Pp C_ P is the set of paths in P that drive A to 
state q E Q. It is clear that 

A 1, = A A 1,. 

PEP nEQ PEP, 

Or, omitting the outer meet on the right hand side and 
converting the equality to an inequality, for all q E Q 

PEP PEP, 

The inequality is not strict, so the qualified solution is 
not necessarily sharper than the meet-over-all-paths solu- 
tion. However, when it is sharper, it is doubly beneficial to 
find this increased precision in heavily executed code. 

1.2 Contributions 
This paper makes four contributions: 

l It shows how path profiles can improve the precision 
of data-flow analysis through guided code duplication. 

l It describes how to reduce the hot-path graph, by elim- 
inating paths that prove unnecessary or unprofitable. 

l It shows how to preserve path-profiling information 
through the CFG transformations. 

l It applies path qualification to constant propagation 
and demonstrates a significant improvement over the 
widely-used Wegman-Zadek technique. 

1.3 Outline of the Paper 

This paper is structured as follows. Section 2 sketches the 
theoretical groundwork and formalizes path profiles. Sec- 
tion 3 describes the automaton that recognizes the hot path 
in the profile. Section 4 shows how data-flow tracing con- 
structs a new control-flow graph with duplicated hot paths. 
Section 5 shows how to reduce the traced graph. Section 6 
presents the results of our experiments on SPEC95 bench- 
marks. Section 7 discusses related work. 

2 Preliminaries 

This section states definitions and theorems used in the rest 
of this paper. 

2.1 Data Flow Problems 

We begin with standard definitions of data-flow problems 
and their solutions. 

Definition 1 A monotonic data-flow problem D is a tuple 
(L, A, F, G,r, l,, M) where: 

l L is a complete semilattice with meet operation A. 

l F is a set of monotonic functions from L to L. 

l G = (V, E) is a control-flow graph with entry vertex r. 

l 1, E L is the data-pow fact associated with I-. 

l M : E + F maps the edges of G to functions in F. 

M can be extended to map every path p = [eo, el, . . . , ek] 

in G to a function f : L + L: 

f = M(p) = M(ek) 0 M(ek-1) 0 . . . 0 M(eo) 

The next three definitions come from Holley and 
Rosen p~8i]. 

Definition 2 A solution I of D is a map I : V + L such 
that, for any path p from r to a vertex: u, I(u) < (M(p))&). 

Definition 3 A fixpoint J of D is a map J : V -+ L such 
that J(r) 5 I, and, if e is an edge from vertex u to vertex v, 
J(v) 5 (M(e))(J(u))- 

Definition 4 A good solution I of D is a solution of D 
such that, for any fipoint J, J(u) < I(u) for all u E V. 
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2.2 Traced Data Flow Problems 

As mentioned in Section 1, a qualified data-flow problem 
is qualified with respect to a finite automaton. This paper 
only considers qualification automata: 

Definition 5 If G = (V, E) is a control-flow graph, a qual- 
ification automaton is a complete, deterministic finite au- 
tomaton with transitions labelled by elements of E. 

Given a data-flow problem D over G and a qualification 
automaton A, a traced data-flow problem separates solu- 
tions by states of A, as well as by vertices of G. More 
formally: 

Definition 6 Let D = (L, A, F, G,r,&, M) be a data-flow 
problem over G and A be a qualification automaton. Then, 
the traced data-flow problem DA is a data flow problem 
(L,A,F,GA,TA,hA,MA) where 

L, A, and F are as in D. 

GA = (VA, EA) is a control-jldw graph with entry ver- 
tex TA = (r,q6). For v E V and q E Q, (v,q> E VA if 

there exists a path p from I- to v that drives A from its 
start state qC to q. In addition, ((~0, go), (VI, ql)) E EA 

if there exists an edge (VO, vl) E E and a transition in 
A from qo to ql on (vo,vl). 

1 PA = 1,. 

MA : EA + F is defined by MA(((vo,QO),(VI,~~))) = 

M((vo,vI)) where (vo,vl) E EA. 

DA is a data-flow problem that can be solved by conven- 
tional means. Holley and Rosen prove the following theo- 
rem [HlUl, Theorem 4.21: 

Theorem 1 If IA is a good solution of DA, then the solu- 
tion I of D given by I(v) = A{~A((%Q)) : b,d E h,‘IL = 
v}, for all v E V, is a good solution of D. 

The meet in the theorem may lose information. As men- 
tioned above, since 1,~ at (v,q) need only meet over paths 
to v that also drive the finite state machine to q, IA((v,q)) 
can be strictly more precise than I(v), even if I is the meet- 
over-all-paths solution. 

An algorithm for producing DA from D is given in Sec- 
tion 4. 

2.3 Path Profiles 

A path profile counts the number of times that a program 
traverses acyclic paths in a routine’s CFG. Path profiles, 
along with a low-overhead algorithm to obtain them, are 
described in papers by Ball and Larus [BL96] and by Am- 
mons, Ball, and Lams [ABL97]. 

The acyclic paths recorded in a profile start and end 
at recording edges. The set of recording edges, R, is, at a 
minimum: edges from the entry vertex, edges into the exit 
vertex, and retreating edges. Thus, removing the recording 
edges turns G into an acyclic graph. Additional edges may 
also be designated recording edges. 

Entry I 

cl A i=O 

0 I n=i 

t 
Exit 

Figure 1: Our running example. Dashed lines indicate edges 
along which the Ball-Larus path profiling algorithm records 
the current path. Without path qualification, only the as- 
signments of constants are constant instructions. 

Definition 7 Given a control-flow graph G and a set of 
recording edges R, a Ball-Laxus path is a placeholder (e) 
followed by a path in G from the target WJ of some TO E R 
to the target VI of some T1 E R, which contains no recording 
edges besides v-1. The set of all such paths is denoted by PBL. 
Given a Ball-Lam path pBL = [a, eo, el, . . . , ek] and a path 
p in G, we say that pBL is a subpath of p if [eo,el,. . . , ek] 

occurs as a subpath of p that immediately follows an edge in 
R. 

The l is a reminder that Ball-Larus paths start with a 
recording edge. More than one recording edge may target 
a vertex, as for a doubly-nested loop in which both loops 
share a header. For Ball-Lams paths that start at such a 
node, the reminder does not specify which recording edge 
started a path. 

As a running example, we will use the problem of finding 
instructions with constant results in the program in Figure 1. 
Without path qualification, the only constant instructions 
are the assignment statements in vertices A, C, D, F, and 
G. 

The dashed edges in Figure 1 designate recording edges. 
In this example, b,B, C,E,F,H,B] is a Ball-Lams path, 
while [o, C, E, F, H, I] is not a Ball-Larus path. 

Definition 8 Given a multiset of paths P through a control- 
flow graph G and a set of recording edges R, a path profile 
is a multiset Ppp of Ball-Larus paths such that pBL E PBL 
occurs in PPP with multiplicity equal to the number of times 
PBL occurs as a subpath of paths in P. 

Consider the example in Figure 1. Writing the paths as 
lists of vertices, if P were: 

(‘70 times) [Entry, A, B, C, E, F,H,I,Exit] 
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.” x (0) ’ CJ%D) 
Figure 2: A path profile for the example. 

(5 times) [Entry, A, B, D, E, F, H] . [B,D, E, G, HI6 
.[B, D, E, F, H, I, Exit] 

(25 times) [Entry, A, B, D, E, F, H] . [B, D, E, G, HI3 
.[B, D, E, F, H, I, Exit] 

the path profile is shown in Figure 2. 

3 Creating the Automaton 

This section describes an algorithm to construct a deter- 
ministic finite automaton that recognizes hot paths. The 
algorithm is an application of the Aho-Corasick algorithm 
for matching keywords in a string [Aho94]. In our case, the 
keywords are hot Ball-Larus paths. The constructed DFA 
is used as the qualification automaton for data-flow tracing. 

The Aho-Corasick algorithm begins by constructing a 
retrieval tree (also known as a trie) from a set of keywords. 
A retrieval tree is a tree with edges labelled by letters from 
the alphabet, which satisfies two properties. First, each path 
from the root of the tree to a node corresponds to a prefix 
of a keyword from the set. Second, every prefix of every 
keyword has a unique path from the root that is labelled by 
letters of the prefix. Given a set of keywords, constructing 
its retrieval tree takes time proportional to the sum of the 
lengths of the keywords. 

In our case, the alphabet is edges in a CFG and key- 
words are hot paths. Assuming that all paths in Figure 2 
are hot, Figure 3 shows the retrieval tree. Our algorithm 
for constructing the retrieval tree consists of the following 
steps: 

Identify the hot paths. In our experiments, we selected 
the minimal set of paths that executed a fixed fraction 
CA (e.g., 97%) of the dynamic instructions in a training 
run. Hot paths were selected by considering each path, 
ordered by the number of instructions executed along 
the path (length times frequency), and marking paths 
hot until CA of the dynamic instructions were covered. 

Trim the final recording edge from each hot path. The 
constructed automaton will recognize these trimmed 
paths. Trimming paths ensures that the automaton 
returns to the same state after any recording edge. 

Construct the retrieval tree for the set of trimmed hot 
paths. 

Note that only one edge in the retrieval tree is labelled 
by 0. In general, we make this definition: 

Definition 9 q. is the target of the retrieval tree edge la- 
belled by 0. 

0 16 

Figure 3: A retrieval tree for the path profile in our example. 

In Figure 3, q. = qo. 
In Aho-Corasick, pattern matching steps through an in- 

put string while making transitions between vertices of the 
retrieval tree. At each step, if an edge from the current ver- 
tex in the tree is labelled by the next letter in the string, 
that edge is followed. If a leaf of the tree is reached, a 
match has been found. If no edge from the current vertex 
is labelled by the next letter (a), the current vertex (q) is 
reset by consulting a failure function, h(q, a). 

The failure function avoids rescanning the input string, 
by resuming scanning in the retrieval tree state correspond- 
ing to the longest keyword prefix that could lead to a match. 
If this prefix is nonempty, it must consist of a proper suffix 
of the match that just failed followed by a. 

A Ball-Larus path p starts with a l representing a record- 
ing edge and ends with another recording edge. No other 
edges in p are recording edges, by definition. Thus, no paths 
start with a substring from the middle of another path, so 
the failure function always resets the automaton. The fol- 
lowing theorem shows that the failure function becomes triv- 
ial. 

Theorem 2 Say q,, is the retrieval tree vertm representing 
the keyword prejix u. For any Aho-Corasick rewgnizer pro- 
duced from a set of trimmed Ball-Larus paths, h(q,, u) = qe 
if a is not a recording edge and h(q,, a) = q. if a is a record- 
ing edge. 

Proof: Suppose v is the longest proper su#ix of u that is 
also a prefix of some tm’mmed path in the profile. v must 
start with a l , which represents a recording edge. But no 
proper sufi of u contains a recording edge, so Iv1 = 0. If a 
is not a recording edge, it cannot begin a Ball-Larms path and 
h(qU, u) = qt. If a is a recording edge, then it is equivalent 
to l and so h(qU, a) = q.. 

Since the failure function is trivial, our implementation 
only stores retrieval tree edges, which greatly reduces its 
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size. If the automaton is in state q and sees the input a, the 
next state is found by checking: 

l If there exists a retrieval tree edge from q labelled by 
a, the next state is the target of the edge. 

l If a is a recording edge, the next state is q.. 

l Otherwise, the next state is qC. 

4 Building the HPG 

This section explains how a hot path graph (HPG) is con- 
structed. The algorithm both produces a graph for data flow 
analysis and also identifies recording edges in that graph, SO 

that path profiling information can be carried over to later 
stages of compilation. 

Section 4.1 applies Holley and Rosen’s data-flow tracing 
algorithm to the original graph and the path qualification 
automaton from Section 3. The output of the tracing algo- 
rithm is a hot path graph without recording edges--GA from 
Definition 6. In this HPG, every path from entry represents 
both a path in the original CFG and a path in the automa- 
ton. Moreover, two paths from entry end at the same vertex 
iff the corresponding paths in the CFG end at the same ver- 
tex and the corresponding paths in the automaton end in 
the same state. Thus, data-flow solutions over the HPG do 
not merge values from paths that reach different automaton 
states. 

Section 4.2 explains how our algorithm also identifies the 
recording edges in the HPG, so that the path profile infor- 
mation can be correctly interpreted in the modified CFG. 

Holley and Rosen discuss two qualification methods, one 
of which is data-flow tracing. The other method is context 
tupling. Section 4.3 explains why we use data-flow tracing 
instead of context tupling for path qualification. 

4.1 Tracing the HPG 

Figure 4 presents Holley and Rosen’s algorithm for data-flow 
tracing, extended to identify recording edges (discussed in 
the next subsection). The algorithm is a worklist algorithm 
that finds all pairs of CFG vertices and automaton states 
reachable from the entry of the CFG (T) and the initial state 
of the automaton (qc). The vertices of the HPG are these 
pairs. Initially, the worklist holds (r,qr). Each iteration 
of the While loop removes a pair (v,q) from the worklist. 
The algorithm iterates over each pair (v’,q’) reachable in 
one step from (v, q). If (v’, q’) is not in the HPG, it is added 
to the HPG and the worklist. In any case, an edge is added 
from (v,q) to (v’,q’). The algorithm terminates when the 
worklist is exhausted, at which point all possible pairs have 
been added to the HPG. 

The constructed HPG fits the definition of GA in Defi- 
nition 6. The following theorem, together with Theorem 1, 
justifies performing data-flow analysis on the HPG. 

Theorem 3 When the algorithm in Figure 4 completes, 

ii) 

(v,q) E VA iff there exists a path p in G from r to v 
that drives A from its start state qC to q. 

((%no), (vl,ql)) E EA iff there exists an edge 
(us, VI) E E and a transition in A from qa to q1 on 
(VO,Wl). 

G = (V, E) is a control-flow graph. 
A is a qualification automaton. 
Q is the set of states of A. 
qe is the start state of A. 
T is the set of transitions in A. 
R C E is the set of recording edges. 
IV% a worklist of pairs (v,q), where v E V and q E Q. 
GA = (VA,EA) is the hot path graph. 
RA 2 EA is the new set of recording edges. 

2 +-~b-,q.)l 

R::te 
W +- (r,n.) 
While W # 0 

(v, d + Take(W) 
ForeachEdge (v,v’) E E 

(q, (v, v’), q’) E T (it is unique) 
If (V',(f) e VA 

VA + VA u (V',(f) 

putw, (v', n')) 

EA t EA U {((v,q), (v’,q’))} 
If (v,v’) E R 

RA + RA u {((%q), (V’,‘i))) 

Figure 4: An algorithm for data-flow tracing. The original 
Holley-Rosen algorithm has been extended to mark record- 
ing edges in the traced graph. 

Proof: The “‘only-if” direction of both requirements is ob- 
vious. The %f” direction follows by induction on the length 
of the paths p. For paths of length 0, both requirements are 
trivially true. If i) holds for all paths up to some length n 
and ii) holds for all edges reachable along such paths, then 
all final nodes of such paths must have been added to the 
worklist at some point in the algorithm. After these nodes 
are processed, the requirements hold for all paths up to length 
n+ 1. 

Figure 5 shows the example after data-flow tracing. The 
automaton is in state q. at shaded vertices and state qa at 
vertices filled with diagonal lines. Only these vertices are 
targeted by multiple edges, as qI and qo are the only states 
in the automaton reached by multiple transitions. 

The original graph had no constant results other than 
simple assignments, but the graph in Figure 5 has several 
new constant results: a + b is always 6 at H14, 5 at H12 
and H15, and 4 at H13, i + + is 1 at H14 and H15, and n 
is always 1 at 117. 

Unfortunately, although the original flow graph in Fig- 
ure 1 is reducible, the rHPG in Figure 5 is not. For example, 
the edge (HE, BO) is a retreating edge but not a backedge in 
a natural loop since BO does not dominate He. Because of 
this problem, tracing should only be used with data-flow 
solvers that can handle irreducible graphs. 

4.2 Identifying Recording Edges in the 
HPG 

The algorithm in Figure 4 makes an HPG edge 
((vo,qa), (v~,ql)) a recording edge iff (ve,vr) is a record- 
ing edge in the original graph. The next two lemmas show 
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Figure 5: The control-flow graph of our example, traced with 
respect to the automaton in Figure 3. Dashed lines indicate 
edges along which the Ball-Larus path profiling algorithm 
records the current path. The automaton is in state qC at 
shaded vertices and state qo at vertices filled with diagonal 
lines. 

Original Path Traced Path 
.,A,B,C,E,F,H,I,Exit 
[*,A,B,D,E,F>H,B] 
[*,B,D,E,G,H,Bl 

] [.,AO,Bl,D4,E7,Fll,H15,BO] 
.,AO, Bl, C3,E6,FlO, H14,17, Exit01 

[e, BO, D2, E5, G9, H13, BO] 
l ,B,D,E,F,H,I,Exit ., BO, D2,E5,F8, H12,116, E&O] 

Figure 6: For each Ball-Larus path in the original path pro- 
file, the corresponding Ball-Larus path through Figure 5. 

that these edges suffice to interpret the path profile from the 
original graph in the HPG. 

Lemma 1 Let p be a path from entry to edt in G and pA 
the corresponding path in the HPG. Then, a Ball-Lam path 
begins at the kth edge inp $a Ball-Larus path begins at the 
kth edge in pa. 

Proof: By the construction in Figure 4, if the kth edge 
in p is a recording edge, the kth edge in pA is a recording 
edge, and vice versa. 

Lemma 2 Given a Ball-Larus path [o,vo,vl,. . . ,vk] in G, 
the corresponding HPG contains exactly one Ball-Larus path 
[“,(VO,~O),(vl,ql),...,(vk,~k)]. 

Proof: By Lemma 1, some such Ball-Larus path exists 
in the HPG. All automaton transitions on recording edges 
target q.. Thus, qo = q.. By requirement ii) of Theorem 3 
and the determinism of A, the rest of the path is determined. 

Lemma 1 implies that there is a one-to-one and onto map 
between any path profile of G and a path profile of the HPG. 

Lemma 2 implies that this map is unique and gives a way 
to construct the map: given a path from the original path 
profile that begins at v, start the path for the HPG profile at 
(v, 4,). The rest of the path can be laid out easily. Figure 6 
shows the Ball-Larus path through Figure 5 for each path 
in Figure 2. 

It is instructive to consider graphs in which the lemmas 
would fail. Lemma 1 would fail if the edge (H15,BO) in 
Figure 5, which is not a retreating edge, were not a record- 
ing edge. This is simply because (H, B) in Figure 1 is a 
recording edge, so the original path profile does not track 
correlations across it. 

Lemma 2 would fail if recording edges targeted more than 
one B vertex. This could happen if, for example, tracing 
were allowed to unroll loops. 

4.3 Context Tupling 
In their original paper on qualified data-flow problems, Hol- 
ley and Rosen presented two techniques for solving qualified 
problems [HR81]. Their first technique, data-flow tracing, 
has already been discussed. Their other technique is context 
tupling. 

While data-flow tracing solves a conventional data-flow 
problem over an expanded graph, context tupling solves a 
“tupled” data-flow problem over the original graph. Intu- 
itively, data-flow tracing tracks the state of A in the control- 
flow graph, while context tupling tracks the state of A in the 
lattice of values. 

We chose data-flow tracing over context tupling for three 
reasons: 

l Data flow tracing is easier to understand and explain. 

l We envision that path profiles will be used through- 
out a sequence of compiler analyses and optimizations. 
With data-flow tracing, each analysis sees the results of 
previous passes through a modified control-flow graph. 
It is not obvious how to pass this information with con- 
text tupling. 

l Holley and Rosen did not find context tupling to be 
any more efficient than data-flow tracing. Its main 
advantage is that context tupling does not produce 
irreducible CFGs, so elimination solvers can be used 
with context tupling. 

5 Reducing the Traced CFG 

This section describes our algorithm for identifying and 
eliminating vertices in the HPG that have either coarse data- 
flow results or low execution frequencies. 

Figure 7 illustrates the need for this step. This chart 
shows the cumulative distribution of the number of execu- 
tions of instructions with constant results by basic block. 
Constants that can be found solely through analysis within 
a basic block are excluded. For example, just 11 vertices 
account for virtually all nonlocal constants in compress. At 
the other extreme, 10,000 vertices are necessary to cover 
the constants in go. Tracing adds about 100 vertices to 
compress and over 93,000 vertices to go. Even if all vertices 
that contribute constants were included among the dupli- 
cated vertices, most new vertices would contribute only an 
insignificant improvement in the solution. The reduction 
algorithm eliminates many of these useless vertices. 
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Number of blocks 

Figure 7: The distribution of dynamic executions of constant 
instructions by basic block in selected SPEC95 benchmarks. 

In this paper, we describe the reduction algorithm in 
terms of constant propagation. However, the algorithm is 
not restricted to constant propagation. All that is necessary 
is a way to assign a benefit to duplicating a vertex in the 
HPG. 

The reduction algorithm is a heuristic algorithm with the 
following steps: 

1. Identify the hot vertices. First,, the vertices are ordered 
by the number of dynamic constants they execute, as 
computed from the path profile. In our experiments, 
we chose a fixed fraction CR of the (nonlocal) dynamic 
constants as a goal. Vertices are added to the set of 
hot vertices until CR is reached. 

In our running example, Hl2 weighs 30, H13 weighs 
100, H14 weighs 140, H15 weighs 60, and 117 weighs 
70. All the other vertices have weight 0. For the sake 
of the example, suppose cR is chosen such that H13 
and H14 are the only hot vertices. 

2. For each vertex v in the original graph, partition the 
vertices (v, q) in the HPG into sets of vertices that are 
compatible. This is the heuristic step of the algorithm. 
Call the partition II. At this stage, two vertices are 
compatible if neither vertex is hot or, if one or both is 
hot, lowering both solutions to the meet of their lattice 
values does not destroy any constants in a hot vertex. 

Compatibility is not an equivalence relation (it is not 
transitive), so II cannot be found by looking for equiva- 
lence classes. Instead, II is formed greedily by “throw- 
ing in” vertices one at a time. As each vertex (v,q) is 
thrown in, it merges with the first S E IX for which 
adding (v,q) to S does not destroy constants in a 
hot vertex. If there is no such S, (v,q) starts a new 
set. Our implementation tries to keep hot vertices to- 
gether by considering the vertices in descending order 
by weight. 

In the example, since H13 and H14 are the only hot 
vertices, II is 

{Entree), {AO), 0% Bl), {CE, C3), W, D41, 
{Ee, E5, E6, E7}, {FE, F8,FlO, Fll}, {GE, G9}, 
@,;,, H15), Q-I13), (H141, (kI16, II7), 

xi 

3. Use the standard DFA minimization algorithm [Gri73] 
to produce a partition II’ which respects the data- 
flow solutions. The complexidty of this algorithm is 
O(7LlogTZ). 

Why is this algorithm applicable? The HPG can be 
thought of as a finite automaton with edges labelled 
by the edges of the original graph. The elements of II 
can be thought of as equivalence classes of final states 
of an automaton that recognizes several different kinds 
of tokens. 

The only way to lower the solution over a set S E II 
is to cause some new path p from entry to reach a 
vertex in S. Viewing p as a string, that would mean 
that p was not recognized as a token of type S before 
minimization but is recognized as such a token after 
minimization. This cannot happen. 

In our example, the minimized partition II’ is 

-Pntveh {AOh WXI, @lb {ce), {C3), {D2), 
{D4), 0% E71, {E5), @6), {FE, F8, Fll), 
VW, {GE), {G% @,H12,H15), {H13), 
{H14}, {IE, 116,117}, {ExitO} 

4. Replace the vertices in each set in II’ with a rep- 
resentative and produce a new set of recording 
edges. If SO,& E II’ have representatives SO and 
51, respectively, an edge (SO, ~1) exists iff an edge 
((v~,qo), (vI,~I)) exists in the HPG, where (vo,qo) E 
SO and (vl,ql) E Sl. If ((vo,qo),(vl,ql)) isarecording 
edge, (SO, ~1) is a recording edge. This is well-defined: 
for (vo,no),(vo,d) E So ad (vl,ql),(vl,d) E Sl, 
((vo,qo),(v1,ql)) is a recording edge iff (vo,v~) is a 
recording edge in the original graph and the same for 
((vo, q&), (~1, q:)), so ((vo, qo), (VI, 41)) is a recording 
edge iff ((~0, qb), (VI, q{)) is a recording edge. 

Figure 8 shows the reduced hot path graph for our 
running example. 

6 Experimental Results 

This section presents measurements of the benefits and costs 
of using path-qualified flow analysis for constant propaga- 
tion. We implemented the analysis as two new passes in the 
SUIF compiler [WFW+]. The fist pass, PP, instrumented 
a C program for path profiling. The other pass, PW, used a 
path profile to perform path-qualified constant propagation. 

The first step was to produce a path profile for each 
routine in the program. In this stage, SUIF compiled a C 
program into its low-SUIF intermediate form. The PP pass 
instrumented this intermediate code for path profiling. We 
did not run SUIF’s optimization passes. The SUIF-to-C 
converter transformed PP’s output into C code, which was 
compiled by GCC into an instrumented program. When 
run, this program produced a path profile. 

The next step was to optimize programs. The program 
was again compiled by SUIF. This time, the SUIF code was 
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I Proeram I Nodes I Paths I Hot Paths I ComDile Time I Anal. Time I 

r 
vortex I 21190 I 1729 I 152 I 1042 I 163 1 

Table 1: General information about the benchmarks. Nodes is the total number of CFG nodes in the original program. Paths is the 
number of Ball-Larus paths executed in the training run. Hot Paths is the number of paths needed to cover 97% of a training run’s 
dynamic instructions. Compile Time is the total compile time (seconds) without constant propagation. Anal. Time is the total time 
(seconds) required for constant propagation with CA = 0. 

t 
Exit 

Figure 8: The control-flow graph after reduction. State 
numbers have been dropped from all merged vertices. 

fed to PW together with the previously obtained path pro- 
file. PW used the path profile to construct a hot path graph, 
discover constants, produce a reduced hot path graph, and 
finally generate optimized code. The output of PW was con- 
verted to C code, which was compiled by GCC (-02) into 
an optimized executable. 

As SUIF did not directly generate assembly or machine 
code, our evaluations are in terms of the SUIF intermediate 
code. In this paper, by “instruction” we always mean SUIF 
instructions, not machine instructions. 

The constant propagator in PW uses Wegman and 
Zadek’s Conditional Constant algorithm [WZSl]. This al- 
gorithm is a worklist algorithm that symbolically executes 
a routine, starting at its entry node and propagating values 
only across the legs of branches that can execute, given the 
current assignment of values to variables. Our implementa- 
tion is conservative, as it does not track pointers or constants 
manipulated through pointers or structures, sssumes that 
calls and assignments through pointers write to all aliased 

variables, and initially sets all variables to 1. Since we ran 
the constant propagator immediately after SUIF’s front end, 
the constant propagator saw code that was very close to the 
original C. 

We ran PP and PW on seven of the C SPEC95 bench- 
marks on a Sun UltraSPARC SMP. In all cases, we used an 
input data set from the SPEC train data to produce the 
path profile that drove the flow analysis. A different and 
larger input from the ref data set produced a path profile 
used to evaluate the effectiveness of the constant propaga- 
tor. The path profile of the reference input did not affect 
the optimization; it was only used to compute the dynamic 
number of constants discovered by the propagator. 

Path-qualified analysis becomes more expensive as the 
number of hot paths increases. On the other hand, consid- 
ering more paths can improve a solution, as it increases the 
portion of the program’s execution covered by an analyzed 
path. To quantify this tradeoff, we ran the path-qualified 
analysis several times, varying path coverage-the CA pa- 
rameter in Section 3. That is, the analysis was first run 
on the minimum set of paths that covered three quarters of 
the program’s execution, then on paths that covered seven 
eighths of the execution, and so forth. 

The other parameter in our analysis is CR, the benefit 
cutoff for the graph reduction algorithm. In the experi- 
ments, we set CR to .95, so reduction preserved approxi- 
mately 95% of the nontrivial constants discovered by con- 
stant propagation. This value was arrived at empirically. 

Table 1 lists basic information about the benchmarks. 
Most of the analysis time for per1 was spent in two huge 
routines, yylex and eval, for which the non-linear running 
time of constant propagation became a problem. 

6.1 Benefit of Path Qualification 

Figure 9 shows that the number of executed instructions 
with statically constant results increased as the hot path 
coverage increased. At full coverage (CA = l), the improve- 
ment ranged from 7% for m88ksim and vortex to 0.6% for 
perl. In all benchmarks, most of the benefit of path qual- 
ification was attained before full coverage was reached- 
typically somewhere above 90% coverage. ijpeg attained 
most of its benefit at CA = 0.75 (the lowest non-zero value 
tested) but all benchmarks saw virtually all of their bene- 
fit by cA = 0.97. In two cases, the improvement degraded 
slightly at high coverage, because of heuristics in the reduc- 
tion algorithm. These results confirm earlier path profiling 

79 



Figure 9: Increase in instructions with constant results (weighted 
dynamically) versus the level of path coverage. The baseline is 
the number of constants at CA = 0 (Wegman-Zadek). 

Table 2: Effects of path-qualified constant propagation on run- 
ning time. Base is the running time in seconds of the program 
after Wegman-Zadek constant propagation. Optimized is the 
running time in seconds of the program after path-qualified con- 
stant propagation with cA set to 0.97 and CR set to 0.95. All 
running times are on the ref data set. Speedup reports the 
improvement in running time. 

measurements, which show that a small kernel of hot paths 
dominate a program’s execution. 

6.1.1 Running Time 
We measured each benchmark’s execution time after con- 
stant propagation with CA = 8.97 and CR = 9.95 and 
compared this time against the program’s time with only 
Wegman-Zadek constant propagation (CA = 0). The runs 
were on the ref data set. The best time from three runs is 
reported. 

The relationship between constants and program speed is 
not clear. The three benchmarks with the largest number of 
newly discovered constants sped up, while the other bench- 
marks slowed down. However, the change in execution time 
was not proportional to the increase in the number of con- 
stants. For example, the speedup for go was almost equal 
to that of m88ksim, but go only showed a 4% increase in 
constant instructions while m88ksim showed a 7% increase. 
(Keep in mind that the increase in constant instructions is 
a dynamic measure.) Also, m88ksim and vortex had ap- 
proximately the same increase in constant instructions, but 

vortex sped up by 1.9% while m88ksim sped up by 9.8%. 
Similarly, the largest slowdown was in Ii, yet per1 had the 
smallest increase in constant instructions. 

Furthermore, running times do not seem to relate easily 
to the increase in program size. For example, go had a 
good speedup, but its size increased by the largest amount 
(Figure 11). 

To be fair, this experiment did not control for several 
significant factors. First, the IMPACT group’s work on su- 
perblock scheduling [mWHMC+93] found that tail dupli- 
cation, like that done to isolate hot paths, can expose large 
amounts of instruction-level parallelism. Thus, running time 
improvements are not necessarily due to improvements in 
constant propagation. Second, we rely on GCC to perform 
all optimizations beyond constant propagation, but GCC 
may produce poor code for the irreducible graphs produced 
during tracing. Third, because a node can have at most one 
fall-through predecessor, tracing can introduce extra jumps. 
For example, E can fall through to F in Figure 1, but it is im- 
possible for both E5 and E to fall through to F in Figure 8. 
PW could use the path profile to place these jumps more 
intelligently or to further duplicate code to avoid jumps al- 
together, but our implementation does neither. Fourth and 
last, our experiments did not measure the effect on the in- 
struction cache or branch predictor. 

6.2 Classifying Constants 

This section examines the constants discovered by path qual- 
ification. The Venn diagram in Figure 13 classifies dynamic 
instructions based on the type of analysis required to iden- 
tify them as either constant or dynamic. The categories are: 

Local These instructions can be determined to be constant 
with local analysis-that is, by scanning their enclos- 
ing basic block. In Figure 1, assignments to a and b 
are local constants. 

Iterative These instructions can be determined to be con- 
stant by Wegman-Zadek iterative analysis. We found 
these constants by running the constant propagator 
with CA = 0. 

MOP These instructions are found to be constant by a 
meet-over-all-paths solution. Constant propagation is 
not a distributive problem, so an iterative solution may 
be less precise than a meet-over-all-paths solution. We 
cannot measure this category directly. 

Qualified These instructions are found to be constant by 
the path-qualified analysis. This set does not contain 
MOP, nor does MOP contain Qualified. The inter- 
section of the two sets includes Iterative and pos- 
sibly other constants. Because we cannot measure 
MOP, we cannot measure the intersection precisely. 
The Identical and Variable sets below attempt to 
approximate this intersection. 

Identical These instructions include all Iterative instruc- 
tions, plus instructions not found by Wegman-Zadek 
for which path-qualified analysis finds the same con- 
stant value everywhere they are duplicated. These 
constants would also be found by meet-over-all-paths. 
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Variable These instructions are found to be constant by 
the qualified analysis, but have different values at dif- 
ferent sites in the reduced graph. For example, in Fig- 
ure 8, the value of a + b is 6 at H14 and is 4 at H13. 
Only duplication will reveal these constants. Meet- 
over-all-paths will not find these constants. 

Unknowable Instructions in this category either are not 
constant or cannot be identified as constant because of 
other limitations of the analyses. Our analyses do not 
track pointers, values stored in memory, or the results 
of calls. Therefore, instructions that consume these 
values will never be found constant. We estimated this 
set by counting the number of values produced within 
a basic block, yet found equal to 1. 

Figure 10 divides instructions (dynamically weighted) 
into these categories. Most instructions in each benchmark 
fall in the Unknowable or Local categories. Path qualifi- 
cation does not affect these categories. 

The other part of Figure 10 focuses on the instructions 
targeted by constant propagation algorithms. Our technique 
found many (2-122) times more knowable and nonlocally 
constant instructions. Interestingly, most instructions found 
constant by qualified analysis were neither Identical nor 
Variable. These instructions had one constant value at one 
or more sites and were also unknown at one or more sites. 
The exceptions are vortex and go, both of which contained a 
significant, but small, number of Variable constants. Other 
techniques, which do not duplicate paths, will not find these 
constants. 

Although the direct improvement from our technique is 
large, the instructions it finds constant still make up a small 
percentage of all dynamic instructions. This further explains 
why we did not see speedups for most of the benchmarks. 

In the above discussion, we assumed that the MOP is 
not attainable for constant propagation. This is true for 
the non-distributive Wegman-Zadek formulation. Recently, 
Bodfk and Anik published a distributive formulation of con- 
stant propagation [BA98]. It would be interesting to com- 
pare path-qualified analysis against this formulation. 

6.3 Cost of Path Qualification 

This section examines the cost of path qualification. 

6.3.1 Cost of Duplication 

Figure 11 shows that CFG size only increased significantly 
for go and that the reduction algorithm successfully con- 
trolled the increase in CFG size. 

The cost of data-flow analysis is proportional to the 
CFG’s size before reduction. For go, the maximum increase 
was 722%, and for the other programs the maximum increase 
was 80%. However, Figure 9 showed that 100% coverage of- 
fers little benefit. 97% coverage achieves almost all of the 
benefit, and limits CFG growth to 184% for go and 32% for 
the other programs. 

The CFG’s size after reduction is an indirect measure of 
the spatial locality of the constants found. Our experiments 
show that this locality is high-with CR = 0.95, only go grew 
by more than 10% at any level of coverage. go grew by 77% 
at full coverage, but, again, full coverage is unnecessary: at 
CA = 0.97, its increase was 70%. The cost of subsequent 

3 Unknowable 

Figure 13: A Venn diagram classifying a program’s dynamic 
instructions. 

analysis and the running time of the program may degrade 
as the CFG grows, but these increases seem manageable. 

Why was go exceptional? Table 1 shows that go exe- 
cuted many more paths than other programs and also re- 
quired more paths to reach high coverage levels. Further 
experiments are necessary to see whether go’s distribution 
is atypical or not. 

6.3.2 Analysis Time 

Path-qualified data-flow analysis increases analysis time, 
both by adding three new steps-building the qualifica- 
tion automaton, tracing, and reduction-and by running 
the data-flow solver on larger graphs. Figure 12 shows the 
relative increase in SJdySiS time as cA iS increased. Once 
again, go was exceptional. For the other benchmarks, the 
increase was less than 61% at almost full coverage. Figure 9 
shows that most of the benefit is gained before full cover- 
age, so these increases are reasonable. For go, analysis time 
increased sixfold at CA = 0.97. The observed analysis time 
seems to grow a bit faster than linearly with the size of the 
hot path graph. 

7 Related Work 

Feasible path analysis attempts to identify and eliminate in- 
feasible paths. Holley and Rosen introduced qualified data- 
flow analysis to separate known infeasible paths from the 
remaining paths, some of which might be feasible m81]. 
Goldberg et al. applied theorem proving techniques to iden- 
tify infeasible paths in testing a program’s path cover- 
age [GWZ94]. Bodik et al. used a weaker (but less expen- 
sive) decision technique to determine if all paths between a 
definition and use were infeasible, and therefore the def-use 
pair actually did not exist [BGS97b]. Our work differs from 
these, as we focus on directly improving the precision of 
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Benchmark Benchmark 

(a) Local and unknowable (b) Other categories 

Figure 10: Fraction of dynamic instructions that fall into categories in Figure 13. The qualified analysis was done at full coverage 
(CA = 1). 

program analysis along a subset of important paths, rather 
than improving analysis everywhere by eliminating spurious 
paths. However, the two techniques are certainly comple- 
mentary, as our technique would work well in a CFG from 
which infeasible paths were eliminated. 

Paths have long been used in program analysis and opti- 
mization. Fisher’s trace scheduling technique heavily opti- 
mized the hot paths (called traces) in a CFG [Fis81]. ‘I&e 
scheduling did not duplicate paths, instead it introduced 
fixup code along control flow edges into or out of the mid- 
dle of a trace. More recently, Hwu et al. eliminated this 
fixup code by duplicating paths to form superblocks, which 
is a collection of traces without control flow into the middle 
of a trace [mWHMC+93]. Our approach differs from both 
techniques. First, it is a technique for improving program 
analysis, not a technique for optimization and instruction 
scheduling. Second, although it duplicates paths, like su- 
perblocks, its duplication is guided by path profiles. Finally, 
both scheduling techniques attempted to maximize the size 
of traces. This work evaluates the improvement from dupli- 
cation, and eliminates duplicated blocks that provide little 
or no improvement. 

Mueller and Whalley used an ad-hoc framework and 
code duplication to eliminate certain partially redundant 
branches [MW95]. Mueller and Whalley’s code duplica- 
tion algorithm can be seen as a qualification algorithm 
in which states in the qualification automaton encode in- 
formation about the direction of the partially redundant 
branches. Bodfk et al. used a limited form of interproce- 
dural analysis to detect redundant branches along interpro- 
cedural paths [BGS97a]. This work differs by incorporating 
paths into a more precise and general framework, by us- 
ing paths to derive more precise data-flow analyses, and by 
using path frequencies to overcome the costs of exploiting 
increased precision (code duplication). 

Bodfk et al. presented an algorithm for complete partial 

redundancy elimination using both code motion and code 
duplication [BGS98]. Their technique also used profiles (ei- 
ther edge or path) to drive code duplication. Our paper 
is not directly comparable with their paper, as their paper 
used duplication to carry out an optimization while our pa- 
per uses duplication to improve analysis. However, there is 
a difference in philosophy between the two papers. They 
first analyzed the original control flow graph to identify ver- 
tices for which duplication would enable better code motion. 
Using a profile, their algorithm decides which of these can- 
didates should be duplicated. Our work takes the other 
tack: a profile guides an initial round of duplication. Anal- 
ysis of the duplicated flow graph, together with the profile, 
identifies blocks that should not have been duplicated. By 
contrast, their approach starts and performs analysis over 
a smaller graph. Our approach, however, can find solutions 
not found by a meet-over-all-paths analysis. 

Ftamalingam combined data-flow analysis with program 
frequency information by associating probabilities with 
dataflow values and developing a data-flow framework for 
combining these pairs of values @am96]. Our goal differs. 
Instead of incorporating frequencies into the meet-over-all- 
paths framework, we use frequency information to improve 
analysis precision in heavily executed code. 

8 Conclusion 

This paper describes a new approach to analyzing and op- 
timizing programs. Our technique starts with a path profile 
that identifies the hot paths that incur most of the program’s 
cost. This information provides the basis for a hot path 
graph, in which hot paths are isolated in order to compute 
data-flow values more precisely. After analysis, the hot path 
graph is reduced to eliminate unnecessary or unprofitable 
paths. We applied this technique to constant propagation 
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Figure 11: Increase in the number of CFG nodes before and after reduction versus the level of path coverage. The baseline is the 
unoptimized program. The scale of the y-axis differs in each graph. The graph on the left (i.e., before reduction) is approximately an 
order of magnitude larger than the graph after reduction. Also, the scale for go is about an order of magnitude larger than the other 
graphs. 

and obtained significant improvement over the widely-used 
Wegman-Zadek technique, without a large increase in pro- 
gram size. 

This technique is applicable to other data-flow problems, 
as well. Aside from its simplicity, its primary advantage is 
that it improves the precision of an analysis (by excluding 
the effect of infeasible or infrequently executed paths) in the 
heavily executed portions of a program, where the benefits 
are largest. 
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