
Improving Data-flow Analysis with Path Profiles*

Glenn Ammons James R. Larust
ammons@cs.wisc.edu larus@cs.wisc.edu

Department of Computer Sciences
University of Wisconsin-Madison

1210 West Dayton St.
Madison, WI 53706

Abstract

Data-flow analysis computes its solutions over the paths in
a control-flow graph. These paths-whether feasible or in-
feasible, heavily or rarely executed-contribute equally to a
solution. However, programs execute only a small fraction
of their potential paths and, moreover, programs’ execution
time and cost is concentrated in a far smaller subset of hot
paths.

This paper describes a new approach to analyzing and
optimizing programs, which improves the precision of data
flow analysis along hot paths. Our technique identifies
and duplicates hot paths, creating a hot path graph in
which these paths are isolated. After flow analysis, the
graph is reduced to eliminate unnecessary duplicates of un-
profitable paths. In experiments on SPEC95 benchmarks,
path qualification identified 2-112 times more non-local con-
stants (weighted dynamically) than the Wegman-Zadek con-
ditional constant algorithm, which translated into l-7%
more dynamic instructions with constant results.

1 Introduction

Data-flow analysis computes its solutions over the paths in
a control-flow graph. The well-known, meet-over-all-paths
formulation produces safe, precise solutions for general data-
flow problems. All paths-whether feasible or infeasible,
heavily or rarely executed-contribute equally to a solution.
This egalitarian approach, unfortunately, is at odds with
the realities of program behavior. Even moderately large
programs execute only a few tens of thousands of paths (out
of a universe of billions of acyclic paths) and, moreover,
programs’ execution time and cost is concentrated in a far
smaller subset of hot paths [BL96, ABL97].

This paper presents a new data-flow analysis technique
that attempts to compute more precise solutions along the
hot paths in a program. Improved analysis along these paths

“This research supported by: NSF NY1 Award CCR-9357779, with
support from Sun Microsystems and Intel, and NSF Grant MIP-
9625558.

‘On sabbatical at Microsoft Research.

Permission 10 make digital or hard copies of all or pan of this wcrk for
personal or classroom use is granted without ka provided that
copies are not made or distributed for profit or ccmmwcial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, 10 republish, 10 pcsf on sawen w 10
redistributa 10 lists, requires prior specific psrmiasion and/w a fw.
SIGPLAN ‘98 Montrasl, Canada
@ 1998 ACM 0-89791~987.4/98/0006...$5.00

can aid a compiler in optimizing these heavily executed por-
tions of a program. Path-qualified data-flow analysis con-
sists of the following steps:

1.

2.

3.

4.

5.

Identify hot paths by profiling a program. We use a
Ba&Larus path profile [BL96] to determine how often
acyclic paths in a program execute.

Identify and isolate the hot paths in the program’s
control-flow graph (CFG). This step produces a new
CFG in which each hot path is duplicated. Since a
hot path is separated from other paths, data-flow facts
along the path do not merge with facts from other,
overlapping paths. Moreover, as programs do not exe-
cute many hot paths, this hot-path graph (HPG) is not
much larger than the original graph.

Perform data-flow analysis on the HPG. The solutions
found by this technique are conservative in the hot
path graph-not in the original control-flow graph.

Reduce the graph to preserve only valuable solutions.
The HPG duplicates code for paths whose solutions
did not improve. Extra code both increases the cost
of subsequent compiler analyses and adversely affects
a processor’s instruction cache and branch predictor.
Reduction uses results from the data-flow analysis and
frequencies from the path profile to decide which paths
to preserve in the TI&K~ hot-path graph (THPG).

Translate the original path profile into a path pro-
file for the rHPG, so profiling information is avail-
able for subsequent analyses and optimizations. Ball-
Lams path profiles are determined by a set of recording
edges, which start and end paths. The algorithm that
produces an HPG also identifies recording edges in the
HPG, which allows interpretation of the original path
profile as a path profile of the HPG. The reduction
step properly maintains these recording edges.

The technique can be applied to any data-flow prob-
lem, although this paper focuses on constant propagation.
In experiments on SPEC95 benchmarks, path qualification
identified 2-112 times more non-local constants (weighted
dynamically) than the Wegman-Zadek conditional constant
algorithm, which translated into l-7% more dynamic in-
structions with constant results. Moreover, the technique is
practical. With the exception of the go benchmark, the hot-
path graphs were 3-32% larger and the reduced hot-path
graphs were only l-7% larger than the original CFG. On

72

go, the hot-path graphs were 184% larger and the reduced
hot-path graphs 70% larger.

1.1 Qualified Flow Analysis
Our implementation is based on Holley and Rosen’s qual-
ified flow analysis technique [HR~I]. A qualified data-flow
problem is a conventional data-flow problem together with
a deterministic finite automaton, A, whose transitions are
labelled by the edges of the control-flow graph, G. A en-
codes additional information about the program-in path-
qualified analysis, it recognizes hot paths. Data-flow analy-
sis answers questions of the form “What can be said about
the data-flow value at vertex v?” Qualified data-flow analy-
sis answers questions of the form “What can be said about
the data-flow value at vertex v given that A is in state q?”

Holley and Rosen used qualified data-flow analysis to
identify infeasible paths and exclude them from analysis.
They created an automaton in which infeasible paths ended
in a failure state. The best solution at v, given that A is not
in the failure state, is the meet over the non-failure states
of A. For path qualification, we use the Aho-Corasick al-
gorithm [Aho94] to construct an automaton that recognizes
hot paths in a path profile.

Holley and Rosen describe two techniques for solving
qualified problems, data-flow tracing and conted tupling.
This paper uses data-flow tracing, which constructs a new
graph GA whose vertices encode the vertex from G and the
state from A. The qualified problem is then solved as a con-
ventional data-flow problem over GA-qualified solutions in
G have become true solutions in GA. GA is, of course, our
hot-path graph.

The qualified solution is never lower in the lattice than
the unqualified solution. To see why, consider the solution
at vertex v of G. If P is the set of all paths from routine
entry to v and I, is the data-flow value from path p E P,
then the meet-over-all-paths solution 1, at v is given by

1, = A 1,.
PEP

Now partition P by the state of A. If Q is the set of
states of A, Pp C_ P is the set of paths in P that drive A to
state q E Q. It is clear that

A 1, = A A 1,.

PEP nEQ PEP,

Or, omitting the outer meet on the right hand side and
converting the equality to an inequality, for all q E Q

PEP PEP,

The inequality is not strict, so the qualified solution is
not necessarily sharper than the meet-over-all-paths solu-
tion. However, when it is sharper, it is doubly beneficial to
find this increased precision in heavily executed code.

1.2 Contributions
This paper makes four contributions:

l It shows how path profiles can improve the precision
of data-flow analysis through guided code duplication.

l It describes how to reduce the hot-path graph, by elim-
inating paths that prove unnecessary or unprofitable.

l It shows how to preserve path-profiling information
through the CFG transformations.

l It applies path qualification to constant propagation
and demonstrates a significant improvement over the
widely-used Wegman-Zadek technique.

1.3 Outline of the Paper

This paper is structured as follows. Section 2 sketches the
theoretical groundwork and formalizes path profiles. Sec-
tion 3 describes the automaton that recognizes the hot path
in the profile. Section 4 shows how data-flow tracing con-
structs a new control-flow graph with duplicated hot paths.
Section 5 shows how to reduce the traced graph. Section 6
presents the results of our experiments on SPEC95 bench-
marks. Section 7 discusses related work.

2 Preliminaries

This section states definitions and theorems used in the rest
of this paper.

2.1 Data Flow Problems

We begin with standard definitions of data-flow problems
and their solutions.

Definition 1 A monotonic data-flow problem D is a tuple
(L, A, F, G,r, l,, M) where:

l L is a complete semilattice with meet operation A.

l F is a set of monotonic functions from L to L.

l G = (V, E) is a control-flow graph with entry vertex r.

l 1, E L is the data-pow fact associated with I-.

l M : E + F maps the edges of G to functions in F.

M can be extended to map every path p = [eo, el, . . . , ek]

in G to a function f : L + L:

f = M(p) = M(ek) 0 M(ek-1) 0 . . . 0 M(eo)

The next three definitions come from Holley and
Rosen p~8i].

Definition 2 A solution I of D is a map I : V + L such
that, for any path p from r to a vertex: u, I(u) < (M(p))&).

Definition 3 A fixpoint J of D is a map J : V -+ L such
that J(r) 5 I, and, if e is an edge from vertex u to vertex v,
J(v) 5 (M(e))(J(u))-

Definition 4 A good solution I of D is a solution of D
such that, for any fipoint J, J(u) < I(u) for all u E V.

73

2.2 Traced Data Flow Problems

As mentioned in Section 1, a qualified data-flow problem
is qualified with respect to a finite automaton. This paper
only considers qualification automata:

Definition 5 If G = (V, E) is a control-flow graph, a qual-
ification automaton is a complete, deterministic finite au-
tomaton with transitions labelled by elements of E.

Given a data-flow problem D over G and a qualification
automaton A, a traced data-flow problem separates solu-
tions by states of A, as well as by vertices of G. More
formally:

Definition 6 Let D = (L, A, F, G,r,&, M) be a data-flow
problem over G and A be a qualification automaton. Then,
the traced data-flow problem DA is a data flow problem
(L,A,F,GA,TA,hA,MA) where

L, A, and F are as in D.

GA = (VA, EA) is a control-jldw graph with entry ver-
tex TA = (r,q6). For v E V and q E Q, (v,q> E VA if

there exists a path p from I- to v that drives A from its
start state qC to q. In addition, ((~0, go), (VI, ql)) E EA

if there exists an edge (VO, vl) E E and a transition in
A from qo to ql on (vo,vl).

1 PA = 1,.

MA : EA + F is defined by MA(((vo,QO),(VI,~~))) =

M((vo,vI)) where (vo,vl) E EA.

DA is a data-flow problem that can be solved by conven-
tional means. Holley and Rosen prove the following theo-
rem [HlUl, Theorem 4.21:

Theorem 1 If IA is a good solution of DA, then the solu-
tion I of D given by I(v) = A{~A((%Q)) : b,d E h,‘IL =
v}, for all v E V, is a good solution of D.

The meet in the theorem may lose information. As men-
tioned above, since 1,~ at (v,q) need only meet over paths
to v that also drive the finite state machine to q, IA((v,q))
can be strictly more precise than I(v), even if I is the meet-
over-all-paths solution.

An algorithm for producing DA from D is given in Sec-
tion 4.

2.3 Path Profiles

A path profile counts the number of times that a program
traverses acyclic paths in a routine’s CFG. Path profiles,
along with a low-overhead algorithm to obtain them, are
described in papers by Ball and Larus [BL96] and by Am-
mons, Ball, and Lams [ABL97].

The acyclic paths recorded in a profile start and end
at recording edges. The set of recording edges, R, is, at a
minimum: edges from the entry vertex, edges into the exit
vertex, and retreating edges. Thus, removing the recording
edges turns G into an acyclic graph. Additional edges may
also be designated recording edges.

Entry I

cl A i=O

0 I n=i

t
Exit

Figure 1: Our running example. Dashed lines indicate edges
along which the Ball-Larus path profiling algorithm records
the current path. Without path qualification, only the as-
signments of constants are constant instructions.

Definition 7 Given a control-flow graph G and a set of
recording edges R, a Ball-Laxus path is a placeholder (e)
followed by a path in G from the target WJ of some TO E R
to the target VI of some T1 E R, which contains no recording
edges besides v-1. The set of all such paths is denoted by PBL.
Given a Ball-Lam path pBL = [a, eo, el, . . . , ek] and a path
p in G, we say that pBL is a subpath of p if [eo,el,. . . , ek]

occurs as a subpath of p that immediately follows an edge in
R.

The l is a reminder that Ball-Larus paths start with a
recording edge. More than one recording edge may target
a vertex, as for a doubly-nested loop in which both loops
share a header. For Ball-Lams paths that start at such a
node, the reminder does not specify which recording edge
started a path.

As a running example, we will use the problem of finding
instructions with constant results in the program in Figure 1.
Without path qualification, the only constant instructions
are the assignment statements in vertices A, C, D, F, and
G.

The dashed edges in Figure 1 designate recording edges.
In this example, b,B, C,E,F,H,B] is a Ball-Lams path,
while [o, C, E, F, H, I] is not a Ball-Larus path.

Definition 8 Given a multiset of paths P through a control-
flow graph G and a set of recording edges R, a path profile
is a multiset Ppp of Ball-Larus paths such that pBL E PBL
occurs in PPP with multiplicity equal to the number of times
PBL occurs as a subpath of paths in P.

Consider the example in Figure 1. Writing the paths as
lists of vertices, if P were:

(‘70 times) [Entry, A, B, C, E, F,H,I,Exit]

74

.” x (0) ’ CJ%D)
Figure 2: A path profile for the example.

(5 times) [Entry, A, B, D, E, F, H] . [B,D, E, G, HI6
.[B, D, E, F, H, I, Exit]

(25 times) [Entry, A, B, D, E, F, H] . [B, D, E, G, HI3
.[B, D, E, F, H, I, Exit]

the path profile is shown in Figure 2.

3 Creating the Automaton

This section describes an algorithm to construct a deter-
ministic finite automaton that recognizes hot paths. The
algorithm is an application of the Aho-Corasick algorithm
for matching keywords in a string [Aho94]. In our case, the
keywords are hot Ball-Larus paths. The constructed DFA
is used as the qualification automaton for data-flow tracing.

The Aho-Corasick algorithm begins by constructing a
retrieval tree (also known as a trie) from a set of keywords.
A retrieval tree is a tree with edges labelled by letters from
the alphabet, which satisfies two properties. First, each path
from the root of the tree to a node corresponds to a prefix
of a keyword from the set. Second, every prefix of every
keyword has a unique path from the root that is labelled by
letters of the prefix. Given a set of keywords, constructing
its retrieval tree takes time proportional to the sum of the
lengths of the keywords.

In our case, the alphabet is edges in a CFG and key-
words are hot paths. Assuming that all paths in Figure 2
are hot, Figure 3 shows the retrieval tree. Our algorithm
for constructing the retrieval tree consists of the following
steps:

Identify the hot paths. In our experiments, we selected
the minimal set of paths that executed a fixed fraction
CA (e.g., 97%) of the dynamic instructions in a training
run. Hot paths were selected by considering each path,
ordered by the number of instructions executed along
the path (length times frequency), and marking paths
hot until CA of the dynamic instructions were covered.

Trim the final recording edge from each hot path. The
constructed automaton will recognize these trimmed
paths. Trimming paths ensures that the automaton
returns to the same state after any recording edge.

Construct the retrieval tree for the set of trimmed hot
paths.

Note that only one edge in the retrieval tree is labelled
by 0. In general, we make this definition:

Definition 9 q. is the target of the retrieval tree edge la-
belled by 0.

0 16

Figure 3: A retrieval tree for the path profile in our example.

In Figure 3, q. = qo.
In Aho-Corasick, pattern matching steps through an in-

put string while making transitions between vertices of the
retrieval tree. At each step, if an edge from the current ver-
tex in the tree is labelled by the next letter in the string,
that edge is followed. If a leaf of the tree is reached, a
match has been found. If no edge from the current vertex
is labelled by the next letter (a), the current vertex (q) is
reset by consulting a failure function, h(q, a).

The failure function avoids rescanning the input string,
by resuming scanning in the retrieval tree state correspond-
ing to the longest keyword prefix that could lead to a match.
If this prefix is nonempty, it must consist of a proper suffix
of the match that just failed followed by a.

A Ball-Larus path p starts with a l representing a record-
ing edge and ends with another recording edge. No other
edges in p are recording edges, by definition. Thus, no paths
start with a substring from the middle of another path, so
the failure function always resets the automaton. The fol-
lowing theorem shows that the failure function becomes triv-
ial.

Theorem 2 Say q,, is the retrieval tree vertm representing
the keyword prejix u. For any Aho-Corasick rewgnizer pro-
duced from a set of trimmed Ball-Larus paths, h(q,, u) = qe
if a is not a recording edge and h(q,, a) = q. if a is a record-
ing edge.

Proof: Suppose v is the longest proper su#ix of u that is
also a prefix of some tm’mmed path in the profile. v must
start with a l , which represents a recording edge. But no
proper sufi of u contains a recording edge, so Iv1 = 0. If a
is not a recording edge, it cannot begin a Ball-Larms path and
h(qU, u) = qt. If a is a recording edge, then it is equivalent
to l and so h(qU, a) = q..

Since the failure function is trivial, our implementation
only stores retrieval tree edges, which greatly reduces its

75

size. If the automaton is in state q and sees the input a, the
next state is found by checking:

l If there exists a retrieval tree edge from q labelled by
a, the next state is the target of the edge.

l If a is a recording edge, the next state is q..

l Otherwise, the next state is qC.

4 Building the HPG

This section explains how a hot path graph (HPG) is con-
structed. The algorithm both produces a graph for data flow
analysis and also identifies recording edges in that graph, SO

that path profiling information can be carried over to later
stages of compilation.

Section 4.1 applies Holley and Rosen’s data-flow tracing
algorithm to the original graph and the path qualification
automaton from Section 3. The output of the tracing algo-
rithm is a hot path graph without recording edges--GA from
Definition 6. In this HPG, every path from entry represents
both a path in the original CFG and a path in the automa-
ton. Moreover, two paths from entry end at the same vertex
iff the corresponding paths in the CFG end at the same ver-
tex and the corresponding paths in the automaton end in
the same state. Thus, data-flow solutions over the HPG do
not merge values from paths that reach different automaton
states.

Section 4.2 explains how our algorithm also identifies the
recording edges in the HPG, so that the path profile infor-
mation can be correctly interpreted in the modified CFG.

Holley and Rosen discuss two qualification methods, one
of which is data-flow tracing. The other method is context
tupling. Section 4.3 explains why we use data-flow tracing
instead of context tupling for path qualification.

4.1 Tracing the HPG

Figure 4 presents Holley and Rosen’s algorithm for data-flow
tracing, extended to identify recording edges (discussed in
the next subsection). The algorithm is a worklist algorithm
that finds all pairs of CFG vertices and automaton states
reachable from the entry of the CFG (T) and the initial state
of the automaton (qc). The vertices of the HPG are these
pairs. Initially, the worklist holds (r,qr). Each iteration
of the While loop removes a pair (v,q) from the worklist.
The algorithm iterates over each pair (v’,q’) reachable in
one step from (v, q). If (v’, q’) is not in the HPG, it is added
to the HPG and the worklist. In any case, an edge is added
from (v,q) to (v’,q’). The algorithm terminates when the
worklist is exhausted, at which point all possible pairs have
been added to the HPG.

The constructed HPG fits the definition of GA in Defi-
nition 6. The following theorem, together with Theorem 1,
justifies performing data-flow analysis on the HPG.

Theorem 3 When the algorithm in Figure 4 completes,

ii)

(v,q) E VA iff there exists a path p in G from r to v
that drives A from its start state qC to q.

((%no), (vl,ql)) E EA iff there exists an edge
(us, VI) E E and a transition in A from qa to q1 on
(VO,Wl).

G = (V, E) is a control-flow graph.
A is a qualification automaton.
Q is the set of states of A.
qe is the start state of A.
T is the set of transitions in A.
R C E is the set of recording edges.
IV% a worklist of pairs (v,q), where v E V and q E Q.
GA = (VA,EA) is the hot path graph.
RA 2 EA is the new set of recording edges.

2 +-~b-,q.)l

R::te
W +- (r,n.)
While W # 0

(v, d + Take(W)
ForeachEdge (v,v’) E E

(q, (v, v’), q’) E T (it is unique)
If (V',(f) e VA

VA + VA u (V',(f)

putw, (v', n'))

EA t EA U {((v,q), (v’,q’))}
If (v,v’) E R

RA + RA u {((%q), (V’,‘i)))

Figure 4: An algorithm for data-flow tracing. The original
Holley-Rosen algorithm has been extended to mark record-
ing edges in the traced graph.

Proof: The “‘only-if” direction of both requirements is ob-
vious. The %f” direction follows by induction on the length
of the paths p. For paths of length 0, both requirements are
trivially true. If i) holds for all paths up to some length n
and ii) holds for all edges reachable along such paths, then
all final nodes of such paths must have been added to the
worklist at some point in the algorithm. After these nodes
are processed, the requirements hold for all paths up to length
n+ 1.

Figure 5 shows the example after data-flow tracing. The
automaton is in state q. at shaded vertices and state qa at
vertices filled with diagonal lines. Only these vertices are
targeted by multiple edges, as qI and qo are the only states
in the automaton reached by multiple transitions.

The original graph had no constant results other than
simple assignments, but the graph in Figure 5 has several
new constant results: a + b is always 6 at H14, 5 at H12
and H15, and 4 at H13, i + + is 1 at H14 and H15, and n
is always 1 at 117.

Unfortunately, although the original flow graph in Fig-
ure 1 is reducible, the rHPG in Figure 5 is not. For example,
the edge (HE, BO) is a retreating edge but not a backedge in
a natural loop since BO does not dominate He. Because of
this problem, tracing should only be used with data-flow
solvers that can handle irreducible graphs.

4.2 Identifying Recording Edges in the
HPG

The algorithm in Figure 4 makes an HPG edge
((vo,qa), (v~,ql)) a recording edge iff (ve,vr) is a record-
ing edge in the original graph. The next two lemmas show

76

Figure 5: The control-flow graph of our example, traced with
respect to the automaton in Figure 3. Dashed lines indicate
edges along which the Ball-Larus path profiling algorithm
records the current path. The automaton is in state qC at
shaded vertices and state qo at vertices filled with diagonal
lines.

Original Path Traced Path
.,A,B,C,E,F,H,I,Exit
[*,A,B,D,E,F>H,B]
[*,B,D,E,G,H,Bl

] [.,AO,Bl,D4,E7,Fll,H15,BO]
.,AO, Bl, C3,E6,FlO, H14,17, Exit01

[e, BO, D2, E5, G9, H13, BO]
l ,B,D,E,F,H,I,Exit ., BO, D2,E5,F8, H12,116, E&O]

Figure 6: For each Ball-Larus path in the original path pro-
file, the corresponding Ball-Larus path through Figure 5.

that these edges suffice to interpret the path profile from the
original graph in the HPG.

Lemma 1 Let p be a path from entry to edt in G and pA
the corresponding path in the HPG. Then, a Ball-Lam path
begins at the kth edge inp $a Ball-Larus path begins at the
kth edge in pa.

Proof: By the construction in Figure 4, if the kth edge
in p is a recording edge, the kth edge in pA is a recording
edge, and vice versa.

Lemma 2 Given a Ball-Larus path [o,vo,vl,. . . ,vk] in G,
the corresponding HPG contains exactly one Ball-Larus path
[“,(VO,~O),(vl,ql),...,(vk,~k)].

Proof: By Lemma 1, some such Ball-Larus path exists
in the HPG. All automaton transitions on recording edges
target q.. Thus, qo = q.. By requirement ii) of Theorem 3
and the determinism of A, the rest of the path is determined.

Lemma 1 implies that there is a one-to-one and onto map
between any path profile of G and a path profile of the HPG.

Lemma 2 implies that this map is unique and gives a way
to construct the map: given a path from the original path
profile that begins at v, start the path for the HPG profile at
(v, 4,). The rest of the path can be laid out easily. Figure 6
shows the Ball-Larus path through Figure 5 for each path
in Figure 2.

It is instructive to consider graphs in which the lemmas
would fail. Lemma 1 would fail if the edge (H15,BO) in
Figure 5, which is not a retreating edge, were not a record-
ing edge. This is simply because (H, B) in Figure 1 is a
recording edge, so the original path profile does not track
correlations across it.

Lemma 2 would fail if recording edges targeted more than
one B vertex. This could happen if, for example, tracing
were allowed to unroll loops.

4.3 Context Tupling
In their original paper on qualified data-flow problems, Hol-
ley and Rosen presented two techniques for solving qualified
problems [HR81]. Their first technique, data-flow tracing,
has already been discussed. Their other technique is context
tupling.

While data-flow tracing solves a conventional data-flow
problem over an expanded graph, context tupling solves a
“tupled” data-flow problem over the original graph. Intu-
itively, data-flow tracing tracks the state of A in the control-
flow graph, while context tupling tracks the state of A in the
lattice of values.

We chose data-flow tracing over context tupling for three
reasons:

l Data flow tracing is easier to understand and explain.

l We envision that path profiles will be used through-
out a sequence of compiler analyses and optimizations.
With data-flow tracing, each analysis sees the results of
previous passes through a modified control-flow graph.
It is not obvious how to pass this information with con-
text tupling.

l Holley and Rosen did not find context tupling to be
any more efficient than data-flow tracing. Its main
advantage is that context tupling does not produce
irreducible CFGs, so elimination solvers can be used
with context tupling.

5 Reducing the Traced CFG

This section describes our algorithm for identifying and
eliminating vertices in the HPG that have either coarse data-
flow results or low execution frequencies.

Figure 7 illustrates the need for this step. This chart
shows the cumulative distribution of the number of execu-
tions of instructions with constant results by basic block.
Constants that can be found solely through analysis within
a basic block are excluded. For example, just 11 vertices
account for virtually all nonlocal constants in compress. At
the other extreme, 10,000 vertices are necessary to cover
the constants in go. Tracing adds about 100 vertices to
compress and over 93,000 vertices to go. Even if all vertices
that contribute constants were included among the dupli-
cated vertices, most new vertices would contribute only an
insignificant improvement in the solution. The reduction
algorithm eliminates many of these useless vertices.

77

Number of blocks

Figure 7: The distribution of dynamic executions of constant
instructions by basic block in selected SPEC95 benchmarks.

In this paper, we describe the reduction algorithm in
terms of constant propagation. However, the algorithm is
not restricted to constant propagation. All that is necessary
is a way to assign a benefit to duplicating a vertex in the
HPG.

The reduction algorithm is a heuristic algorithm with the
following steps:

1. Identify the hot vertices. First,, the vertices are ordered
by the number of dynamic constants they execute, as
computed from the path profile. In our experiments,
we chose a fixed fraction CR of the (nonlocal) dynamic
constants as a goal. Vertices are added to the set of
hot vertices until CR is reached.

In our running example, Hl2 weighs 30, H13 weighs
100, H14 weighs 140, H15 weighs 60, and 117 weighs
70. All the other vertices have weight 0. For the sake
of the example, suppose cR is chosen such that H13
and H14 are the only hot vertices.

2. For each vertex v in the original graph, partition the
vertices (v, q) in the HPG into sets of vertices that are
compatible. This is the heuristic step of the algorithm.
Call the partition II. At this stage, two vertices are
compatible if neither vertex is hot or, if one or both is
hot, lowering both solutions to the meet of their lattice
values does not destroy any constants in a hot vertex.

Compatibility is not an equivalence relation (it is not
transitive), so II cannot be found by looking for equiva-
lence classes. Instead, II is formed greedily by “throw-
ing in” vertices one at a time. As each vertex (v,q) is
thrown in, it merges with the first S E IX for which
adding (v,q) to S does not destroy constants in a
hot vertex. If there is no such S, (v,q) starts a new
set. Our implementation tries to keep hot vertices to-
gether by considering the vertices in descending order
by weight.

In the example, since H13 and H14 are the only hot
vertices, II is

{Entree), {AO), 0% Bl), {CE, C3), W, D41,
{Ee, E5, E6, E7}, {FE, F8,FlO, Fll}, {GE, G9},
@,;,, H15), Q-I13), (H141, (kI16, II7),

xi

3. Use the standard DFA minimization algorithm [Gri73]
to produce a partition II’ which respects the data-
flow solutions. The complexidty of this algorithm is
O(7LlogTZ).

Why is this algorithm applicable? The HPG can be
thought of as a finite automaton with edges labelled
by the edges of the original graph. The elements of II
can be thought of as equivalence classes of final states
of an automaton that recognizes several different kinds
of tokens.

The only way to lower the solution over a set S E II
is to cause some new path p from entry to reach a
vertex in S. Viewing p as a string, that would mean
that p was not recognized as a token of type S before
minimization but is recognized as such a token after
minimization. This cannot happen.

In our example, the minimized partition II’ is

-Pntveh {AOh WXI, @lb {ce), {C3), {D2),
{D4), 0% E71, {E5), @6), {FE, F8, Fll),
VW, {GE), {G% @,H12,H15), {H13),
{H14}, {IE, 116,117}, {ExitO}

4. Replace the vertices in each set in II’ with a rep-
resentative and produce a new set of recording
edges. If SO,& E II’ have representatives SO and
51, respectively, an edge (SO, ~1) exists iff an edge
((v~,qo), (vI,~I)) exists in the HPG, where (vo,qo) E
SO and (vl,ql) E Sl. If ((vo,qo),(vl,ql)) isarecording
edge, (SO, ~1) is a recording edge. This is well-defined:
for (vo,no),(vo,d) E So ad (vl,ql),(vl,d) E Sl,
((vo,qo),(v1,ql)) is a recording edge iff (vo,v~) is a
recording edge in the original graph and the same for
((vo, q&), (~1, q:)), so ((vo, qo), (VI, 41)) is a recording
edge iff ((~0, qb), (VI, q{)) is a recording edge.

Figure 8 shows the reduced hot path graph for our
running example.

6 Experimental Results

This section presents measurements of the benefits and costs
of using path-qualified flow analysis for constant propaga-
tion. We implemented the analysis as two new passes in the
SUIF compiler [WFW+]. The fist pass, PP, instrumented
a C program for path profiling. The other pass, PW, used a
path profile to perform path-qualified constant propagation.

The first step was to produce a path profile for each
routine in the program. In this stage, SUIF compiled a C
program into its low-SUIF intermediate form. The PP pass
instrumented this intermediate code for path profiling. We
did not run SUIF’s optimization passes. The SUIF-to-C
converter transformed PP’s output into C code, which was
compiled by GCC into an instrumented program. When
run, this program produced a path profile.

The next step was to optimize programs. The program
was again compiled by SUIF. This time, the SUIF code was

78

I Proeram I Nodes I Paths I Hot Paths I ComDile Time I Anal. Time I

r
vortex I 21190 I 1729 I 152 I 1042 I 163 1

Table 1: General information about the benchmarks. Nodes is the total number of CFG nodes in the original program. Paths is the
number of Ball-Larus paths executed in the training run. Hot Paths is the number of paths needed to cover 97% of a training run’s
dynamic instructions. Compile Time is the total compile time (seconds) without constant propagation. Anal. Time is the total time
(seconds) required for constant propagation with CA = 0.

t
Exit

Figure 8: The control-flow graph after reduction. State
numbers have been dropped from all merged vertices.

fed to PW together with the previously obtained path pro-
file. PW used the path profile to construct a hot path graph,
discover constants, produce a reduced hot path graph, and
finally generate optimized code. The output of PW was con-
verted to C code, which was compiled by GCC (-02) into
an optimized executable.

As SUIF did not directly generate assembly or machine
code, our evaluations are in terms of the SUIF intermediate
code. In this paper, by “instruction” we always mean SUIF
instructions, not machine instructions.

The constant propagator in PW uses Wegman and
Zadek’s Conditional Constant algorithm [WZSl]. This al-
gorithm is a worklist algorithm that symbolically executes
a routine, starting at its entry node and propagating values
only across the legs of branches that can execute, given the
current assignment of values to variables. Our implementa-
tion is conservative, as it does not track pointers or constants
manipulated through pointers or structures, sssumes that
calls and assignments through pointers write to all aliased

variables, and initially sets all variables to 1. Since we ran
the constant propagator immediately after SUIF’s front end,
the constant propagator saw code that was very close to the
original C.

We ran PP and PW on seven of the C SPEC95 bench-
marks on a Sun UltraSPARC SMP. In all cases, we used an
input data set from the SPEC train data to produce the
path profile that drove the flow analysis. A different and
larger input from the ref data set produced a path profile
used to evaluate the effectiveness of the constant propaga-
tor. The path profile of the reference input did not affect
the optimization; it was only used to compute the dynamic
number of constants discovered by the propagator.

Path-qualified analysis becomes more expensive as the
number of hot paths increases. On the other hand, consid-
ering more paths can improve a solution, as it increases the
portion of the program’s execution covered by an analyzed
path. To quantify this tradeoff, we ran the path-qualified
analysis several times, varying path coverage-the CA pa-
rameter in Section 3. That is, the analysis was first run
on the minimum set of paths that covered three quarters of
the program’s execution, then on paths that covered seven
eighths of the execution, and so forth.

The other parameter in our analysis is CR, the benefit
cutoff for the graph reduction algorithm. In the experi-
ments, we set CR to .95, so reduction preserved approxi-
mately 95% of the nontrivial constants discovered by con-
stant propagation. This value was arrived at empirically.

Table 1 lists basic information about the benchmarks.
Most of the analysis time for per1 was spent in two huge
routines, yylex and eval, for which the non-linear running
time of constant propagation became a problem.

6.1 Benefit of Path Qualification

Figure 9 shows that the number of executed instructions
with statically constant results increased as the hot path
coverage increased. At full coverage (CA = l), the improve-
ment ranged from 7% for m88ksim and vortex to 0.6% for
perl. In all benchmarks, most of the benefit of path qual-
ification was attained before full coverage was reached-
typically somewhere above 90% coverage. ijpeg attained
most of its benefit at CA = 0.75 (the lowest non-zero value
tested) but all benchmarks saw virtually all of their bene-
fit by cA = 0.97. In two cases, the improvement degraded
slightly at high coverage, because of heuristics in the reduc-
tion algorithm. These results confirm earlier path profiling

79

Figure 9: Increase in instructions with constant results (weighted
dynamically) versus the level of path coverage. The baseline is
the number of constants at CA = 0 (Wegman-Zadek).

Table 2: Effects of path-qualified constant propagation on run-
ning time. Base is the running time in seconds of the program
after Wegman-Zadek constant propagation. Optimized is the
running time in seconds of the program after path-qualified con-
stant propagation with cA set to 0.97 and CR set to 0.95. All
running times are on the ref data set. Speedup reports the
improvement in running time.

measurements, which show that a small kernel of hot paths
dominate a program’s execution.

6.1.1 Running Time
We measured each benchmark’s execution time after con-
stant propagation with CA = 8.97 and CR = 9.95 and
compared this time against the program’s time with only
Wegman-Zadek constant propagation (CA = 0). The runs
were on the ref data set. The best time from three runs is
reported.

The relationship between constants and program speed is
not clear. The three benchmarks with the largest number of
newly discovered constants sped up, while the other bench-
marks slowed down. However, the change in execution time
was not proportional to the increase in the number of con-
stants. For example, the speedup for go was almost equal
to that of m88ksim, but go only showed a 4% increase in
constant instructions while m88ksim showed a 7% increase.
(Keep in mind that the increase in constant instructions is
a dynamic measure.) Also, m88ksim and vortex had ap-
proximately the same increase in constant instructions, but

vortex sped up by 1.9% while m88ksim sped up by 9.8%.
Similarly, the largest slowdown was in Ii, yet per1 had the
smallest increase in constant instructions.

Furthermore, running times do not seem to relate easily
to the increase in program size. For example, go had a
good speedup, but its size increased by the largest amount
(Figure 11).

To be fair, this experiment did not control for several
significant factors. First, the IMPACT group’s work on su-
perblock scheduling [mWHMC+93] found that tail dupli-
cation, like that done to isolate hot paths, can expose large
amounts of instruction-level parallelism. Thus, running time
improvements are not necessarily due to improvements in
constant propagation. Second, we rely on GCC to perform
all optimizations beyond constant propagation, but GCC
may produce poor code for the irreducible graphs produced
during tracing. Third, because a node can have at most one
fall-through predecessor, tracing can introduce extra jumps.
For example, E can fall through to F in Figure 1, but it is im-
possible for both E5 and E to fall through to F in Figure 8.
PW could use the path profile to place these jumps more
intelligently or to further duplicate code to avoid jumps al-
together, but our implementation does neither. Fourth and
last, our experiments did not measure the effect on the in-
struction cache or branch predictor.

6.2 Classifying Constants

This section examines the constants discovered by path qual-
ification. The Venn diagram in Figure 13 classifies dynamic
instructions based on the type of analysis required to iden-
tify them as either constant or dynamic. The categories are:

Local These instructions can be determined to be constant
with local analysis-that is, by scanning their enclos-
ing basic block. In Figure 1, assignments to a and b
are local constants.

Iterative These instructions can be determined to be con-
stant by Wegman-Zadek iterative analysis. We found
these constants by running the constant propagator
with CA = 0.

MOP These instructions are found to be constant by a
meet-over-all-paths solution. Constant propagation is
not a distributive problem, so an iterative solution may
be less precise than a meet-over-all-paths solution. We
cannot measure this category directly.

Qualified These instructions are found to be constant by
the path-qualified analysis. This set does not contain
MOP, nor does MOP contain Qualified. The inter-
section of the two sets includes Iterative and pos-
sibly other constants. Because we cannot measure
MOP, we cannot measure the intersection precisely.
The Identical and Variable sets below attempt to
approximate this intersection.

Identical These instructions include all Iterative instruc-
tions, plus instructions not found by Wegman-Zadek
for which path-qualified analysis finds the same con-
stant value everywhere they are duplicated. These
constants would also be found by meet-over-all-paths.

80

Variable These instructions are found to be constant by
the qualified analysis, but have different values at dif-
ferent sites in the reduced graph. For example, in Fig-
ure 8, the value of a + b is 6 at H14 and is 4 at H13.
Only duplication will reveal these constants. Meet-
over-all-paths will not find these constants.

Unknowable Instructions in this category either are not
constant or cannot be identified as constant because of
other limitations of the analyses. Our analyses do not
track pointers, values stored in memory, or the results
of calls. Therefore, instructions that consume these
values will never be found constant. We estimated this
set by counting the number of values produced within
a basic block, yet found equal to 1.

Figure 10 divides instructions (dynamically weighted)
into these categories. Most instructions in each benchmark
fall in the Unknowable or Local categories. Path qualifi-
cation does not affect these categories.

The other part of Figure 10 focuses on the instructions
targeted by constant propagation algorithms. Our technique
found many (2-122) times more knowable and nonlocally
constant instructions. Interestingly, most instructions found
constant by qualified analysis were neither Identical nor
Variable. These instructions had one constant value at one
or more sites and were also unknown at one or more sites.
The exceptions are vortex and go, both of which contained a
significant, but small, number of Variable constants. Other
techniques, which do not duplicate paths, will not find these
constants.

Although the direct improvement from our technique is
large, the instructions it finds constant still make up a small
percentage of all dynamic instructions. This further explains
why we did not see speedups for most of the benchmarks.

In the above discussion, we assumed that the MOP is
not attainable for constant propagation. This is true for
the non-distributive Wegman-Zadek formulation. Recently,
Bodfk and Anik published a distributive formulation of con-
stant propagation [BA98]. It would be interesting to com-
pare path-qualified analysis against this formulation.

6.3 Cost of Path Qualification

This section examines the cost of path qualification.

6.3.1 Cost of Duplication

Figure 11 shows that CFG size only increased significantly
for go and that the reduction algorithm successfully con-
trolled the increase in CFG size.

The cost of data-flow analysis is proportional to the
CFG’s size before reduction. For go, the maximum increase
was 722%, and for the other programs the maximum increase
was 80%. However, Figure 9 showed that 100% coverage of-
fers little benefit. 97% coverage achieves almost all of the
benefit, and limits CFG growth to 184% for go and 32% for
the other programs.

The CFG’s size after reduction is an indirect measure of
the spatial locality of the constants found. Our experiments
show that this locality is high-with CR = 0.95, only go grew
by more than 10% at any level of coverage. go grew by 77%
at full coverage, but, again, full coverage is unnecessary: at
CA = 0.97, its increase was 70%. The cost of subsequent

3 Unknowable

Figure 13: A Venn diagram classifying a program’s dynamic
instructions.

analysis and the running time of the program may degrade
as the CFG grows, but these increases seem manageable.

Why was go exceptional? Table 1 shows that go exe-
cuted many more paths than other programs and also re-
quired more paths to reach high coverage levels. Further
experiments are necessary to see whether go’s distribution
is atypical or not.

6.3.2 Analysis Time

Path-qualified data-flow analysis increases analysis time,
both by adding three new steps-building the qualifica-
tion automaton, tracing, and reduction-and by running
the data-flow solver on larger graphs. Figure 12 shows the
relative increase in SJdySiS time as cA iS increased. Once
again, go was exceptional. For the other benchmarks, the
increase was less than 61% at almost full coverage. Figure 9
shows that most of the benefit is gained before full cover-
age, so these increases are reasonable. For go, analysis time
increased sixfold at CA = 0.97. The observed analysis time
seems to grow a bit faster than linearly with the size of the
hot path graph.

7 Related Work

Feasible path analysis attempts to identify and eliminate in-
feasible paths. Holley and Rosen introduced qualified data-
flow analysis to separate known infeasible paths from the
remaining paths, some of which might be feasible m81].
Goldberg et al. applied theorem proving techniques to iden-
tify infeasible paths in testing a program’s path cover-
age [GWZ94]. Bodik et al. used a weaker (but less expen-
sive) decision technique to determine if all paths between a
definition and use were infeasible, and therefore the def-use
pair actually did not exist [BGS97b]. Our work differs from
these, as we focus on directly improving the precision of

81

Benchmark Benchmark

(a) Local and unknowable (b) Other categories

Figure 10: Fraction of dynamic instructions that fall into categories in Figure 13. The qualified analysis was done at full coverage
(CA = 1).

program analysis along a subset of important paths, rather
than improving analysis everywhere by eliminating spurious
paths. However, the two techniques are certainly comple-
mentary, as our technique would work well in a CFG from
which infeasible paths were eliminated.

Paths have long been used in program analysis and opti-
mization. Fisher’s trace scheduling technique heavily opti-
mized the hot paths (called traces) in a CFG [Fis81]. ‘I&e
scheduling did not duplicate paths, instead it introduced
fixup code along control flow edges into or out of the mid-
dle of a trace. More recently, Hwu et al. eliminated this
fixup code by duplicating paths to form superblocks, which
is a collection of traces without control flow into the middle
of a trace [mWHMC+93]. Our approach differs from both
techniques. First, it is a technique for improving program
analysis, not a technique for optimization and instruction
scheduling. Second, although it duplicates paths, like su-
perblocks, its duplication is guided by path profiles. Finally,
both scheduling techniques attempted to maximize the size
of traces. This work evaluates the improvement from dupli-
cation, and eliminates duplicated blocks that provide little
or no improvement.

Mueller and Whalley used an ad-hoc framework and
code duplication to eliminate certain partially redundant
branches [MW95]. Mueller and Whalley’s code duplica-
tion algorithm can be seen as a qualification algorithm
in which states in the qualification automaton encode in-
formation about the direction of the partially redundant
branches. Bodfk et al. used a limited form of interproce-
dural analysis to detect redundant branches along interpro-
cedural paths [BGS97a]. This work differs by incorporating
paths into a more precise and general framework, by us-
ing paths to derive more precise data-flow analyses, and by
using path frequencies to overcome the costs of exploiting
increased precision (code duplication).

Bodfk et al. presented an algorithm for complete partial

redundancy elimination using both code motion and code
duplication [BGS98]. Their technique also used profiles (ei-
ther edge or path) to drive code duplication. Our paper
is not directly comparable with their paper, as their paper
used duplication to carry out an optimization while our pa-
per uses duplication to improve analysis. However, there is
a difference in philosophy between the two papers. They
first analyzed the original control flow graph to identify ver-
tices for which duplication would enable better code motion.
Using a profile, their algorithm decides which of these can-
didates should be duplicated. Our work takes the other
tack: a profile guides an initial round of duplication. Anal-
ysis of the duplicated flow graph, together with the profile,
identifies blocks that should not have been duplicated. By
contrast, their approach starts and performs analysis over
a smaller graph. Our approach, however, can find solutions
not found by a meet-over-all-paths analysis.

Ftamalingam combined data-flow analysis with program
frequency information by associating probabilities with
dataflow values and developing a data-flow framework for
combining these pairs of values @am96]. Our goal differs.
Instead of incorporating frequencies into the meet-over-all-
paths framework, we use frequency information to improve
analysis precision in heavily executed code.

8 Conclusion

This paper describes a new approach to analyzing and op-
timizing programs. Our technique starts with a path profile
that identifies the hot paths that incur most of the program’s
cost. This information provides the basis for a hot path
graph, in which hot paths are isolated in order to compute
data-flow values more precisely. After analysis, the hot path
graph is reduced to eliminate unnecessary or unprofitable
paths. We applied this technique to constant propagation

82

Path coverage

0 (.“.““‘,.““““,“““..‘,
0.7 0.8 0.9 1.0

Path cover*ge

(a) Before reduction (go) (b) After minimization (go)

018 0:9
Path eovenge

- &8ksim
--+- compress
-ll
-+ kg
-perl
- voflex

Path coverage

- m88ksim
- compress
-8
- UP%
- per1
- vorm

(c) Before reduction (other benchmarks) (d) After minimization (other benchmarks)

Figure 11: Increase in the number of CFG nodes before and after reduction versus the level of path coverage. The baseline is the
unoptimized program. The scale of the y-axis differs in each graph. The graph on the left (i.e., before reduction) is approximately an
order of magnitude larger than the graph after reduction. Also, the scale for go is about an order of magnitude larger than the other
graphs.

and obtained significant improvement over the widely-used
Wegman-Zadek technique, without a large increase in pro-
gram size.

This technique is applicable to other data-flow problems,
as well. Aside from its simplicity, its primary advantage is
that it improves the precision of an analysis (by excluding
the effect of infeasible or infrequently executed paths) in the
heavily executed portions of a program, where the benefits
are largest.

Acknowledgements

Thomas Reps spotted a problem with an earlier formula-
tion of our interpretation of path profiles of the hot path
graph. Tom Ball, Rajiv Gupta, Rastislav Bodfk, and the
anonymous reviewers provided many helpful suggestions and
comments on this work.

References
[ABL97] Glenn Ammons, Thomas Ball, and James R. Laws.

Exploiting hardware performance counters with flow
and context sensitive profiling. In Proceedings of the
SIGPLAN ‘97 Conference on Programming Lan-
guage Design and Implementation, June 1997.

83

- KO

0
0.7 0.8 0.9 1.1

Path coverage

(b) Other benchmarks

- m88ksim
- compnss
-84-6
- We3
-F-1
- YOrteX

Figure 12: Time required for qualified flow analysis versus path coverage (CA). The baseline is the time required at CA = 0.

[Aho94]

[BASS]

[BGS97a]

[BGS97b]

[BGS98]

(BL96j

[FisSl]

[Gri73]

[GWZ94]

[HRSl]

[MW98]

Alfred V. Aho. Algorithms for finding patterns in
strings. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A, chapter 5,
pages 255-300. MIT Press, 1994.
Rastislav Bodlk and Sadun Anik. Path-sensitive
value-flow analysis. In Proceedings of the SIGPLAN
‘98 Symposium on Principles of Programming Lan-

guages (POPL), January 1998.
Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa.
Interprocedural conditional branch elimination. In
Proceedings of the SIGPLAN ‘97 Conjerence on
Programming Language Design and Implementa-

tion (PLDI), pages 146-158, June 1997.
Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa.
Refining data flow information using infeasible paths.
In Fifth ACM SIGSOFT Symposium on Founda-
tions of Software Engineering and Sixth European
Software Engineering Conference, September 1997.
Rastislav Bodik, Rajiv Gupta, and Mary Lou S&a.
Complete removal of redundant computations. In
Proceedings of the SIGPLAN ‘98 Conference on
Programming Language Design and Implementa-
tion (PLDI), June 1998. To appear.
T. Ball and J. R. Laws. Efficient path profiling. In
Proceedings of MICRO 96, pages 46-57, December
1996.
Joseph A. Fisher. Trace scheduling: A technique for
global microcode compaction. IEEE Transactions on
Computers, C-30(7):478-490, July 1981.
David Gries. Describing an algorithm by hopcroft.
Acta Injonatica, 2:97-109, 1973.
Allen Goldberg, T. C. Wang, and David Zimmer-
man. Applications of feasible path analysis to pro-
gram testing. In International Symposium on Sojt-
zuar.e Testing and Analysis. ACM SIGSOFT, August
1994.
L. Howard Halley and Barry K. Rosen. Qualified data
flow problems. IEEE Transactions on Software En-
gineering, SE-7(1):60-78, January 1981.
Frank Mueller and David B. Whalley. Avoiding
conditional branches by code replication. In Pro-
ceedings of the SIGPLAN ‘95 Conference on Pro-
gramming Language Design and Implementation
(PLDI), pages 56-66, June 1995.

[mWHMC+931 Wen mei W. Hwu, Scott A. Mahlke, William Y.
’ Chen, Pohua P. Chang, Nancy J. Warter, Roger A.

Bringmann, Roland G. Ouellette, Richard E. Hank,
Tokuso Kiyohara, Grant E. Haab, John G. Helm,
and Daniel M. Lavery. The superblock: An effec-
tive technique for VLIW and superscalar compila-
tion. The Journal of Supercomputing, 7(1-2):229-
248, May 1993.

[Ram961

[WFW+]

[WZ91]

G. Ramalingam. Data flow frequency analysis. In
Proceedings of the SIGPLAN ‘96 Conference on
Programming Language Design and Implementa-
tion, pages 267-277, May 1996.

Robert P. Wilson, Robert S. French, Christopher S.
Wilson, Saman P. Amarasinghe, Jennifer M. An-
derson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and
John L. Hennessy. An overview of the SUIF com-
piler system. Published on the World Wide Web at
http://suif.stanford.edu/suif/suifl/suif-overview/suif.html.

Mark N. Wegman and F. Kenneth Zadeck. Constant
propagation with conditional branches. ACM !&a~-
actions on Programming Languages and Systems,
13(2):181-210, April 1991.

84

