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Abstract 
Whole program paths (WPP) are a new approach to capturing and 
representing a program’s dynamic -actually executed--control 
flow. Unlike other path profiling techniques, which record 
intraprocedural or acyclic paths, WPPs produce a single, compact 
description of a program’s entire control flow, including loop 
iteration and interprocedural paths. 

This paper explains how to collect and represent WPPs. It also 
shows how to use WPPs to find hot subpaths, which are the 
heavily executed sequences of code that should be the focus of 
performance tuning and compiler optimization. 

Keywords 
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1. Introduction 
A central challenge facing computer architects, compiler writers, 
and mere mortal programmers is to understand a program’s 
dynamic behavior. Events that occur while a program runs are 
often elusive, but they provide a basis for understanding the 
program’s behavior and improving its performance. Program 
paths or traces-sequences of consecutively executed basic 
blocks-offer one of the few clear windows into a program’s 
dynamic behavior. Paths, unlike other techniques, such as block 
or edge profiles, capture aspects of a program5 dynamic control 
flow, not just its aggregate behavior. 

Paths have long provided a unifying context for performance 
tuning. Programmers have improved the performance of large, 
complex systems, such as operating systems and databases, by 
identifying heavily executed paths and streamlining them into 
“fast paths” [20,24]. In compilers as well, trace scheduling and, 
more recently, path-based compilation demonstrate that program 
optimization can benefit from a focus on a program’s dynamic 
control flow [2, 8, 11, 12, 141. Recently designed computer 
architectures have also directly exploited traces to enhance 
instruction caching and execution [I 5,25,26]. 

Paths are often identified by ad-hoc approaches; although recently 
developed path profiling techniques can inexpensively identify 
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executed path segments and quantify their cost [2,6,7]. Previous 
path profiling algorithms, however, captured acyclic paths, which 
are short, disjoint snippets of execution that unfortunately end at 
loop and procedure boundaries-two of the most interesting 
points in a program’s execution [6] (this technique has been 
extended to handle paths that cross procedure boundaries [ 191). 

This paper describes a new approach to measuring a program’s 
control flow that captures a complete picture of the program’s 
dynamic behavior. The technique introduces whole program 
paths (WPP), which are a complete, compact record of a 
program’s entire control flow. A whole program path crosses 
both loop and procedure boundaries, and so provides a practical 
basis for interprocedural path profiling. This paper explains how 
to record a WPP, describes its representation, shows that this 
representation can be used to analyze program behavior, and 
demonstrates the technique’s practicality on SPEC benchmarks 
and commercial application programs. 

1.1 Overview 
Whole program paths are collected in two phases. The first 
produces a trace of the acyclic paths executed by a program. The 
second phase transforms the trace into a more compact and usable 
form by finding its inherent regularity (i.e., repeated code). In 
practice, compression can run concurrently with the instrumented 
program, so only the compressed form need be stored. The 
product of compression is a directed acyclic graph (DAG), which 
is not only a compact and lossless representation of the programs 
dynamic control flow, but is also a convenient representation for 
analysis. This paper describes one such analysis, which identifies 
heavily executed (hot) subpaths. Figure 1 illustrates the process 
of recording a whole program path. 

. 

Section 2 briefly describes the trace instrumentation and resulting 
sequence of acyclic paths. One novel contribution of this work is 
the next phase (compression), which turns a stream of acyclic 
paths into a context-free grammar. The compression technique is 
based on Nevill-Manning and WittenS SEQUITUR hierarchical 
compression algorithm [21, 221. This linear, on-line algorithm 
builds a context-free grammar for a string. The resulting grammar 
reflects its input’s hierarchical structure and is typically far more 
compact than the original sequence. Section 3 describes Nevill- 
Manning and Witten’s algorithm and a modification that enhances 
its performance. The product of this algorithm is a grammar. The 
DAG representation of this grammar, called a Whole-Program 
Path (WPP), compactly and effectively records a program’s entire 
control flow. Section 4 presents another contribution of this work, 
which is an analysis technique for WPPs. Section 5 contains 
measurements of the technique on SPEC benchmarks and 
Microsoft’s SQL database and WinWord document processor. 

As an example, consider the code in Figure 2. The loop executes 
nineteen acyclic paths (labeled 1-5). The SEQUITUR algorithm 
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PP (Path Profiling Tool) 
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Figure 1. Collecting a Whole Program Path. A path-profiling tool (PP) instruments a program to produce a trace of executed 
wyclic paths. These paths are processed by another tool (PPCompress) into a Whole Program Path (WPP). Further tools analyze 
WPPs to find performance bottlenecks or program errors. 

processes the path trace and produces the grammar in the figure. mechanism originally used to terminate paths at loop backedges 
The grammar’s DAG representation is the WPP data structure. and to cut paths to limit the size of path identifiers [6]. 

2. Producing an Acyclic Path Trace 
The first step in this process is to instrument a program to record 
the acyclic paths executed by the program. The instrumentation is 
a slight variation of a previously published path-profiling 
algorithm [6]. This algorithm adds code to increment an 
accumulator by predetermined amounts along a select set of edges 
in a routine’s control -flow graph. At the end of an acyclic path 
(i.e., at a routine’s exit or a loop backedge), the value in this 
accumulator uniquely identifies the executed path. The original 
profiling algorithm used this path identifier to index a table of 
metrics associated with the path. Whole program profiling instead 
appends the identifier to a trace of executed paths. 

Whole program profiling requires a slight redefinition of a path, 
so edges leading into a basic block containing a procedure call 
terminate acyclic paths. This change unfortunately reduces the 
average path length, and so increases the size of a path trace. 
However, it is necessary to ensure that the path leading to a call 
site is recorded in the trace before any paths executed by the 
callee. The path-profiling algorithm truncates paths with the 

The path trace consists a sequence of byte code-operand pairs: 

OpCode(Operand) Meaning 

EnterRoutine (ID) Subsequent paths execute in routine 
ID 

LeaveRoutine Leave current routine and return to 
previous one 

NewPath( ID) Path ID executed 

EnterThread Subsequent paths execute in thread 
ID 

The run-time instrumentation tracks non-local returns 
(setjmp/longjmp and exceptions), to produce the correct number 
of LeaveRoutine operations. Several variants of each 
opcode-e.g., byte, short, and word-reduce the size of a trace. 
More aggressive optimization, such as encoding the ID in an 
opcode did little to reduce the trace, as the range of ID values is 
larger than that found in instruction bytecodes. Nevertheless, the 
trace is reasonably compact, as most paths require only three 
bytes (an opcode and a short path ID). For example, MicrosotiS 

for (i=O; i<9; it+) 
bar(i); 

int bar(int j) { 
if (j < 5) 

return j; 
else 

return 0; 

'>l3ag' 

4 5 

Acyclic SEQUITUR 
Path Trace Grarranar 

14242424 
25252525253 

s + 14AAAcc3 

A-+24 

B+25 

C+BB 

WPP 

Figure 2. Sample code, the paths through it, and the grammar and WPP produced by PPCompress. 
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while input is not empty do 
c t next input character; 
append c to start rule S; 

while digram or utility property is violated do 
// Restore digrsm uniqueness property: 
if digram D occurs twice (no overlap) in any rules then 

if one occurance of D is RHS of rule R then 
replace the other occurance of D with LHS of R; 

else 
create new rule R' with RHS D; 
replace both occurences of D by LHS of R'; 

endif 

// Restore rule utility property: 
if rule R is only referenced once then 

replace single use of R by RHS of R; 
delete R; 

endif 
od 

od 

Figure 3. The SEQUITUR algorithm. LHS is the left side (non-terminal) of a grammar production. RHS is the right side of the 
woduction. 

SQL database system running the TPC-C benchmark for 120 
seconds produces 629 MB of trace (and the WPP for this run is 
only 21 MB). 

3. Producing a Whole Program Path 
The next stage of whole program profiling employs a modified 
version of the SEQUITUR algorithm to both compress the path 
trace and uncover its regular structure. SEQUITUR is a string 
compression algorithm that constructs a context-free grammar for 
its input [21, 221. This algorithm has been used to find 
hierarchical structures in a variety of sequences, ranging from 
DNA sequences to genealogical databases. The insight 
underlying the algorithm is that log N rules can generate N 
occurrences of a subsequence. For example, the string: 

abcabcabcabcabc 
is produced by the grammar: 

s -3 AAB 
A -+ BB 
B + abc 

This grammar requires fewer symbols (11 versus 15), and, equally 
important for our application, explicitly captures repetitions of the 
pattern abc. This aspect becomes more apparent when the 
grammars are represented as DAGs (Section 3.3). 

Section 3.1 explains the original SEQUITUR algorithm. Section 
3.2 describes a modification to the algorithm to improve its 
performance. Section 3.3 explains how PPCompress uses the 
SEQUITUR algorithm to compress an acyclic path trace. 

3.1 SEQUITUR Algorithm 
The SEQUITUR algorithm (Figure 3) is a linear-time, on-line 
algorithm for producing a context-free grammar from an input 
string [22]. The algorithm operates by appending symbols from 
the input string, in order, to the end of the grammar’s start 
production. After adding each symbol, SEQUITUR manipulates 
the grammar productions to preserve two invariants: 

1. Digram uniqueness properv. A digram is a pair of 
consecutive symbols on the right side of a grammar 
production. This property states that a digram occurs at most 
once in the rules of the grammar. If adding a symbol 
introduces a duplicate digram, SEQUITUR replaces both 
(non-overlapping) occurrences of the digram with the non 
terminal symbol for a rule (possibly already in existence) that 
has the digram as its right side. For example, after adding 
symbol b to a grammar: 

S + abca 
the digram ab now occurs twice. SEQUITUR replaces both 
occurrences with a new non-terminal symbol A: 

S + AcA 
A + ab 

2. Rule utility proper@. The second property is that all non- 
terminal symbols in a grammar (except the start symbol) 
must be referenced more than once by (other) rules. 
SEQUITUR eliminates a rule referenced only once by 
replacing the reference with the rule’s right side. Continuing 
the example above by adding further symbols leads to: 

S -+ BCBA 
A + ab 
B -+ AC 
C + Ad 

If the next symbol is d, SEQUITUR introduces a new rule: 

S -+ DD 

A -+ ab 
B + AC 
C + Ad 
D + BC 

At this point, non-terminals B and C are only used once and 
SEQUITUR eliminates them. 

Note that applying either rule may introduce new diagrams, which 
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S -P B3B4 

A-+ 12 

Figure 4. Grammar and WPP for the string 121213121214. 

in turn require further transformation before the process 
converges. Nevill-Manning and Witten proved that SEQUITUR 
runs in time linear in the length of the input string [22].1 Note 
that this time bound is independent of the size of the input 
alphabet. 

The algorithmh space requirement, for a grammar and auxiliary 
data structures, is linear in the size of the grammar, which is O(log 
N) in the best case, where N is the input length. The worst case, in 
a sequence without repetition, is O(N). 

In practice, time and space are reasonable. The largest 
SPECINT95 benchmark is 0 99. go, whose 2GB trace was 
processed in less than an hour in 300 MB of memory. The 
grammars themselves are smaller; approximately 100 MB for this 
benchmark, therefore analysis of a WPP requires less memory. 

3.2 SEQUITUR Enhancement 
Given that SEQUITUR is an on-line algorithm with tight time and 
space bounds, it is not surprising that the resulting grammars are 
not minimal. Although they are quite compact, a small change to 
the SEQUITUR algorithm improves some grammars by 
identifying more repetition of a substring. To see the need for 
these changes, consider the string: 111112 11111. SEQUITUR 
follows the following steps: 

Start Rule Action 

s + 1111 create A + 11 
s + AA1211 applyA + 11 

’ The linearity proof assumes that a digram can be found from a 
pair of input symbols in constant time by using a hash table. To 
save space, PPCompress does not use a hash table, which must 
be sparsely filled to achieve this behavior. Instead, PPCompress 
associates, with every symbol, a map of the symbols that 
immediately follow. This map, which is keyed on the second 
symbol, returns the digram. These maps are implemented as 
unbalanced binary trees, which typically run in time logarithmic 
in the number of digrams in which a symbol occurs first. The 
worst case behavior of this code is ON), which is unlikely to 
occur in this application, as any path is followed by at most a 
small number of other paths. 

S + AA12Al 
S -+ AB2BA 

create B + Al 

Although the input contains two occurrences of 11111, they are 
represented differently in the grammar, because rules introduced 
while processing the first occurrence change the sequence of 
reductions applied to the second occurrence. Fortunately, 
subsequent occurrences are reduced the second way. 

A minor change fixes this problem by looking ahead a single 
symbol before introducing a new rule to eliminate a duplicate 
digram. Assume the rightmost symbols of the start rule, which 
form a duplicate digram, are x and y and the look-ahead symbol is 
1. If the look-ahead symbol forms a digram with the second 
symbol of the duplicate digram and this digram, yZ, is the right 
side of an existing rule, then do not introduce a new rule to 
eliminate the duplicate digram. Instead, read the next symbol and 
apply the existing rule. This algorithm is called SEQUITUR(l). 
This change does not affect the time bound on the algorithm, and 
in practice, seems to produce slightly smaller grammars. 

Consider the example above. At the step that introduces the rule 
B + . . . . the look-ahead character is 1. Since 11 (the second 
character of the duplicate digram and the next character) is the 
right side of A + 11, a new rule is not introduced. Instead, 
SEQUITUR( 1) applies the rule A + 11, resulting in the string: 
S 3 AA12AA. The look-ahead character is again 1, but no 
digram Al is known, so the algorithm introduces a new rule B 
+ AA, which leads to the grammar: 

s -3 c2c 
A + 11 
c -3 AA1 

3.3 PPCompress 
PPCompress uses the SEQUITUR algorithm to compress an 
acyclic path trace. SEQUITUR operates on a string of symbols. 
In PPCompress, a symbol is a unique identifier for an executed 
acyclic path. As a previously unknown (routine id, path id) pair 
appears in the input stream, it is assigned a unique identifier. 
PPCompress imposes no limits on these symbols, beyond the 
space needed to maintain a hash table that records this mapping. 
In practice, programs execute relatively few paths (tens of 
thousands at most), so the number of symbols and the size of their 
identifiers remain manageable. 

Grammars are typically represented as trees. However, WPPs are 
directed acyclic graphs (DAGs) since forming a tree would 
decompress a grammar into a string comparable in size to the path 
trace. Interior nodes in the DAG represent grammar productions. 
They are labeled with the non-terminal symbol from the left side 
of the production. Exterior nodes are terminal symbols (acyclic 
paths). An edge from node A to node B represents an occurrence 
of rule B in the right hand side of rule A. A node% sue cessors are 
ordered in the same manner as symbols in corresponding rule’s 
right hand side. 

The DAG representation is convenient to analyze. A sequence of 
executed paths can be recovered by traversing the DAG. 
Consider for example the string 12 12 13 12 14 (path 1 might be a 
loop backedge, and other paths different traces through the loop 
body). Figure 4 contains its grammar and WPP. Repetitions of an 
acyclic path or sequence of acyclic paths appear in a WPP as 
multiple DAG paths from a node containing a non-terminal to 
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Figure 5. The WPP and grammar for the string 
kbbcabbcabbc. The numbers are execution frequencies. 

Figure 6. A node in a WPP and its descendents. 

mother DAG node. For example, node B corresponds to two 
:xecutions of the path 12 followed by path 1. 

Many interesting questions about a program’s behavior can be 
answered directly from a WPP. For example, acyclic path p 
executes before path q if there exists a common ancestor of both 
nodes in which an inorder traversal reaches p before q. Another 
useful analysis is the dynamic execution context of code, such as 
its routine or loop iteration. This context is the paths that execute 
before and after the code. These paths are neighbors along the 
fringe of the DAG and are easily found by traversal. 

The execution frequency of a sequence of acyclic paths is the 
number of times that prefix of this sequence is executed 
immediately before the suffix of the sequence. Sequences, such 
as ab or abc in Figure 5, that have a least common ancestor 
(LCA) in the WPP have the same execution frequency as this 
node. The execution frequency of a node is the number of paths 
in the DAG from the start symbol to the node (the numbers in the 
figure). Other sequences, such as ca, do not have a LCA as they 
arise from the repetition of a subsequence, in this case A (which 
starts with a and ends with c). Their frequency can be computed 
from the frequency of consecutive edges leading into the LCA of 
the subsequence (node A). 

Since WPPs represent all executions of an acyclic path as a single 
terminal node, it is not possible to record distinct metrics for each 
execution of a path. For example, a path trace could associate 
metrics from hardware performance counters (e.g., cycles, stalls, 
cache misses, etc. [l]) with each path. PPCompress cannot 
directly maintain these metrics from different path executions, but 
instead must summarize them by aggregating values into a path’s 
terminal symbol. This aggregation is not always disadvantageous, 
as it helps eliminate “noise” in performance data. 

Collective metrics-such as the number of instructions along a 
path, the average number of cycles executed along the path, or the 
average number of cache misses along the path-are suitable for 
aggregation. Individual metrics, such as the number of cache 
misses in a particular execution, cannot be captured in a WPP. 
However, context-sensitive metrics similar to those collected by 
Ammons, Ball, and Larus [ l]-for example, the number of caches 
misses in b after it executes path a-could be handled by 
associating costs with interior nodes. 

4. Analyzing Whole Program Paths 
A WPP captures a program’s entire dynamic control in its DAG. 
This structure can be analyzed in many ways. This paper focuses 
on the important problem of finding hot paths. Previous path 
profiling work found that a small collection of hot paths typically 
dominate a program’s execution [6]. WPPs provide the 
opportunity to find longer and more complete paths that cross 
procedure and loop boundaries. WPPs can also be analyzed find 
other dynamic program properties. 

4.1 Subpaths 
A whole program path encompasses a program’s entire execution. 
Performance tuning and compiler optimizations generally focus 
on heavily executed cock, in which small improvements yield 
large performance gains. Finding this code in a WPP requires the 
notion of a subpath-a consecutively executed sequence of 
acyclic paths. A stringXis a subpath of a WPP grammar G ifXis 
a substring of the string produced by G: crXp = L(G) where o$ E 
Tp, L(G) is the string produced by G, and T is the set of terminals 
(acyclic paths). 

4.2 Hot Subpaths 
A hot path is a path that incurs a substantial fraction of a 
program’s execution cost. Ammons, Ball, and Larus defined hot 
paths as acyclic paths that contribute more than 0.1-l .O% of some 
execution metric [ 11. They showed that in the SPEC benchmarks, 
relatively few hot paths (10-200) account for most of a program’s 
execution cost (40-99%). Hot subpaths must be defined 
differently. Since subpaths lack boundaries, they can grow to 
encompass an arbitrary fraction of a program’s execution. 

Intuitively, a hot subpath is a short sequence of acyclic paths that 
is costly, either because the subpath is frequently executed or 
because operations along it are disproportionately expensive. 
Formally, a hot subpath is a sequence of L or fewer consecutively 
executed acyclic paths that incur a cost of C or more. A subpath’s 
cost is its execution frequency multiplied times the sum of its 
constituent acyclic paths’ costs. A minimal hot subpath is the 
shortest prefix of a subpath with cost of C or more. Minimal hot 
subpaths are of interest, since longer hot subpaths are easily found 
by adding acyclic paths to a minimal subpath. 
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void ReportHotSubPaths(Rule* rule, int mark) t 
if (rule->Mark() != mark) i // First time visiting rule 

rule->SetMark(mark); 

rule->SetPrefix(new LLimitedString(MaxStringLength)); // Prefix of this rule 
LLimitedString* subPath = new LLimitedString(MaxStringLength); // Subpath thru rule 

// Iterate over successors in DAG (non-terminals on RHS of rule) 
for (Symbol* sym = rule->RHS()->FirstSym(); !rule->RHS()->Done(sym); sym = sym->Next()) 

if (sym->IsTerminal()) 
appendTerminal(rule, subPath, sym); // Symbols are just appended to suhpath 

else { 
Rule* symRule = sym->InRule(); 
ReportHotSubPaths(symRule, mark); // Postorder: find suhpaths in successor 

appendTerminalString(rule, subPath, symRule->Prefix()); 

if (!symRule->Prefix()-XoversNodeO) 
*subPath = *symRule->Suffix(); // Node is wider than prefix, so change suffix 

if (symRule->IncrNumPredecessors(-1) == 0) ( 
delete symRule->Prefix(); // Free strings after last use 
delete symRule->Suffix(); 

1 

1 
rule->SetSuffix(subPath); 

void appendTenainalString(Rule* rule, LLimitedString* subpath, LLimitedString' string) { 
for (int i = 0; i < string->Length(); i += 1) 

appendTerminal(pps, rule, subPath, (*string) [i]); 
1 

void appendTerminal(Rule* rule, LLimitedString* subPath, Symbol* sym) ( 
appendTerminalToRulePrefix(rule, sym); 
appendTerminalToSubPath(rule, subPath, sym); 

I 

void appendTerminalToRulePrefix(Rule* rule, Symbol* sym) ( 
if (rule->Prefix()->Length() < MaxStringLength) 

rule->Prefix()->Append(sym, this); 
else 

rule->Prefix()->SetCoversNode(false); 

void appendTerminalToSubPath(Rule* rule, LLimitedString* subPath, Symbol* sym) ( 
subPath->Append(sym, this); 
int expense = subPath->Cost()*Frequency(rule); 
if (MinCost <= expense && MinStringLength <= subPath->Length()) ( 

print subPath; 
subPath->Clear(); 
rule->Prefix()->Freeze(subPath->LengthO); // Stop before hot subpath 

1 
1 

Figure 7. Algorithm for finding minimal hot subpaths whose length is between MinStringLength and MaxStringLength and cost 
greater than MinCost. 

Consider the example in Figure 5 (it might be part of a larger 
WPP, as the rule utility property would otherwise eliminate 
symbols B and C). Suppose that each acyclic path a, b, and c has 
a cost of 1 and that we are looking for hot subpaths of length 
greater than 1 and less than 4 whose cost is 6 or more. The WPP 
contains four overlapping hot subpaths: ab, be, bb, and ca. The 

The other two can be found by extending these two. 

Figure 7 presents an algorithm for finding hot subpaths in a WPP. 
The algorithm performs a postorder traversal of the DAG, visiting 
each node once. At each interior node, it examines each subpath 
formed by concatenating the subpaths produced by two or more of 
the node’s descendents. The algorithm examines only 

algorithm in this paper identifies two hot subpaths (ab and bc). concatenated strings, as the hot subpaths produced solely by a 
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rable 1. Characteristics of benchmark programs. The first column lists their (uninstrumented) running time. The second colum 
ists the size of the acyclic trace file. The third column is the rate at which this file is produced. The fourth column is the size of 
extual representation of the WPP. The fifth column is the rate at which the WPP is produced. The sixth column is thl 
:ompression ratio. The seventh column lists the number of threads run by each program. The next column is the number o 
Icyclic paths executed by all thread. The following column is the number of rules needed to describe the control flow. The fins 
:olumn is the number of rules per executed acyclic path. 

lime Ttacesiae Tti \IIRpSize \I\Rw Tracel Nm Mm NrnRdes/ 

(=I em set we secvwn-weackAcydcPafhst?Alles~ 

~.go 90.1 21766 24.15 141.1 1.57 15.4 1 1732l 2$0,82u 158.4 

124.- 3C 115.0 3833 0.3 0.10 Z8 1 1,169 7,927 6.8 

12k.p 9q 254.3 2825 23.7 264 10.7 1 a739 489287 23.6 

a 1 ; 

descendent node are found by a recursive call. 

Consider a node N (Figure 6). Viewed as a grammar, each of its 
successors (i.e. rules) produces a string (consisting of acyclic 
paths). Let Pi be the L-limited prefix of the string derived by 
successor i and let Si be the L-limited suffix of the string. An L- 
limited string is a string containing L or fewer symbols. A node’s 
prefix is the first L symbols that it produces, and its suffix is the 
last L symbols. 

Note that a nodei prefix and suffix are independent of its parents. 
In particular, the algorithm computes only once the prefix and 
suffix of a node with multiple predecessors-including multiple 
edges from the same nodewhich preserves the space and time 
benefits of the DAG representation. 

In the example, the L-limited subpaths for node N are found in the 
strings: S,IIP2, $1 IP3, and possibly S,llPrIIPj (if the string 
produced by the second successor is shorter thank symbols). The 
operator 11 is string concatenation. Similarly, the L-limited prefix 
and suffix of node N are the first and last L symbols examined 
when looking for substrings at node N. 

This approach finds non-minimal subpaths. For example, if the 
suffix of a node ends with a hot subpath, it will be extended with 
symbols from the prefix of the next node. Changing the definition 
of a suffix corrects this problem. A node’s suffix is the maximal 
suffix of the final L symbols that is not part of a hot subpath. The 
algorithm clears the subpath string when a hot subpath is found, 
so that this string (which becomes the nodeb suffix) only contains 
symbols encountered after the last hot subpath. Similarly, a 
node’s prefix subpath is maximal prefix of the first L symbols that 
is not part of a hot subpath. The algorithm freezes a node’s prefix 
string at the first subpath. 

Since subpaths are limited to length L or less, the amount of work 
performed at a node is proportional to the number of its 
successors. The algorithm in Figure 7 traverses each edge in the 
WPP once and performs at most L operations per edge, so its 
running time is O(EL), where E is the number of edges in the 
WPP. In the worst case, the space used by this algorithm could be 
O(i?L), where N is the number of nodes in the WPP. However, 

there is no need to retain prefix and suffix strings for nodes whose 
predecessors have all been visited, and the code frees and reuses 
this space. In this case, the space requirement is proportional to 
the number of partially visited nodes in the DAG, which can be 
far lower than O(N). 

5. Performance 
This section describes an implementation of whole program 
profiling that demonstrates that the technique is practical, even for 
large commercial applications. The application programs were 
instrumented with a version of the PP path profiler [6] running on 
MicrosoRS Vulcan tool. Vulcan is an executable instrumentation 
system similar to ATOM and EEL [17, 271. Traces were 
processed by PPCompress, which uses the techniques described in 
this paper to produce and analyze a WPP. 

The overhead of path profiling instrumentation and WPP 
processing overhead are moderate (small integer slowdown and 
tens of minutes of processing time). To facilitate 
experimentation, path traces were written to a file, rather than 
processed on line. Measurements were performed on a dual 
processor, 200 MHz Pentium-Pro PC with 256 MB of memory 
running Windows NT 4.0 Server (SP4). 

This paper contains measurements of the SPECINT95 
benchmarks and two Microsoft application programs. The first is 
a relational database (Microsoft SQL 7.0) running the TPC-C 
benchmark. TPC-C is an on-line transaction processing 
benchmark that involves a mix of five concurrent transactions of 
different types and complexity executed either on-line or queued 
for deferred execution [ 131. The database is comprised of nine 
types of records with a wide range of record and population sizes. 
The benchmark runs for a fixed length of time, in this case a short 
(non-standard) run of 120 seconds. Note that the instrumented 
database accomplished far less in this interval than the original 
code (136 and 2133 transactions, respectively). The second 
example is a word processing program (Microsoft WinWord 9) 
running a standard breadth test scenario, which exercises 
approximately 20% of its code. On the system above, WinWord 
runs the uninstrumented scenario in approximately 8 seconds. 
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Ggure 8. Whole Program Path performance running compress benchmark with various size input files. 

5.1 Profile Size 
Table 1 reports some overall characteristics of program traces and 
WPPs. The column labeled Truce Size contains the size of the 
binary file trace of acyclic paths (Section 2). FVZY Size contains 
the size of the ASCII grammar produced by PPCompress (the 
binary representation of a WPP can be two times smaller). The 
ratio of these two files’ size is a rough measure of the 
compression achieved by WPPs. 

The SPEC benchmarks were run with their smallest input dataset 
(test), except for 129.compress, which used the more reasonable 
train dataset. 134.perl reports the larger of its two data sets 
(jumble). In all cases, traces include the standard libraries. 

The two commercial applications differ slightly. In both, only the 
application code-not library code-was measured. WinWord 
spends a substantial fraction of its time in library (DLL) and 
kernel code, neither of which was captured in this experiment. 
SQL, unlike the SPEC benchmarks, performs a substantial amount 
of IO, which runs in the kernel. Another major difference is that 
SQL executes many threads, while the SPEC benchmarks are 
single threaded and WinWord executes almost entirely in one 
thread. The current system distinguishes control flow in each 
thread and constructs a separate WPP for each one. 

The compression ratio ranged from 7.3-392.8. The highest 
compression occurred in programs (l24.m88ksim, 13O.li, 
147.vortex) whose control flow is not particularly simple. 
However, all three programs are highly repetitive, and perform the 
same task (instruction simulation, chess board search, object- 
oriented database queries) many times. The programs with the 
lowest compression (099.go, 126.gcc, 132.ijpeg, and WinWord) 
have complex, non-iterative control flow. 132.ijpeg differs from 
the other two SPEC benchmarks, as it executes few (1,637) 
distinct paths, but requires a relatively large number of rules to 
capture its control flow. 

The application programs (WinWord and SQL) have far fewer 
rules per acyclic path than the benchmarks. This difference may 
arise from the structure and behavior of commercial applications, 
or it may be a measurement artifact due to the absence of library 
code. Nevertheless, he various compression ratios appear to be a 

plausible measure of a program’s control -flow regularity, which 
could possibly help isolate and study areas of regular and irregular 
control flow. 

Figure 8 examines the relationship between program running 
time, file size, and processing time. This experiment used the 
compress program from the SPEC95 benchmark suite. The size 
of the file to be compressed ranged between 100-l ,OOO,OOO bytes. 
The figure plots the relative performance of the instrumented and 
uninstrumented program, the size of the trace and WPP file, and 
the cost of running PPCompress. Note that the uninstrumented 
program’s execution time does not increase linearly with the input 
size. Although the compression algorithm is linear, the cost of 
compressing small files is dominated by writing the program’s 
output, which is independent of the input data. The instrumented 
program does not share this behavior, since its execution is 
dominated by writing the trace. Most important, the WPP’s size 
grew at a slightly slower rate than uninstrumented execution time 
or the trace file size. Unfortunately, the time to produce the WPP 
grew significantly faster than the size of its input. This may 
reflect the non-linear components of the algorithm or cache 
effects. 

5.2 Hot Subpaths 
Figure 9 reports some hot subpaths found in the SPECINT95 and 
commercial benchmarks. In this experiment, the cost function for 
an acyclic path was the number of instructions along the path. 
The figure graphs the maximum length of a hot subpath (in 
acyclic paths) against the number of minimal hot subpaths with 
cost ? 10,000 and 100,000, respectively. Because the 
commercial benchmarks do not include paths through library 
code, the absolute number of paths is not comparable between the 
two sets of programs. 

Comparing the two graphs show that the number of hot paths 
discovered decreases sharply as the threshold increases. The 
decrease ranges from 1.8 times (129.compress) to 13.9 (126.gcc). 
As usual, 126.gcc differs from the other SPEC benchmarks, 
except 132.ijpeg. gee’s decrease, however, was close to the 
commercial applications (9.5 and 12.8 for WinWord and SQL, 
respectively). 
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Figure 9. Number of minimal hot subpaths (with cost 2 10,000 and 100,000 instructions, respectively) found with different limits 
,n the maximum length of a hot subpath (measured in acyclic paths). Subpaths are at least 10 acyclic paths long. 

The shape of the curves is interesting as well. With a few 
exceptions, most curves are very flat. This means that few new 
hot subpaths were found by increasing the maximum path length 
beyond its initial value of 100 acyclic paths. The hot subpaths, in 
these benchmarks at least, are relatively short (? 100 acyclic 
paths), heavily executed segments of code. This, of course, is the 
best situation for compiler optimization, since compilers excel at 
small improvements, which can produce large benefits in heavily 
executed code. On the other hand, 126.gcc, 129.compress, and 
the commercial applications find 2.5-3.0 times as many paths as 
the length limit increases. This means that a substantial fract ion of 
the hot subpaths in these programs is IOO-1,000 acyclic paths 
long. This result suggests that compiler optimization with a larger 
perspective might be useful for commercial applications. 

6. Related Work 
Ball and Larush original path profiling algorithm recorded the 
execution frequency of intraprocedural, acyclic paths [6]. This 
paper extends that work to paths that cross both procedure and 
loop boundaries. Bala’s technique captured segments of 
interprocedural paths by recording a bounded collection of branch 
outcomes [5]. Unlike Bala’s paths, WPPs completely cover a 
program’s execution and do not introduce approximations at path 
boundaries. Moreover, the WPP representation is more compact 
and easily analyzable than a collection of branches. 

Ammons, Ball, and Lams extended acyclic path profiling in two 
directions [ 11. First, they associated hardware metrics other than 
execution frequency with paths. Second, they introduced a run- 
time data structure (the calling context tree) to approximate 
interprocedural paths by connecting a path at a call site with a 
path in the callee. In practice, these linkages were imprecise, as 
more than one path can reach a call site. Moreover, calling 
context trees do not connect paths across loop iterations. Overall, 
WPPs are more accurate, compact, and analyzable than calling 
context trees and capture cyclic paths that span loop boundaries. 
However, WPPs require more intermediate storage and post- 
processing. 
Melski and Reps describe an interprocedural extension of Ball and 
Larus’s acyclic path profiling technique [ 18, 191. Instead of 
labeling edges in an interprocedural supergraph with integer 
values, their technique labels edges with functions, which are used 

to capture the calling context of a procedure. Their approach 
shares some of the limitations of the original Ball-Lams 
technique. First, the paths in this technique do not cross loop (or 
recursive call) boundaries. Second, interprocedural paths are 
assigned a unique name statically. Since the number of potential 
paths through a program is huge, a pathh run -time representation 
must be an unbounded integer, or potential paths will need to be 
truncated to limit the size of path identifiers. In some sense, a 
WPP is an identifier-though not a minimal one-that uniquely 
identifies the path that a program took. Finally, their analysis 
presumes a complete call graph, and introduces ad-hoc techniques 
to handle exceptions and indirect calls. WPPs, which start with a 
run-time trace, easily handles cyclic and indirect control flow, as 
well as complications such as multiple threads. An interesting 
alternative is to use Melski and Rep’s technique in conjunction 
with the techniques in this paper. Their algorithm produces a 
different vocabulary of longer paths, which might lead to smaller 
grammars. 

Several researchers have investigated techniques to compress 
program traces. For example, Lams described Abstract 
Execution, in which a small amount of run-time data guides the 
re-execution of the address-generating slice of a program [16]. 
Pleszkun developed a two-pass trace compression scheme, which 
used a variable-length encoding of a basic block’s dynamic 
control successors and compact representation of linear address 
patterns to compress address traces to a fraction of bit per 
reference [23]. These techniques produce impressively small 
files, but require considerable post-processing to regenerate an 
address trace, which is a far less compact and analyzable entity 
than a WPP. 

Chen et al. hypothesized that data compression provides an upper 
limit on the performance of correlated branch prediction [9]. This 
paper provides evidence to further this connection, as this type of 
branch prediction performs well because of programs’strong path 
locality [28], which also underlies the high compression achieved 
by the SEQUITUR algorithm. 

The hot subpath algorithm in Section 4.2 is similar to Baker’s 
technique for finding repeated code in a program [4]. Baker’s 
algorithm uses a suffix tree of a program text. This structure is 
impractical for program traces, as it uncompresses the trace. 
WPP’s DAG representation is far more compact, yet still 
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analyzable. Baker’s technique, moreover, finds all repetitions, 
regardless of length. In this application, repetition is only 
valuable when costly, but Baker’s approach does not support a 
cost metric. 

7. Conclusion and Future Work 
Whole program paths are a new representation for dynamic 
program analysis that capture a program’s complete control flow 
in a compact, tractable form. A WPP is a DAG representation of 
a context-free grammar that generates a program’s acyclic path 
trace. A two-step process produces a WPP. First, the acyclic paths 
that a program executes are recorded. Next, this trace is 
processed with the SEQUITUR compression algorithm, which 
builds a context-free grammar to represent its input string. A 
grammar’s DAG representation is a WPP, which is a compact and 
easily analyzed representation of a program5 control flow. This 
paper shows how to find hot subpaths in a WPP and demonstrates 
that the SPEC benchmarks and commercial applications contain a 
significant number of these paths. 

WPPs have many potential uses. This paper concentrated on their 
application to performance tuning, in which WPPs identify 
heavily executed code sequences. Programmers or compilers 
could collect and analyze these WPPs to find hot subpaths to 
optimize or tune. Because WPPs span procedure and loop 
boundaries, they expose large-scale optimization opportunities 
that cross procedure and module abstractions. Without automatic 
tools to identify expensive interprocedural paths, large-scale 
performance tuning will remain difficult, costly, and limited to 
high value software, such as OSs and DBs. Moreover, the long 
paths identified by WPPs are valuable adjuncts to the global and 
interprocedural optimization that is becoming necessary to 
support highly speculative or VLIW microprocessors. 

Another, more novel application of WPPs is to detect program 
errors that do not manifest themselves as erroneous output. 
Consider the problem of data structure initialization. A program 
may run correctly when it allocates an uninitialized structure in 
zeroed memory, but fail when it puts the structure into recycled 
memory. A similar error is accessing shared structures without 
acquiring the proper synchronization. This error too may manifest 
itself only under certain conditions. In some cases, these errors 
are detectable by examining a programb control flow. The idea 
has been used in predicate path expressions to specify 
synchronization constraints [3]. However, temporal logic, as used 
in model checking [lo], offers a better language for expressing 
control-flow properties to validate. 

Moreover, it seems likely that the same compression technique 
and data representation can be use to capture and analyze 
programs’data -reference patterns, as well as their control flow. 
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