Advanced Compilers
CMPSCI 710
Spring 2003
Register Allocation

Emery Berger
University of Massachusetts, Amherst

The Memory Hierarchy
- Higher = smaller, faster, closer to CPU
 - A real desktop machine (mine)
 - 8 integer, 8 floating-point; 1-cycle latency
 - 8K data & instructions; 2-cycle latency
 - 512K; 7-cycle latency
 - 1GB; 100 cycle latency
 - 40 GB; 38,000,000 cycle latency (!)

Managing the Memory Hierarchy
- Programmer view: only two levels of memory
 - Main memory (stores & loads)
 - Disk (file I/O)
- Two things maintain this abstraction:
 - Hardware
 - Moves data between memory and caches
 - Compiler
 - Moves data between memory and registers

Overview
- Introduction
- Register Allocation
 - Definition
 - History
 - Interference graphs
 - Graph coloring
 - Register spilling

Register Allocation: Definition
- Register allocation assigns registers to values
 - Candidate values:
 - Variables
 - Temporaries
 - Large constants
 - When needed, spill registers to memory
 - Important low-level optimization
 - Registers are 2x – 7x faster than cache
 - Judicious use ⇒ big performance improvements

Register Allocation: Complications
- Explicit names
 - Unlike all other levels of hierarchy
 - Scarce
 - Small register files (set of all registers)
 - Some reserved by operating system
 - e.g., “BP”, “SP”...
- Complicated
 - Weird constraints, esp. on CISC architectures
 - Special registers: zero-load
History
- As old as intermediate code
 - Used in the original FORTRAN compiler (1950's)
 - Very crude algorithms
- No breakthroughs until 1981!
 - Chaitin invented register allocation scheme based on graph coloring
 - Equivalence first noted by Cocke et al., 1971
 - Simple heuristic, works well in practice

Register Allocation Example
- Consider this program with six variables:
 \[a := c + d \]
 \[e := a + b \]
 \[f := e - 1 \]
- with the assumption that \(a \) and \(e \) die after use
- Temporaries can be “reused” after \(e := a + b \)
- Same with temporary \(e \)
- Can allocate \(a \), \(e \), and \(f \) all to one register \((r_1) \):
 \[
 r_1 := r_2 + r_3 \\
 r_1 := r_1 + r_4 \\
 r_1 := r_1 - 1
 \]

Basic Register Allocation Idea
- Value in dead temporary not needed for rest of the computation
 - Dead temporary can be reused
- Basic rule:
 - Temporaries \(t_1 \) and \(t_2 \) can share same register if at any point in the program at most one of \(t_1 \) or \(t_2 \) is live!

Algorithm: Part I
- Compute live variables for each point:
 \[
 \begin{align*}
 (a, c, f) & \quad b := b + c \\
 (c, d, f) & \quad d := a - c \\
 (c, e) & \quad e := d + f \\
 (c, f) & \quad f := 2 \times e \\
 (b, c, e, f) & \quad b := d + e \\
 (c, e) & \quad e := e - 1 \\
 (c, f) & \quad f := e + c \\
 (b) & \quad (b)
 \end{align*}
 \]

Register Interference Graph
- Two temporaries live simultaneously
 - Cannot be allocated in the same register
- Construct register interference graph
 - Node for each temporary
 - Undirected edge between \(t_1 \) and \(t_2 \)
 - If live simultaneously at some point in the program
- Two temporaries can be allocated to same register if no edge connects them

Register Interference Graph: Example
- For our example:
 \[
 \begin{align*}
 (b, c, f) & \quad (a, c, f) \\
 (c, d, f) & \quad (c, d, e, f) \\
 (c, e) & \quad (b, c, e, f) \\
 (c, f) & \quad (b)
 \end{align*}
 \]
Register Interference Graph: Properties

- Extracts exactly the information needed to characterize legal register assignments
- Gives global picture of register requirements
 - Over the entire flow graph
 - After RIG construction, register allocation is architecture-independent
 - Add additional edges in RIG to encode architectural intricacies
- Now what do we do with this graph?

Graph Coloring

- Graph coloring: assignment of colors to nodes
 - Nodes connected by edge have different colors
 - Equivalently: no adjacent nodes have same color
- Graph k-colorable = can be colored with k colors

Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
 - Let k = number of machine registers
- If the RIG is k-colorable, there’s a register assignment that uses no more than k registers

Graph Coloring Example

- Consider the example RIG

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

Graph Coloring Example, Continued

- Under this coloring the code becomes:

Computing Graph Colorings

- How do we compute coloring for interference graph?
 - NP-hard!
 - For given # of registers, coloring may not exist
- Solution
 - Use heuristics (here, Briggs)
Graph Coloring Heuristic

- Observation: “degree < k rule”
 - Reduce graph:
 - Pick node t with < k neighbors in RIG
 - Eliminate t and its edges from RIG
 - If the resulting graph has k-coloring, so does the original graph

- Why?
 - Let c₁,...,cₙ be colors assigned to neighbors of t in reduced graph
 - Since n < k, we can pick some color for t different from those of its neighbors

Graph Coloring Heuristic, Continued

- Heuristic:
 - Pick node t with fewer than k neighbors
 - Put t on a stack and remove it from the RIG
 - Repeat until the graph has one node
 - Start assigning colors to nodes on the stack (starting with the last node added)
 - At each step, pick color different from those assigned to already-colored neighbors

Graph Coloring Example (1)

- Start with the RIG and with k = 4:
 - Stack: {}
 - Remove a and then d

Graph Coloring Example (2)

- Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f
 - Stack: {d, a}

Graph Coloring Example (2)

- Start assigning colors to: f, e, b, c, d, a

What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors?
 - Example: try to find a 3-coloring of the RIG:
What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
- Assume that f is picked

What if the Heuristic Fails?

- Remove f and continue the simplification
- Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

- During assignment phase, we get to the point when we have to assign a color to f
- Hope: among the 4 neighbors of f, we use less than 3 colors ⇒ optimistic coloring

Spilling

- Optimistic coloring failed ⇒ must spill temporary f
- Allocate memory location as home of f
- Typically in current stack frame
- Call this address fa
- Before each operation that uses f, insert
 \[f := \text{load } fa \]
- After each operation that defines f, insert
 \[\text{store } f, fa \]

Recomputing Liveness Information

- New liveness information after spilling:
Recomputing Liveness Information

- New liveness info almost as before, but:
 - \(f \) is live only
 - Between \(f := \text{load fa} \) and the next instruction
 - Between \(\text{store f, fa} \) and the preceding instruction

- Spilling reduces the live range of \(f \)
 - Reduces its interferences
 - Results in fewer neighbors in RIG for \(f \)

Recompute RIG After Spilling

- Remove some edges of spilled node
- Here, \(f \) still interferes only with \(c \) and \(d \)
 - Resulting RIG is 3-colorable

Spilling, Continued

- Additional spills might be required before coloring is found
- Tricky part: deciding what to spill
 - Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops
 - All are “correct”

Conclusion

- Register allocation: “must have” optimization in most compilers:
 - Intermediate code uses too many temporaries
 - Makes a big difference in performance
- Graph coloring:
 - Powerful register allocation scheme

Next Time

- Scheduling
- Read ACDI Chapter 17