Determining Equivalence
- **Goal:** eliminate redundant computations
 - Sparse conditional constant propagation:
 - Eliminates multiple computations
 - Eliminates unnecessary branches

 \[
 \begin{align*}
 x - 2y & \rightarrow x = 2y \\
 x - 1 & \rightarrow x = 4z \\
 k &= 1 + x \rightarrow k = 4z
 \end{align*}
 \]

- Can we eliminate equivalent expressions without constants?

Common Subexpression Elimination
- Recognizes textually identical (or commutative) redundant computations
- Replaces second computation by result of the first

\[
\begin{align*}
\alpha &= \beta + 2 \\
\gamma &= \delta + 3 \\
\epsilon &= \zeta + \eta
\end{align*}
\]

- How do we do this efficiently?

Value Numbering
- Each variable, expression, and constant: unique value number
- Same number \(\Rightarrow \) computes same value
- Based on information from within block
- Use hash functions to compute these

Computing Value Numbers
- Assign values to variables
 - \(a = 3 \Rightarrow \text{value}(a) = 3 \)
- Map expressions to values
 - \(a = b + 2 \Rightarrow \text{value}(a) = \text{hash}(+, \text{value}(b), 2) \)
- Use appropriate hash function
 - Plus: commutative
 - \(\text{hash}(+, \text{value}(b), 2) = \text{hash}(+, 2, \text{value}(b)) \)
 - Minus: not commutative
 - \(\text{hash}(-, \text{value}(b), 2) \neq \text{hash}(-, 2, \text{value}(b)) \)
Value Numbering Summary

- Forward symbolic execution of basic block
- Each new value assigned to temporary
 - Preserves value for later use even if original variable rewritten
 - \(a = x+y; a = x+z; b = x+y \)
 - \(t = a; a = a+z; b = t \)
- Maps
 - Var to Val
 - specifies symbolic value for each variable
 - Exp to Val
 - specifies value of each evaluated expression
 - Exp to Tmp
 - specifies tmp that holds value of each evaluated expression

Map Usage

- Var to Val
 - Used to compute symbolic value of \(y \) and \(z \) when processing statement of form \(x = y + z \)
- Exp to Tmp
 - Used to determine which temp to use if \(\text{value}(y) + \text{value}(z) \) previously computed when processing statement of form \(x = y + z \)
- Exp to Val
 - Used to update Var to Val when
 - processing statement of the form \(x = y + z \), and
 - \(\text{value}(y) + \text{value}(z) \) previously computed

Computing Value Numbers, Example

<table>
<thead>
<tr>
<th>Original Basic Block</th>
<th>New Basic Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x+y)</td>
<td>(a = x+y)</td>
</tr>
<tr>
<td>(b = x+z)</td>
<td>(t1 = a)</td>
</tr>
<tr>
<td>(c = x+z)</td>
<td>(t2 = b)</td>
</tr>
<tr>
<td>(d = x+y)</td>
<td>(e = t2)</td>
</tr>
<tr>
<td>(x \rightarrow v1)</td>
<td>(v1+v2 \rightarrow v3)</td>
</tr>
<tr>
<td>(y \rightarrow v2)</td>
<td>(v3+v4 \rightarrow v5)</td>
</tr>
<tr>
<td>(a \rightarrow v3)</td>
<td>(v5+v6 \rightarrow v6)</td>
</tr>
<tr>
<td>(b \rightarrow v4)</td>
<td></td>
</tr>
<tr>
<td>(c \rightarrow v5)</td>
<td></td>
</tr>
</tbody>
</table>

Interesting Properties

- Finds common subexpressions even if they use different variables in expressions
 - \(y = a+b; x = b; z = a+x \)
 - \(y = a+b; t = y; x = b; z = t \)
- Finds common subexpressions even if variable that originally held the value was overwritten
 - \(y = a+b; x = b; y = 1; z = a+x \)
 - \(y = a+b; t = y; x = b; y = 1; z = t \)

Problems

- Algorithm has a temporary for each new value
 - \(a = x+y; t1 = a \)
- Introduces
 - lots of temporaries
 - lots of copy statements to temporaries
- In many cases, temporaries and copy statements are unnecessary
 - Eliminate with copy propagation and dead code elimination

Global CSE

- Value numbering eliminates some subexpressions but not all
 - \(\text{Global CSE} \)
 - \(\text{value} \) value is not always equal to \(j \)’s or \(k \)’s value
Available Expressions

- Global CSE requires computation of available expressions for blocks b:
- Expressions on every path in cfg from entry to b
- No operand in expression redefined
- Then use appropriate temp variable for used available expressions

Available Expressions: Dataflow Equations

- For a block b:
 - AEin(b) = expressions available on entry to b
 - KILL(b) = expressions killed in b
 - EVAL(b) = expressions defined in b and not subsequently killed in b

Next Time

- Partial Redundancy Elimination
- Read ACDI:
 - Ch 13

Available Expressions, Example

- Build control-flow graph
- Solve dataflow problem
 - Initialize AEin(i) = universal set of expressions
 - AEin(b) = \cap_{i \in \text{Pred}(b)} AEout(i)
 - AEout(b) = EVAL(b) \cup (AEin(i) \setminus KILL(i))

Value Numbering Example

- Step 1: insert temps for conditionals

<table>
<thead>
<tr>
<th>Statement</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>i = 1; j = 2; k = 3;</td>
<td>1; 2; 3;</td>
</tr>
<tr>
<td>x = i; y = j; z = k;</td>
<td>1; 2; 3;</td>
</tr>
<tr>
<td>s1 = x + y; s2 = x * z;</td>
<td>3; 6;</td>
</tr>
<tr>
<td>s3 = s1 + s2; s4 = s1 * s2;</td>
<td>9; 18;</td>
</tr>
</tbody>
</table>

Value Numbering Example

- Step 2:
 - Add entry for each rhs
 - Remove entry when dependent variable changes

<table>
<thead>
<tr>
<th>Statement</th>
<th>Final Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>i = 1; j = 2; k = 3;</td>
<td>1; 2; 3;</td>
</tr>
<tr>
<td>x = i; y = j; z = k;</td>
<td>1; 2; 3;</td>
</tr>
<tr>
<td>s1 = x + y; s2 = x * z;</td>
<td>3; 6;</td>
</tr>
<tr>
<td>s3 = s1 + s2; s4 = s1 * s2;</td>
<td>9; 18;</td>
</tr>
</tbody>
</table>