Advanced Compilers
CMPSCI 710
Spring 2003
Basic Loop Optimizations

Emery Berger

University of Massachusetts, Amherst

UNIVERSITY OF MAS: JSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Topics

= Last ime
= Optimizations using SSA form
= Constant propagation & dead code elimination
= Loop invariant code motion
= This time
= Loop optimizations
= Induction variable
= Linear test replacement
= Loop unrolling
= Scalar replacement

AMHERST » DEPARTMENT OF COMPUTER S

Easy Detection
of Loop Induction Variables

» Pattern match & check:

@ —

= Search for “i =i+ b” in loop

= iis induction variable if no other assignment to i in loop

m Pros & Cons:
+ Easy!

- Does not catch all loop induction variables
eg,“i=a*c+2”

Taxonomy of Induction Variables

» Jasic induction variable:
= only definition in loop is assignment
j =j % ¢, where c is loop invariant
w yutual induction variable:
= definition is linear function of other induction variable i
mi=cl*i+c2
mi=i/cl*tc2
w family of basic induction variable j:

= set of induction variables i such that i is always assigned
linear function of j

JSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Strength Reduction

= Replace “expensive” op by “cheaper” one
= E.g., replace multiply by addition

= Apply to induction variable families
= Especially: array indexing

i=0;

L2: if (j >= 108) goto 11;
i=ka+ 4% 3;

for (j = 0; j < 100; j+&)
*i = 0; —
i+ 1 zljl = o;
goto L2;

JSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

HERST + DEPARTMENT OF COMPUTER

Strength Reduction Algorithm

= Let i be induction variable in the family of
basic induction variable j:
mi=cl*j+c2

m Create new variable i’

= Initialize in pre-header: 7 = c1#j + c2

= Track value of j: after j = j + ¢3,add I’ = 1" +
(c1*c3)

HERST + DEPARTMENT OF COMPUTER

Strength Reduction Example

j=0;

j=0; i’ =&a + 4 * j;
L2: if (j >= 100) goto 1i; L2: if (j >= 100) goto 1i;

i=kat4*j; i=i%;

*i = 0; —_— -0

j=3+1; j=i+1;

goto L2; i’ =1’ + (4 * 1);
Li: goto L2;

Li:

Candidates for Strength Reduction

Induction variable IV multiplied by invariant

i=2; i=2;
i 50 = i * 50;

i=4+1;
i 50 = i_50 + 50;
al[il = i_50;

= Recursively:
s IV *1IV, IV mod constant, IV + IV

TS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Strength Reduction Algorithm

insert all basic induction variables
candidates list
while candidates not empiy
remove s from candidates
ifsis “e=isct+a”
replace with “e =éc+ o
eise
letic=s.c i=Iinrhs
for each reaching def pointing to ¢
if i.c assigned at def point, continue

insert “ie=ictare
add “i = i+a” with s.c = i.c to candidates

Linear Test Replacement

= Eliminates induction variable!
= After strength reduction, loop test is often last
use of induction variable
= Algorithm:
= If only use of IV is loop test and its own
increment, and test is always computed
= i.e., only one exit from loop
= Replace test with equivalent one:
= E.g., “i comp k” = “i_50 comp k*50”

HUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

=
while | < k *while|'<k
Fm i] =141 while j < k while j < k
* 50 isg = isp + 50;
| = isg; e=j*3
= basicinduction variable: i=j4 1 i=j+1

= mmtnal induction variable:

family of basic induction variable j:

Strength Reduction Examples

only definition in loop is assignment

j=] % c, where c is loop invariant .
I=i* 50

definition is linear function of other induction

variable i:

set of induction variables i such that i is always
signed linear function of j

Linear Test Replacement Example

=2
isg * 50;
while isy < k * 50

isp = isg + 50;
--isg

Loop Unrolling

= To reduce loop overhead, we can #nrol/ loops
for (i =1; i < 100; 1 += 43 {

ali]l = ali#1] + b[il;
for (i = 1; i < 100; i++} { ali+1) = ali+2] + bli+il;
a[i] = ali#i] + b[i); =P ali+2] = ali+3] + bli+2];
¥ a[i+3] = a[i#4] + b[i+3];
¥
= Advantages: = Disadvantages:
+ Execute fewer total instructions Code bloat
More fodder for common subexpression Still updating
climination, strength reduction, etc. through memory

Move consecutive access closer together

4 ‘ y o USETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Scalar Replacement

= Problem: register allocators never keep ali] in register
= Idea: trick allocator
= Locate patterns of consistent reuse
= Replace load with copy into temporary
= Replace store with copy from temporary
= May need copies at end of loop
= E.g, when reuse spans > 1 iteration
= Advantages:
= Decreases number of loads and stores
= Keeps reused values in registers
= Big performance impact (2x, 3x!)

Scalar Replacement Example

for (i = 1; i < 100; i++) {

for (i =1; i < n; i+) { t = alil;
for (j = 1; j < m; j+) { for (j = 1; j < 100; j++) {
ali] = alil + b[j); — t =t + bljl;
} X
3 ali] = ¢;
¥

= Scalar replacement exposes the reuse of ali]
= Traditional scalar analysis — inadequate

u Use dependence analysis to understand array
references (later)

(USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Next Time

= Common Subexpression Elimination
= Read ACDI:

= Ch. 12, pp. 343-355

= Ch. 13, pp. 378-396

ERST + DEPARTMENT OF COMPUTER SCIENC!

