Advanced Compilers

CMPSCI 710

Spring 2003

Basic Loop Optimizations

Emery Berger

University of Massachusetts, Amherst

Topics

- **Last time**
 - Optimizations using SSA form
 - Constant propagation & dead code elimination
 - Loop invariant code motion
- **This time**
 - Loop optimizations
 - Induction variable
 - Linear test replacement
 - Loop unrolling
 - Scalar replacement

Easy Detection of Loop Induction Variables

- **Pattern match & check:**
 - Search for “i = i + b” in loop
 - i is induction variable if no other assignment to i in loop

- **Pros & Cons:**
 - Easy!
 - Does not catch all loop induction variables
 - e.g., “i = a * c + 2”

Taxonomy of Induction Variables

- **basic induction variable:**
 - only definition in loop is assignment
 - j = j + c, where c is loop invariant
- **mutual induction variable:**
 - definition is linear function of other induction variable i:
 - i = c1 * j + c2
 - i = j / c1 ± c2
- **family of basic induction variable j:**
 - set of induction variables i such that i is always assigned linear function of j

Strength Reduction

- Replace “expensive” op by “cheaper” one
 - E.g., replace multiply by addition
- Apply to induction variable families
 - Especially: array indexing

Strength Reduction Algorithm

- Let i be induction variable in the family of basic induction variable j:
 - i = c1 * j + c2
- Create new variable i’
 - Initialize in pre-header: i’ = c1 * j + c2
- Track value of j after j = j + c3, add i’ = i’ + (c1 * c3)
Strength Reduction Example

```
\[ i \leftarrow 0 \%
\]
```

Candidates for Strength Reduction

- Induction variable IV multiplied by invariant

 \[
 i \leftarrow 0
 \]
 \[
 \text{IV} \times \text{IV} + \text{IV}
 \]

- Recursively:
 - \(\text{IV} \times \text{IV}, \text{IV} \text{ mod constant}, \text{IV} + \text{IV} \)

Strength Reduction Algorithm

```
\[
\text{if } \text{IV} \text{ is linear function of other induction variables,}\n\text{then}\n\text{IV becomes new constant,}\n\text{otherwise}\n\text{IV is unchanged.}\n\]
```

Linear Test Replacement

- Eliminates induction variable!
 - After strength reduction, loop test is often last use of induction variable
 - Algorithm:
 - If only use of IV is loop test and its own increment, and test is always computed
 - i.e., only one exit from loop
 - Replace test with equivalent one:
 - E.g., \(i \text{ comp } k = \text{?”} \text{.50 comp } k \text{”} \)

Linear Test Replacement Example

```
\[
\begin{align*}
\text{IV} &= \text{iv} \\
\text{IV} &= \text{iv} + \text{iv} \\
\end{align*}
\]
```

```
\[
\begin{align*}
\text{IV} &= \text{iv} \\
\text{IV} &= \text{iv} + \text{iv} \\
\end{align*}
\]
```
Loop Unrolling

- To reduce loop overhead, we can *unroll* loops

```c
for (int i = 0; i < n; i++)
    a[i] = a[i-1] + b[i+1];
```

- Advantages:
 - Execute fewer total instructions
 - More fodder for common subexpression elimination, strength reduction, etc.
 - Move consecutive access closer together

- Disadvantages:
 - Still updating
 - Code bloat

Scalar Replacement

- Problem: register allocators never keep a[i] in register

- Idea: trick allocator
 - Locate patterns of consistent reuse
 - Replace load with copy into temporary
 - Replace store with copy from temporary
 - May need copies at end of loop
 - E.g., when reuse spans > 1 iteration

- Advantages:
 - Decreases number of loads and stores
 - Keeps reused values in registers
 - Big performance impact (2x, 3x!)

Scalar Replacement Example

```c
for (int i = 0; i < n; i++)
    a[i] = a[i-1] + b[i+1];
```

- Scalar replacement exposes the reuse of a[i]
 - Traditional scalar analysis – inadequate
 - Use dependence analysis to understand array references (later)

Next Time

- Common Subexpression Elimination
- Read ACDI:
 - Ch. 12, pp. 343-355
 - Ch. 13, pp. 378-396