Advanced Compilers
CMPSCI 710
Spring 2003
D dominators, etc.
Emery Berger
University of Massachusetts, Amherst

Dominators, etc.
- Last time
 - Live variable analysis
 - backwards problem
 - Constant propagation
 - algorithms
 - def-use chains
- Today
 - SSA-form
 - dominators

Def-Use Chains: Problem

```
switch (j)
case x: i = 1; break;
case y: i = 2; break;
case z: i = 3; break;
switch (k)
case x: a = i; break;
case y: b = i; break;
case z: c = i; break;
```

- worst-case size of graph = $O(D*U) = O(N^2)$

SSA Form
- Static single assignment
 - each assignment to variable gets unique name
 - all uses reached by that assignment are renamed
 - exactly one def per use
 > sparse program representation:
 > use-def chain = (variable, [use_1, use_2, ...])

SSA Transformations
- New variable for each assignment, rename uses

```
v_i = 4
v_j = 5
v_6 = 6
v_{i+7}
```

- Easy for straight-line code, but what about control flow?

Φ-Functions
- At each join, add special assignment: "φ function":
 - operands indicate which assignments reach join
 - j_{0h} operand = j_{0h} predecessor
 - If control reaches join from j_{0h} predecessor, then value of $φ(R,S,...)$ is value of j_{0h} operand
SSA Transformation, \(\Phi \) function

\[
\begin{align*}
\text{if } & P \\
\text{then } & v \leftarrow 4 \\
\text{else } & v \leftarrow 6 \\
/* & \text{use } v */
\end{align*}
\]

SSA Example II

\[
\begin{align*}
v & \leftarrow 1 \\
\text{while } & (v < 10) \\
v & \leftarrow v + 1
\end{align*}
\]

SSA Example III

\[
\begin{align*}
\text{switch } & j \\
\text{case } & x: i \leftarrow 1; \text{ break;} \\
\text{case } & y: i \leftarrow 2; \text{ break;} \\
\text{case } & z: i \leftarrow 3; \text{ break;} \\
\text{switch } & k \\
\text{case } & x: a \leftarrow i; \text{ break;} \\
\text{case } & y: b \leftarrow i; \text{ break;} \\
\text{case } & z: c \leftarrow i; \text{ break;}
\end{align*}
\]

Placing \(\Phi \) functions

- Safe to put \(\phi \) functions for every variable at every join point
- But:
 - Inefficient – not necessarily sparse!
 - Loses information
- Goal: minimal \(\phi \) nodes, subject to need

\(\Phi \) Function Requirement

- Node \(Z \) needs \(\phi \) function for \(V \) if:
 - \(Z \) is **convergence point** for two paths originating at different nodes
 - Both originating nodes contain assignments to \(V \) or also need \(\phi \) functions for \(V \)

\[
\begin{align*}
v_1 & \leftarrow 1 \\
v_2 & \leftarrow 2
\end{align*}
\]

Minimal Placement of \(\Phi \) functions

- Naive computation of need is expensive:
 - Must examine all triples in graph
- Can be done in \(O(N) \) time
 - Relies on **dominance frontier** computation [Cytron et al., 1991]
 - Also can be used to compute control dependence graph
Control Dependence Graph

- Identifies conditions affecting statement execution
- Statement is control dependent on branch if:
 - one edge from branch definitely causes statement to execute
 - another edge can cause statement to be skipped

Control Dependence Example

Statement is control dependent on branch if:
- one edge from branch definitely causes statement to execute
- another edge can cause statement to be skipped

Dominators

- Before we do dominance frontiers, we need to discuss other dominance relationships
- \(x \) dominates \(y \) (\(x \) dom \(y \))
 - in CFG, all paths to \(y \) go through \(x \)
- \(\text{Dom}(v) \) = set of all vertices that dominate \(v \)
- Entry dominates every vertex
- Reflexive: \(a \) dom \(a \)
- Transitive: \(a \) dom \(b \), \(b \) dom \(c \) \(\Rightarrow \) \(a \) dom \(c \)
- Antisymmetric: \(a \) dom \(b \), \(b \) dom \(a \) \(\Rightarrow \) \(b = a \)
- Notice: in SSA form, a definition dominates its use

Finding Dominators

\[\text{Dom}(v) = \{v\} \]

Algorithm:

1. \(\text{DOM}(\text{Entry}) = \{\text{Entry}\} \)
2. for \(v \in V - \{\text{Entry}\} \)
3. \(\text{DOM}(v) = V \)
4. repeat
5. \(\text{changed} = \text{false} \)
6. for \(n \in V - \{\text{Entry}\} \)
7. \(\text{olddom} = \text{DOM}(n) \)
8. \(\text{DOM}(n) = \{n\} \]
9. \(\bigcup \{\text{Pred}(n) \cup \text{DOM}(p)\} \)
10. if \(\text{DOM}(n) \neq \text{olddom} \)
11. \(\text{changed} = \text{true} \)
12. end repeat
13. if \(\text{changed} = \text{false} \)
14. break
15. end algorithm

Dominator Algorithm Example

Other Dominators

- Strict dominators
 - \(\text{Dom}(v) = \text{Dom}(v) - \{v\} \)
 - antisymmetric & transitive
- Immediate dominator
 - \(\text{Idom}(v) = \text{closest strict dominator of } v \)
 - \(d \text{ dom } v \) if \(d \text{ dom } v \) and \(x \in 2 \text{ Dom}(v) \), \(w \text{ dom } d \)
 - antisymmetric
 - \(\text{Idom} \) induces tree
Dominator Example

- **A** (Entry)
- **B**
- **C**
- **D**
- **E**
- **F**
- **G** (Exit)

Dominator Tree

- **A** (Entry)
- **B**
- **C**
- **D**
- **E**
- **F**
- **G** (Exit)

Inverse Dominators

- \(D^{-1}(v) \) = set of all vertices dominated by \(v \)
- reflexive, antisymmetric, transitive

Inverse Dominator Example

- \(n \text{Dom}(A): \{A\} \)
- \(n \text{Dom}(B): \{A,B\} \)
- \(n \text{Dom}(C): \{A,B,C\} \)
- \(n \text{Dom}(D): \{A,B,D\} \)
- \(n \text{Dom}(E): \{A,B,E\} \)
- \(n \text{Dom}(F): \{A,B,E,F\} \)
- \(n \text{Dom}(G): \{A,B,E,G\} \)

Finally: Dominance Frontiers!

- The **dominance frontier** \(D F(X) \) is set of all nodes \(Y \) such that:
 - \(X \) dominates a predecessor of \(Y \)
 - But \(X \) does not strictly dominate \(Y \)
- \(D F(X) = \{Y | (\exists P. P \in \text{PRED}(Y) \land X \text{ Dom } P) \land \neg \exists Q. X \text{ Dom! } Q \} \)

Why Dominance Frontiers

- Dominance frontier criterion:
 - If node \(x \) contains def of \(a \), then any node \(z \) in \(D F(x) \) needs \(a \) function for \(a \)
 - Intuition:
 - at least two non-intersecting paths converge to \(z \), and one path must contain node strictly dominated by \(x \)
Dominance Frontier Example

Node y is in dominance frontier of node x if:
x dominates predecessor of y
but does not strictly dominate y

DF(X) = \{Y | (P \in \text{Pred}(Y), X \text{ Dom } P) \land \neg X \text{ Dom } Y\}

Next Time
- Computing dominance frontiers
- Computing SSA form