Data flow analysis

- Framework for proving facts about program at each point
 - Point: entry or exit from block (or CFG edge)
 - Lots of “small facts”
 - Little or no interaction between facts
- Based on all paths through program
 - Includes infeasible paths

Infeasible Paths Example

```c
a = 1;
if (a == 0) {
  a = 1;
}
if (a == 0) {
  a = 2;
}
```

- Infeasible paths never actually taken by program, regardless of input
- Undecidable to distinguish from feasible

Data Flow-Based Optimizations

- Dead variable elimination
  ```c
  a = 3; print a; x = 12; halt
  a = 3; print a; halt
  ```

- Copy propagation
  ```c
  X = y; … use of x … … use of y
  ```

- Partial redundancy
  ```c
  a = 3*c + d; b = 3*c
  b = 3*c; a = b + d
  ```

- Constant propagation
  ```c
  a = 3; b = 2; c = a + b
  a = 3; b = 2; c = 5
  ```

Data Flow Analysis

- Define lattice to represent facts
- Attach meaning to lattice values
- Associate transfer function to each node
- (f: L → L)
- Initialize values at each program point
- Iterate through program until fixed point

Lattice-Related Definitions

- Meet function: u
 - Commutative and associative
 - x u x = x

- Unique bottom ? and top > element
 - x u ? = ?
 - x u > x

- Ordering: x v y if x u y = x
- Function f is monotone if 8 x, y:
 - x v y implies f(x) v f(y)
Bit-Vector Lattice

- Meet = bit-vector logical and

- Meet rules:
 - $111 \lor 111 = 111$
 - $011 \lor 111 = 111$
 - $100 \lor 101 = 101$
 - $011 \lor 011 = 011$
 - $011 \lor 110 = 110$
 - $011 \lor 010 = 010$
 - $100 \lor 000 = 100$
 - $001 \lor 110 = 011$
 - $010 \lor 100 = 100$

Constant Propagation Lattice

- Meet rules:
 - $a \lor a = a$
 - $a \lor ? = ?$
 - constant \lor constant = constant (if equal)
 - constant \lor constant = ? (if not equal)

- Define obvious transfer functions for arithmetic

Iterative Data Flow Analysis

- Initialize non-entry nodes to $>$
 - Identity element for meet function
 - If node function is monotone:
 - Each re-evaluation of node moves down the lattice, if it moves at all
 - If height of lattice is finite, must terminate

Constant Propagation Example I

- Two choices of “point”:
 - Compute at edges
 - maximal information
 - Compute on entry
 - must “meet” data from all incident edges
 - loses information

Constant Propagation Example II

- Vector for (x,a,b,c)
- Init values to $>$
- Iterate forwards

Accuracy: MOP vs. MFP

- We want “meet-over-all-paths” solution, but paths can be infinite if there are loops
- Best we can do in general:
 - **Maximum Fixed Point** solution = largest solution, ordered by v, that is fixed point of iterative computation
 - Provides “most information”
 - More conservative than MOP
Distributive Problems
- \(f \) is **distributive** iff
 - \(f(x \land y) = f(x) \land f(y) \)
- Doing meet early doesn’t reduce precision
- Non-distributive problems:
 - Constant propagation
- Distributive problems:
 - MFP = MOP
 - Reaching definitions, live variables

Reaching Definitions
- **Definition**: each assignment to variable
 - \(\text{defs}(v) \) represents set of all definitions of \(v \)
- Assume all variables scalars
 - No pointers
 - No arrays
- A definition **reaches** given point if there is a path to that point such that variable may have value from definition

Data Flow Functions
- \(\text{Kill}(S) \): facts not true after \(S \) just because they were true before
 - Example: redefinition of variable (assignment)
- \(\text{Gen}(S) \): facts true after \(S \) regardless of facts true before \(S \)
 - Example: assigned values not killed in \(S \)
- \(\text{In}(S) \): dataflow info on entry to \(S \)
 - If \(S \) has one predecessor \(P \), \(\text{In}(S) = \text{Out}(P) \)
 - Otherwise:
 - \(\text{In}(S) = \text{Out}(P) \setminus \text{Kill}(P) \)
 - Example: definitions that reach \(S \)
- \(\text{Out}(S) \): dataflow info on exit from \(S \)
 - \(\text{Out}(S) = \text{Gen}(S) \setminus \text{Kill}(S) \)
 - Example: reaching defs after \(S \)

For Reaching Definitions
- For reaching defs, \(u = \{ \)
 - \(\text{Gen}(d; v = \text{exp}) = \{ d \} \)
 - “on exit from block \(d \), generate new definition”
 - \(\text{Kill}(d; v = \text{exp}) = \text{defs}(v) \)
 - “on exit from block \(d \), definitions of \(v \) are killed”
 - Computing \(\text{In}(S) \)
 - If \(S \) has one predecessor \(P \), \(\text{In}(S) = \text{Out}(P) \)
 - Otherwise: \(\text{In}(S) = \text{Out}(P) \setminus \text{Kill}(P) \)
 - \(\text{Out} (\text{Entry}) = \{ \} \)

For Reaching Definitions Example

```plaintext
parameter a;
parameter b;
x = a*b;
y = a*b;
while (y > a+b) {
a = a+1;
x = a+b;
}
```

```
defs(x) =
defs(y) =
defs(a) =
defs(b) =
```

Analysis Direction
- **Forwards analysis**:
 - Start with Entry, compute towards Exit
- **Backwards analysis**:
 - Start with Exit, compute towards Entry
 - \(\text{In}(S) = \text{Out}(S) \setminus (\text{In}(S) \setminus \text{Kill}(S)) \)
 - \(\text{Out}(S) = \text{Out}(S) \setminus \text{Kill}(S) \)
- **Backwards problems**:
 - Live variables: which variables might be read before overwritten or discarded
Next Time

- More data flow analysis