
ZPL Programming Guide

i

A Programmers Guide
to ZPL

Lawrence Snyder
Department of Computer Science and Engineering

University of Washington
Seattle WA 98195

Version 6.3
January 6, 1999

© 1994, 1995, 1996, 1997, 1998 Lawrence Snyder. All rights reserved.

ZPL Programming Guide

ii

ZPL Home Page

Check the ZPL home page
http://www.cs.washington.edu/research/zpl/

for access to a compiler, libraries and
complete information about ZPL

ZPL Programming Guide

iii

Preface

This guide seeks to be a complete introduction to the ZPL programming
language and the programming style that it introduces. The presentation
assumes the reader is experienced with some imperative programming
language such as C, Fortran, Pascal, Ada or the like. Though precise and in
most instances thorough, the guide does not attempt to be a reference manual
for ZPL. Rather, it illustrates typical ZPL usage and explains in an intuitive
way how the constructs work. Emphasis is placed on teaching the reader to be
a ZPL programmer. Scientific computations are used as examples
throughout.

ZPL Programming Guide

i v

Acknowledgments

ZPL is the product of many people's ideas and hard work. It is a pleasure to
thank Calvin Lin with whom the initial structure of the language was
designed. Calvin has led a committed and enthusiastic team of
implementors of the prototype ZPL system: Brad Chamberlain, Sung-Eun
Choi, E Chris Lewis, Jason Secosky and Derrick Weathersby, with
contributions at the early stages from Ruth Anderson, George Forman and
Kurt Partridge. These dedicated computer scientists have devoted their
minds and hearts to the realization of ZPL's goals. It is a pleasure to
acknowledge their creativity: they have given life to ZPL. Others have offered
thoughtful input and comment on the language, including A. J. Bernheim,
Jan Cuny, Marios Dikaiakos, John G. Lewis, Ton Ngo, and Peter Van Vleet.

This document has undergone numerous revisions, and many people have
contributed suggestions for its improvement. Thanks are due to George
Turkiyahh for his input on the N-body computation, Sung-Eun Choi for her
comments on median finding and her contributions with Melanie Fulgham
to random numbers, Victor Moore for suggesting vector quantization, Martin
Tompa for assisting with global alignment, and Brad Chamberlain for his
input on the presentation of advanced topics. E Lewis and Sung-Eun Choi
pointed out numerous improvements to the programs and text.

The ZPL research has been supported in part by Office of Naval Research
grant N00014-89-J-1368, the Defense Advanced Research Projects Agency
under grants N00014-92-J-1824 and E30602-97-1-0152, and the National Science
Foundation grant CCR 97-10284. Assistance with computer equipment has
been received from the National Science Foundation grant CDA-9123308 and
Digital Equipment Corporation.

ZPL Programming Guide

v

Dedicated to the memory of
A. Nico Habermann

and the many delightful hours spent
discussing programming language design

and compiler construction.

ZPL Programming Guide

v i

Contents

Preface... iii

Acknowledgments... i v

Contents... v i

Chapter 1
Introduction.. 1

What is ZPL ?.. 1
Preliminary ZPL Concepts ... 3
A Quick Tour of the Jacobi Program.. 5
Learning ZPL from this Guide.. 8
Acquiring ZPL Programming Technique.. 9

Chapter 2
Standard Constructs .. 12

Data Types.. 12
Operators.. 13
ANSI C Object Code... 15
Identifiers... 15
Assignment... 16
Control-flow Statements.. 16

Chapter 3
Basic ZPL Array Concepts... 19

Regions... 19
Region Declarations .. 21
Array Declarations... 21
Region Specifiers.. 22

Directions... 24
Direction Declarations .. 24
Using Directions with "of" .. 25
Using Directions with "@" .. 26
Comparison of "of" vs "@" ... 28
Borders ... 28
Array and Cartesian Coordinates for Directions........................... 29

Promotion ... 30
Index1, Index2, 31
Reduce and Scan .. 34

Chapter 4
Program Structure and Examples... 37

ZPL Programming Guide

vii

ZPL Programs.. 37
Basic I/O... 39

Text I/O .. 39
Binary I/O.. 41

Example Computations.. 42
Sample Statistics... 42
Correlation Coefficient ... 43
Histogram.. 45
Uniform Convolution.. 48

Shift-and-Add Solution.. 48
Scan Solution.. 49

Counting Connected Components .. 51

Chapter 5
Generalizing ZPL ... 55

Additional Region Specifications... 55
Degenerate Ranges... 55
@ Compositions... 56
"At" in Region Specifiers... 56
"Of" Compositions .. 56
"In" Regions.. 57
Combination Specification .. 57

Dynamic Regions... 58
Simplified Region Specification... 60

Inheritance .. 60
Ditto .. 60

Indexed Arrays.. 61
Type Declarations... 63
Flooding... 65
Reduction/Scan Revisited... 67
Region Conformance.. 69
Procedures ... 70

Procedure Declarations... 70
Procedure Prototypes... 73
Procedure Call... 74
Promotion ... 74
Recursion... 75

Shattered Control-flow... 75
Masks.. 77

Chapter 6
Programming Techniques ... 80

Matrix Multiplication ... 80
Sparse Matrix Product... 87
Ranking.. 90
Histogramming, Revisited .. 91

ZPL Programming Guide

viii

Vector Quantization Data Compression... 93
Odd/Even Transposition Sort... 95

Chapter 7
Advanced ZPL Concepts... 98

Strided Regions and Arrays... 98
Multidirections... 102
Multiregions and Arrays.. 104
Permutations, Gather and Scatter .. 107

Chapter 8
WYSIWYG Parallel Execution.. 111

Parallel Machine Model ... 111
Parallel Execution of ZPL ... 113

Memory Allocation... 113
Processor Code.. 114

Estimating Program Performance.. 115
"@" References... 116
Strided Regions .. 116
Reductions/Scans .. 117
Flooding... 117
Scalar computations.. 118
Permutations .. 118
I/O ... 119
Summary on Estimation.. 119

Closing Remarks on Performance ... 119

Chapter 9
Computational Techniques... 121

Sequential Computation.. 121
Inconsequential Code Fragments... 122
Sequential Routines for Promotion .. 124

N-Body Computations.. 128
Single Particle Pushing... 130
Batched Pushing Solution ... 132

Thinking Globally -- Median Finding... 134
Random Number Generation .. 136

Chapter 10
ZPL and Future Parallel Programming... 140

ZPL Reference... 141

Appendix
Fundamental Constants, Standard Functions and Timers 142

Fundamental Constants... 142

ZPL Programming Guide

ix

Scientific Functions... 142
Timers .. 143

Index ... 145

ZPL Programming Guide

x

ZPL Programming Guide

1

-- Chapter 1 --

Introduction

ZPL is a new programming language that is especially effective for scientific
and engineering computations. It is intended to replace languages such as
Fortran and C for technical computing. The programming advantages of ZPL
will become evident as its features are explained in subsequent chapters. In
this chapter ZPL is illustrated to give the curious a quick overview, and to
prepare the student for the more thorough presentation to follow.

What is ZPL ?

ZPL* is a programming language suitable for scientific and engineering
computations. It can be described in other ways as well:

• ZPL is an array language. Expressions such as X + Y have been generalized
to apply to whole arrays as well as simple scalars, depending on how X and
Y are declared. The language has standard programming constructs, such as
if statements and procedures. These concepts have their normal meaning,
though there is often an array generalization. Expressions involving arrays
are convenient and natural to write, especially for scientists and engineers.
Not only does an array language save the programmer from writing many
tedious loops and specifying error prone index calculations, it enables the
compiler to identify parallelism that will speed the computation.

• ZPL is a machine independent programming language, meaning that ZPL
programs run well on both sequential and parallel computers.
Programmers need not concern themselves with machine specifics.
Machine independence is an essential requirement for programs that will
be shared among many researchers with different computers. It is probably
most important for programs used over a long period of time, since they
are simply recompiled when an old machine is replaced by a new one.
Details of ZPL's most important machine independence feature, the what-
you-see-is-what-you-get (WYSIWYG) performance capability, are presented
in Chapter 8.

• ZPL is an implicitly parallel programming language. That is, although ZPL
was designed to simplify programming parallel computers, programmers

* ZPL is mnemonic for the phrase "Z-level Programming Language," a reference to a component
of the programming model that it implements [Alverson et al., 98].

ZPL Programming Guide

2

do not specify how the computation is performed concurrently. Nor do
they insert interprocessor communication. The ZPL compiler is
responsible for producing parallel object code from the source program, and
for taking care of all details necessary to exploit the target parallel computer.
There are times when the programmer will want to consider how the
computation is performed in parallel, e. g. when deciding among
alternative ways of implementing a computation. But generally,
programmers are only concerned with expressing the computation to
produce the right result.

Perhaps the most important property of ZPL for scientific programmers is that
it can be compiled to run fast on parallel computers. For example, the Jacobi
iteration, which will be used as an example throughout the remainder of this
chapter, has been reported to have the performance approximating C, as
illustrated in Figure 1.1 [Lin & Snyder 94]. In the experiment the program
(illustrated in Figure 1.2) was compiled, and then run on the Kendall Square
Research KSR-2, a "shared memory" parallel computer, and the Intel
Corporation Paragon, a distributed memory or "message passing" parallel
computer. The two machines are representative of the principal classes of
commercially available parallel computers. The program was executed until
convergence (929 iterations). Its performance was compared with a C
program handcoded for each machine.

4

8

12

16

4 8 12 16

sp
ee

du
p

processors

Jacobi Speedup on the Intel Paragon

linear
hand coded

zpl

4

8

12

16

4 8 12 16
processors

Jacobi Speedup on the KSR-2

linear
zpl

hand coded

Figure 1.1. Speedup with respect to the handcoded C program
for the Jacobi program executed on the Intel Paragon and the
KSR-2.

ZPL Programming Guide

3

The Jacobi computation is a simple program, and good performance is to be
expected. Comparable results for other, more substantial computations have
also been reported [Lin et al. 95, Ngo et al. 97].

Preliminary ZPL Concepts

Most ZPL concepts are intuitive and easy to understand by scientists and
engineers familiar with other programming languages, e.g. Fortran or C. To
introduce these concepts, consider the Jacobi iteration as an example that
illustrates representative usage.

Jacobi: Given an array A, iteratively replace its elements with the average
of their four nearest neighbors, until the largest change between two
consecutive iterations is less than delta .

For the example, the array A will be an n × n two dimensional array initialized
to zero, except for the southern boundary, which is set to the constant 1.0 in

 1 program Jacobi;
 2 /* Jacobi Iteration
 3 Written by L. Snyder, May 1994 */
 4 config var n : integer = 512; -- Declarations
 5 delta : float = 0.000001;
 6
 7 region R = [1..n, 1..n];
 8 var A, Temp: [R] float;
 9 err : float;
10
11 direction north = [-1, 0];
12 east = [0, 1];
13 west = [0,-1];
14 south = [1, 0];
15
16 procedure Jacobi();
17 begin
18 [R] A := 0.0; -- Initialization
19 [north of R] A := 0.0;
20 [east of R] A := 0.0;
21 [west of R] A := 0.0;
22 [south of R] A := 1.0;
23
24 [R] repeat -- Body
25 Temp := (A@north + A@east
26 + A@west + A@south)/4.0;
27 err := max<< abs(A - Temp);
28 A := Temp;
29 until err < delta;
30 end;

Figure 1.2. ZPL program for the Jacobi computation.

ZPL Programming Guide

4

each position. The tolerance delta will be 0.000001 . The ZPL Jacobi
program is shown in Figure 1.2.

Several features of the language are evident, even without any explanation of
how the program works.

Like most languages, ZPL programs begin with declaration statements. All
variables in ZPL programs must be declared. The computational part of the
program has been further subdivided by the programmer into "initialization"
and "body" sections. Though this division of activities is not required by the
language, it is generally good practice to concentrate initialization into a block
at the start of the program.

There are punctuation characteristics of ZPL that are also evident from the
Jacobi program.

The assignment symbol in ZPL is := with no space between the two
characters. Assignment has the same meaning as in other programming
languages that simply use an equal sign, e.g. Fortran and C. Thus, the value
computed on the right-hand side becomes the value of the name indicated on
the left-hand side. The equal sign is also used in ZPL, but it serves two other
roles. First, the = symbol is used to give values to names in cases where the
values cannot be changed in the program. The declaration section illustrates
multiple uses of = in this form (Lines 7, 11-14). Second, the equal sign is used
when testing for equality, as might be required in an if -statement. As a
simple intuitive rule, := is used for changing values of variables, while = is
used in cases where equality is the intended meaning.

Unlike Fortran, but like C, every statement in ZPL is terminated with a
semicolon. This is true even if it appears that some other word or
punctuation character might also serve to indicate statement termination.
Since the end-of-line is not a statement terminator, long statements can easily
be written across multiple lines without any continuation symbols, as in the
two-line assignment to Temp (Lines 25-26).

The one role reserved for end-of-line in ZPL is as a comment terminator.
ZPL has two kinds of comments:

Any text between -- and the end of the line is a comment.
Any text between /* and the first following */ is a comment.

Thus, the -- symbol is typically used for short comments (Line 18), while a
/* */ pair is used for multiline commentary (Lines 2-3).

ZPL Programming Guide

5

A Quick Tour of the Jacobi Program

Though all of the programming constructs will be explained later, a brief
"walk through" of the Jacobi program of Figure 1.2 can serve as an
introduction to ZPL and its approach to computation.

A fundamental concept in ZPL is the notion of a region. A region is simply a
set of indices. For example, (Line 7),

region R = [1..n, 1..n];

specifies the standard indices of an n × n array, i.e. the set of ordered pairs
{(1,1), (1,2), . . ., (n,n)} . Regions can be used to declare arrays of a
size corresponding to the index set. Thus, (Line 8),

var A, Temp: [R] float;

declares two n × n array variables, A and Temp, composed of floating point
numbers with indices given by region R. The final variable declaration, (Line
9),

err: float;

does not mention a region, and so err is declared to be a simple scalar
floating point variable.

The program next declares a set of four directions. Directions are used to
transform regions. They are vectors with as many elements as the region has
dimensions. The four 2-dimensional direction declarations, (Lines 11-14),

direction north = [-1, 0];
east = [0, 1];
west = [0,-1];
south = [1, 0];

point unit distance in the four cardinal compass directions. For example,
north of any index position will be found by subtracting one from the first
element of the index pair. Examples of transforming regions with directions
include expressions with "of" and "@", illustrated momentarily.

Regions also allow ZPL computations to be extended to operate on entire
arrays without explicit looping. By prefixing a statement with a region
specifier, which is simply the region name in brackets, the operations of the
statement are applied to all elements in the array. Thus, (Line 18),

[R] A := 0.0;

ZPL Programming Guide

6

assigns 0.0 to all n2 elements of array A.

Since many scientific problems have boundary conditions, it is often
necessary to provide borders to array data structures. In Fortran or C this is
accomplished by increasing the size of an array from, say, n × n to n+2 ×
n+2 , but doing so misaligns the indices. In ZPL the region specifier can be
used to augment arrays with borders. Extending the array A with borders and
initializing their values is the role of the next four lines, (Lines 19-22),

[north of R] A := 0.0;
[east of R] A := 0.0;
[west of R] A := 0.0;
[south of R] A := 1.0;

The region specifier [d of R] is an expression that defines a region adjacent
to R in the d direction, i.e. above R for the case where d=north . The statement
is then applied to the elements of the region. Thus, [north of R] defines
the index set which is a 0th row for A. Since A does not have these indices,
the ZPL compiler extends A to have a 0th row. The assignment A := 0.0
initializes these elements with 0.0 . The successive effects of the four
initialization statements are illustrated in Figure 1.3. (The programmer
could include the "missing" corner elements simply by using a direction
pointing towards the corner, e.g. [northeast of R] .)

A [north of R] A:=0; [east of R] A:=0;

[west of R] A:=0; [south of R] A:=1;

0's

1's

Figure 1.3. Schematic of the creation and initialization of borders of A.

With the declarations and initialization completed, programming the
computation is simple. The repeat -loop, which iterates until the condition
becomes true, has three statements:

• Compute a new approximation by averaging all elements (Lines 25-26).

ZPL Programming Guide

7

• Determine the largest amount of change between this and the new
iteration (Line 27).

• Update A with the new iteration (Line 28).

Since the repeat statement is prefixed by the [R] region specifier, all
statements in the loop are executed in the context of the R region, i.e. over the
indices of R. The statements operate as follows.

The averaging illustrates how explicit array indexing is avoided in ZPL by
referring to adjacent array elements using the @ operator with a direction.
The statement, (Lines 25-26),

Temp := (A@north + A@east + A@west + A@south) / 4.0;

finds for each element in A the average of its four nearest neighbors and
assigns the result to Temp. An expression A@d, executed in the context of a
region R, results in an array of the same size and shape as R offset in the
direction d, and composed of elements of A. As illustrated in Figure 1.4, A@d
can be thought of as adding d to each index, or equivalently in this case,
shifting A.

A A@north A@east A@west A@south

•
•

•
•

Figure 1.4. Referencing A modified by @ in the context of a region specifier
covering all of A; the dots shown in A correspond

to element (1,1) in the shifted arrays.

Since the region specifier on the repeat -loop provides the context for all
statements in the loop body, the operations of this statement are applied to all
elements of the arrays. The four arrays are combined elementwise, yielding
the effect of computing for element (i,j) the sum of its four nearest neighbors.
This can be seen by the following identities:

(i,j)@north ≡ (i, j) + north ≡ (i, j) + (-1, 0) ≡ (i-1, j)
(i,j)@east ≡ (i, j) + east ≡ (i, j) + (0, 1) ≡ (i, j+1)
(i,j)@west ≡ (i, j) + west ≡ (i, j) + (0,-1) ≡ (i, j-1)
(i,j)@south ≡ (i, j) + south ≡ (i, j) + (1, 0) ≡ (i+1, j)

Each of the n2 sums is then divided by 4.0 and the result is stored into Temp.

ZPL Programming Guide

8

To compute the largest change of any element between the current and the
next iteration, (Line 27), more elementwise array operations are performed.
The underlined subexpression,

err := max<< abs(A - Temp) ;

causes the elements of Temp to be subtracted from the corresponding elements
of A, and then the (floating point) absolute value of each element is found
yielding an intermediate array with values abs(A 1,1-Temp 1,1), abs(A 1,2-
Temp1,2),..., abs(A n,n-Tempn,n) . This computes the magnitude of change
of all the elements. To find the largest among these, a maximum reduction
(max<<) is performed. This operation "reduces" the entire array to its largest
element. The maximum is then assigned to err , a scalar variable, that
controls the loop.

The final statement of the loop, (Line 28),

A := Temp;

installs Temp as the updated value of A.

The termination test for the iteration, err < delta , is simply the
comparison of two scalar values, since both are declared as scalars. The delta
variable is a configuration parameter, meaning that it is given a default value
in the declaration at the top of the program. Optionally, the value can be
changed on the command line when the program is executed. Thus, both the
size of the problem (n) and the tolerance, can be changed on successive runs
without recompiling the program.

Learning ZPL from this Guide

It takes some time to learn any programming language. But programmers
report that ZPL is very intuitive and has few idiosyncrasies, so it is regarded as
easy to learn. This guide has been organized to aid in acquiring basic
proficiency quickly:

• Chapter 2 describes those ZPL features found in other programming
languages; most readers with programming experience should be able to
read this chapter quickly.

• Chapter 3 explains the most fundamental concepts new to ZPL; nearly all of
them have been introduced in this chapter.

• Chapter 4 illustrates these concepts with small programming examples.

At the completion of Chapter 4, it should be possible to write and run simple
ZPL programs. Although the computations may be trivial, it is advantageous

ZPL Programming Guide

9

to run a program just to become familiar with the mechanics of program
compilation and execution.

• Chapter 5 introduces more powerful concepts, including global operations.
• Chapter 6 presents another batch of examples illustrating the new concepts.
• Chapter 7 completes the language introduction by presenting advanced

concepts.

At the completion of Chapter 5 more interesting programs can be written and
run, and after Chapter 7, essentially the full power of the language is
available.

• Chapter 8 explains information programmers will want to know if they
plan to run ZPL programs on parallel computers.

• Chapter 9 describes programming techniques with further examples.

Though these last chapters are optional in terms of getting started with the
language, they may be the most important for programmers who want to
produce high quality machine independent programs.

Acquiring ZPL Programming Technique

Like all programming languages, there is a certain technique to writing in
ZPL. "Technique" refers to the basic programming idioms, the "standard"
ways to encode data and operate on it, tricks and other experiential knowledge
programmers use when they program. For example, Fortran programmers
"know" to traverse an array down the columns, while C programmers
"know" to traverse it across the rows, because the arrays are stored in that
order, respectively, and so locality, and hence performance, are enhanced.
Though this knowledge is part of the programming technique for these
languages, it is not ZPL technique, since traversing an array is rare. In ZPL
manipulating whole arrays is basic, and the compiler performs the traversing.
This motivates developing a new programming technique.

When first writing ZPL code, a common pitfall is to rely too literally on
known techniques. Programmers learning ZPL often think of computations
in terms of the primitive scalar operations required in other programming
languages, rather than the whole array manipulations those primitive
operations implement. Consequently, when thinking about how to write a
ZPL program, a common mistake of first-time programmers is to attempt to
express these primitive scalar operations directly in ZPL. Though it is
possible, it's the compiler's task to produce the primitive scalar code. The
programmer's task is to express the high level array manipulations that
define the computation.

ZPL Programming Guide

10

For example, many of us know the dense matrix-matrix multiplication
computation as a triply nested loop that is frequently shown in Fortran or C
programming manuals,

FORTRAN MM C MM

DO 10 J = 1,N for (i=0;i<n;i++){
 DO 10 I = 1,N for (j=0;j<n;j++){
 DO 10 K = 1,N for (k=0;k<n;k++){

 10 C(I,J)=C(I,J)+A(I,K)*B(K,J) c[i][j]=c[i][j]
 +a[i][k]*b[k][j];

 }
 }
}

This code describes one way to compute matrix product using element-at-a-
time scalar operations, but it is not the definition of the computation taught
in linear algebra class. There, students are told that Cij is the dot-product of
row i of A and column j of B. This definition, if interpreted literally, does not
lead to a very efficient computation, and so may be considered to be too
abstract. The ZPL solution is intermediate, less abstract than linear algebra,
but more abstract than an element-at-a-time approach.

As explained in Chapter 6, the "obvious" ZPL program for matrix
multiplication is

[1..n,1..n] for k := 1 to n do
 C += (>>[,k] A) * (>>[k,] B);

 end;

which replicates the k th column of A and the k th row of B to compute the k th

term of all of the dot-products for C at once. (The necessary concepts are
explained in Chapter 5.) This approach may not be the first matrix
multiplication solution to come to mind, but as ZPL technique is acquired, it
is more likely to become natural. The statement has all the characteristics of
good ZPL technique: It computes over arrays rather than scalars, in this case
rows and columns; it uses the powerful flood operator (>>) to be space
efficient; it is very efficient on parallel computers [van de Geijn & Watts 97];
and at three lines is about the shortest solution possible.

The conclusion is that programming in an array language requires a different
technique than programming in a scalar language. This book gives
numerous examples and illustrations to help the reader acquire good ZPL
technique. Perhaps, at the start an array solution will take more thinking, but
the thinking will involve high-level concepts, not the nitty-gritty details of
subscript expressions. Once one acquires the technique, programming in
ZPL is natural, and the solutions are likely to be shorter, easier to write,
simpler to debug and elegant. An array language is just more convenient.

ZPL Programming Guide

11

References

G. A. Alverson, W. G. Griswold, C. Lin and L. Snyder, 1998, "Abstractions for
Portable, Scalable Parallel Programming," IEEE Transactions on Parallel
and Distributed Systems, Vol 9, No. 1 (to appear)

Calvin Lin & Lawrence Snyder, 1994, "SIMPLE Performance Results in ZPL,"
In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau and D. Padua (Ed.s),
Languages and Compilers for Parallel Computing, Springer-Verlag, pp.
361-375.

C. Lin, L. Snyder, R. E. Anderson, B. Chamberlain, S. Choi, G. H. Forman, E. C.
Lewis, W. D. Weathersby, 1995, "ZPL vs HPF: A Comparison of
Performance and Programming Style," Technical Report 95-11-05,
University of Washington.

Ton A. Ngo, Lawrence Snyder, Bradford Chamberlain, 1997, "Portable
performance of data parallel languages," Proceedings of SC97: High
Performance Networking and Computing.

Robert van de Geijn and JerrellWatts, 1997, "SUMMA: Scalable universal
matrix multiplication algorithm," Concurrency Practice and
Experience, 9(4):255-274

ZPL Programming Guide

12

-- Chapter 2 --

Standard Constructs

ZPL has many features found in other programming languages. In this
chapter those ZPL facilities that are similar to structures in other languages
are briefly described, since they are likely to be familiar to experienced
programmers.

Data Types

Variables in ZPL can be declared to be any of the following primitive data
types. The data sizes are machine dependent, though typical sizes are given.

 Value Types
Signed Unsigned

boolean logical data, stored as a byte
char printable character, byte size

sbyte ubyte byte data
shortint ushortint half size integer
integer uinteger standard size integer (32 bits)
longint ulongint double size integer
float single precision floating point
double double precision f.p. (64 bits)
quad quadruple precision* f.p. (128 bits)
complex single precision complex number
dcomplex double precision complex number
qcomplex quadruple precision* complex number

The unsigned types corresponding to signed types have one more bit of
precision, but no negative representation. The complex types are pairs of
floating point numbers of the indicated precision representing the real and
imaginary parts of a complex number. Two other types, file and string , are
provided, but have applications limited chiefly to I/O. (Chapter 4 treats basic
I/O.)

Derived Types
array d-dimensional array of elements of like type
indexed array d-dimensional array of elements of like type
record user defined type composed of fields

* Not available on some computers, where it defaults to double .

ZPL Programming Guide

13

"Arrays" are called "parallel arrays" when it is necessary to distinguish them
from "indexed arrays." The semantic distinction is explained in Chapter 5.

Region Types
region index set, defining iteration and value spaces
direction tuple of signed integers for defining array offsets

Variations on the region types allow for both multiregions and
multidirections. Unlike other types, the region types are "not first class,"
meaning that they cannot be assigned or passed to or from a procedure.

Operators

ZPL has a standard set of operators that partition into the usual groups.

Arithmetic Operators
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
+ plus (unary), i.e. no-op
- negation (unary)
% modulus, i.e. a%b = a mod b

Relational Operators
= equality
!= inequality
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Logical Operators
! logical negation (unary)
& logical and
| logical or

Additionally, bitwise operations on integers and shifting the bits of an integer
are supported through the use of value returning built-in functions,

Bitwise Built-in Functions
bnot(a) bitwise negation of the bits of integer a
band(a,b) bitwise and of corresponding bits of integers a, b
bor(a,b) bitwise or of corresponding bits of integers a, b
bxor(a,b) bitwise exclusive or of corresponding bits of

ZPL Programming Guide

14

integers a, b
bsl(s,a) shift bits of integer s left a places, filling with 0's
bsr(s,a) shift bits of integer s right a places, filling with 0's

For the purposes of the logical operators, any zero operand value is taken to
be logical false, and any nonzero operand value is taken to be logical true.
Further, in the results of logical expressions, false and true are represented as
0 and 1, and have type boolean.

Exponentiation is compiled in a special way. When the exponent is a small
integer constant, i.e. 2, 3 or 4, the ZPL compiler produces efficient customized
code based on multiplication. In all other cases, i.e. larger integer constants,
floats, etc., the built-in function pow() is invoked. When the exponent is 0.5,
it is more efficient to use the built-in function sqrt() .
In general the operators have the precedence given in Table 2.1.

+ - ! (unary) Highest precedence, binds most tightly
<< || >> ## (reduce, scan, flood, permute)
^
* / %
+ - (binary)
< > <= >= = !=
& | Lowest precedence, weakest binding

Table 2.1. Precedence of ZPL operators. Notice that reduce, etc.
bind more tightly than all binary arithmetic operators.

When a sequence of binary operators of equal precedence is used without
parentheses, left associativity is assumed, i.e.

a - b - c - d ≡ ((a - b) - c) - d

Operators can generally be used with operands of any type according to the
following convention: Given the ordering on base types,

boolean Lowest
sbyte
ubyte, char
shortint
ushortint
integer
uinteger
longint
ulongint
float complex
double dcomplex
quad qcomplex Highest

ZPL Programming Guide

15

any expression combining two base types produces a result of the higher type,
which will be a complex type if either operand is complex.

Conversion to a specific type can be achieved by a function of the form

to_ type()

where the nonitalic characters must be given literally, and type is chosen
from the numeric types. Thus, to_float(i) converts variable i to its
floating point equivalent. All conversions follow the rules of C, so
conversion of numbers from higher to lower types can have unpredictable
results.

ANSI C Object Code

The ZPL compiler converts ZPL source text to ANSI C object code. The
resulting C program is then compiled for the target computer using the
native C compiler for that computer together with machine specific libraries.
These two steps are combined in the invocation of zc under UNIX.
Generally, the base data types and operators presented in the last two sections
will have their semantics determined by the characteristics of C and the
implementing hardware.

Consequences of this process include:

• The size of certain base data types (shortint , ushortint , etc.) is
inherited from the native C compiler; quad is available only if supported
by the target C compiler.

• All properties of floating point arithmetic are inherited from the native
C and hardware implementation, and may not conform to the IEEE
standard.

• The standard scientific functions are derived from the C library math.h .
• Scalar C procedures can be used in a ZPL program if prototyped in ZPL

(see Chapter 5) and incorporated into the compilation.

Consult the installation notes for your version of the compiler for further
information.

Identifiers

Identifiers are used to name variables and other constituents of ZPL
programs. In general, an identifier is any combination of lower and
uppercase letters including underscore (_) and numerals that does not start
with a numeral. ZPL is case sensitive, meaning that

aaa, aaA, aAa, aAA, Aaa, AaA, AAa, AAA

ZPL Programming Guide

16

are all distinct identifiers. The keywords of the language, e.g. if , for ,
integer , etc. are prohibited as identifiers.

As a convention ZPL programmers capitalize the first letter of array variables
and regions as an aid to reading the program. Since most features of the
language apply equally to arrays as well as to simple scalar values, signifying
the arrays with capitals calls attention to them. Since they have characteristics
in the language that scalars do not possess -- they are a source of parallelism,
require regions specifiers, etc. -- it is helpful to distinguish them at a glance
from scalars. This book follows the capitals-for-arrays policy.

Assignment

As described in the introduction, the basic assignment operator is :=, but ZPL
has extended assignment operators in the style of C.

Assignments
:= assignment
+= plus-equal a += b ≡ a:= a+b

-= minus-equal a -= b ≡ a:= a-b

*= times-equal a *= b ≡ a:= a*b

/= divide-equal a /= b ≡ a:= a/b

%= mod-equal a %= b ≡ a:= a%b

&= and-equal a &= b ≡ a:= a&b

|= or-equal a |= b ≡ a:= a|b

Notice that all assignments are statements, i.e. ZPL has no expression
assignments.

Control-flow Statements

The control-flow of a language describes the order of execution of the
program's statements. Though ZPL is efficiently executed in parallel, it
derives its concurrency by applying operations to arrays, not by the
programmer specifying statement sequences to execute simultaneously.
Thus, except for "shattered control flow" discussed in Chapter 5, ZPL
statements are executed one-at-a-time.

ZPL uses familiar control structures found in sequential languages.

ZPL Programming Guide

17

Control-flow Statements
if lexpression then statements

 {else statements} end;

if lexpression then statements
 {{elsif lexpression then statements}}

 {else statements} end;

for var := low to high {by step} do statements end;

for var := high downto low {by step} do statements end;

while lexpression do statements end;

repeat statements until lexpression;

return { expression}; -- from a procedure
exit; -- from the innermost loop
continue; -- to the next loop iteration
halt; -- terminate execution
begin statements end; -- compound statement

The non-italicized text must be given literally. Items in braces {} are optional;
items in double braces {{}} may be repeated zero or more times. Italicized
items must be replaced by program text of the proper type: var is a variable;
lexpression is a logical expression; low, high and step are numerical
expressions; statements is any statement sequence where each statement is
terminated by a semicolon.

The control-flow statements, though generally self-evident, exhibit some
characteristics worth noticing. The terminator for statements list is:

Statement list following Terminated by
then else, elsif or end;
else end;
do end;
repeat until
begin end;

The for -loop iteration variable is increased by step or 1 (if step is not given)
when the separator between low and high is to ; it is decreased by step or 1
when the separator is downto . Thus, there is no need for negative step
values. There is no goto statement in ZPL. Rather, it is possible to
selectively execute statements (if), to iterate (for, while, repeat), to
preempt iteration (exit), to skip to the next loop iteration (continue) and to
terminate execution (halt). Statements can be grouped into a compound
statement using a begin end pair. These control structures are sufficient to
realize any sequence of statement executions, and are thought to lead to more

ZPL Programming Guide

18

easily understood and debugged programs compared with programs that rely
heavily on goto 's for their control flow.

The principal difference between using else if and using elsif can be seen
by noticing the number of end 's required to terminate a cascade of tests:

if ... if ...
 then ... then ...
 else if ... elsif ...

 then ... then ...
 else if ... elsif ...

 then ... then ...
 else ... else ...

 end; end;
 end;

end;

That is, each use of if starts a new (nested) statement that must eventually be
terminated by an end , while elsif "continues" the if in which it appears.

Finally, since leading blanks and tabs are ignored, indenting is available to
improve the readability of a program. Indenting, commenting and inclusion
of white-space is recommended, as it is thought to promote readability.

ZPL Programming Guide

19

-- Chapter 3 --

ZPL Array Concepts

In this chapter basic array constructs of ZPL are explained. Each topic is
treated in a separate section. The goal is to provide a sufficiently complete
understanding of the basic concepts to write simple ZPL programs. (See
Chapter 4.) More advanced concepts are treated in subsequent chapters. The
topics are:

Regions
Region Declarations
Array Declarations
Region Specifiers

Directions
Direction Declarations
Using Directions with "of"
Using Directions with "@"
Comparison of "of" vs "@"
Borders
Array and Cartesian Coordinates for Directions

Promotion
Index1, Index2, . . .
Reduce and Scan

Familiarity with the overall concepts of ZPL, as introduced in the Jacobi
program walk-through of Chapter 1, is assumed.

Regions

ZPL programmers write few loops in their programs and perform a
minimum of index manipulation. This makes ZPL programs shorter,
presumably easier to write and read, and with a lowered chance of notational
errors. More importantly, the compiler is able to produce highly optimized
code that runs well on sequential as well as parallel computers. The
"region" concept is critical to making these advantages possible.

A region is a set of indices of a fixed rank. That is, a rank r region is the
Cartesian product of r dense integer sequences, the lower and upper limits of
which are programmer specified. The lower and upper limits are separated by

ZPL Programming Guide

20

"double dots", these pairs are separated by commas, and the whole
specification is enclosed in brackets. Thus, an example 2×2 region is

[1..2, 1..2] = {(1,1), (1,2), (2,1), (2,2) }

where the pairs in parentheses are the rank 2 indices of the region. Rank r
indices have r positions in the index tuples, called dimensions.

The limits are programmer-specified, so they can be 0-origin, as in the 2×2
region,

[0..1, 0..1] = {(0,0), (0,1), (1,0), (1,1) }

or they can start and end at any other integral value, including negative
values. Thus,

[-1..1,-1..1,-1..1] = {(-1,-1,-1), (-1,-1, 0), (-1,-1, 1),
 (-1, 0,-1), (-1, 0, 0), (-1, 0, 1),
 (-1, 1,-1), (-1, 1, 0), (-1, 1, 1),
 (0,-1,-1), (0,-1, 0), (0,-1, 1),
 (0, 0,-1), (0, 0, 0), (0, 0, 1),
 (0, 1,-1), (0, 1, 0), (0, 1, 1),
 (1,-1,-1), (1,-1, 0), (1,-1, 1),
 (1, 0,-1), (1, 0, 0), (1, 0, 1),
 (1, 1,-1), (1, 1, 0), (1, 1, 1)}

is a region of the 27 lattice points adjacent to the origin in three space,
including the origin, and

[-10..10] = {(-10), (-9), (-8), (-7), (-6),
 (-5), (-4), (-3), (-2), (-1),
 (0), (1), (2), (3), (4),
 (5), (6), (7), (8), (9), (10)}

is a one dimensional array with indices spanning the interval from -10 to 10 .

The general form of a region specification in ZPL is

[l1..u1, l2..u2, . . ., lr..ur]

wherel1, u1, l2, u2,..., lr, ur are required to be integers, possibly signed, given as
explicit constants, declared constants or configuration variables (see below),
such that li ≤ ui. The terminology is:

li is called the lower limit of dimension i.
ui is called the upper limit of dimension i.
r is called the rank of the region.
(ui - li+1) is called the size of the ith dimension.

ZPL Programming Guide

21

Notice the ordering of the dimensions is from left to right, i.e. l1..u1 is the
index range of the first dimension.

The region is the Cartesian product of the integer intervals

[l1..u1, l2..u2, . . ., lr..ur]
= { l1, l1+1, ...,u1 } × { l2, l2+1, ...,u2 } × . . . × { lr, lr+1, ...,ur }

It must be emphasized that a region is simply an index set. It is not an array.

Region Declarations
Since scientific and engineering computations often perform operations
repeatedly over a set of indices, it is convenient to give regions names to
simplify their frequent use. The region declaration assigns a name to a
region. For example,

region W = [1..10, 1..n]; -- Declaration of a 10 x n region

defines a two dimensional region W with indices ranging from 1 through 10 in
the first dimension and from 1 through n in the second dimension.

The general form of a region declaration is

region RName = [l1..u1, l2..u2, . . ., lr..ur];

where RName is a user selected identifier that names the region. See Table
3.1 This association remains fixed. As with all identifiers, it is thought to be
good style to select meaningful names for regions, though because of their
usage patterns programmers tend to prefer short names. Regions are "not
first class", and so they cannot be assigned, or passed to or returned from
procedures. See also dynamic regions in Chapter 5.

Array Declarations
As noted above regions are simply sets of indices; they are not arrays.
Separate declarations are required to define array variables, with regions
giving the indices. Specifically, arrays are declared like other variables, except
they have a region specified in brackets following the colon. (This is a region
specifier, as explain next.) For example,

var A, B, C : [R] double;

declares three arrays with the same rank and index set, which is given by R.
Though it is typical to declare arrays over regions that have been given
names, it is not necessary. So

var U, V, W : [1..n] ubyte;

ZPL Programming Guide

22

is a legal declaration for three vectors of unsigned bytes, using an explicit
region specification. It is somewhat better style to use named regions to
declare arrays, since presumably the region has a meaning in the problem
solution, e.g. "interior" of problem domain, "odd elements", etc., and
associating the variables with this meaning is generally clarifying. But the

Region Declaration Examples
lower upper
limit, limit, size,

Example rank dim 1 dim 1 dim 1
region V=[-10..10]; 1 -10 10 21
region Board=[1..8,1..8]; 2 1 8 8
region Rubix=[1..4,1..4,1..4]; 3 1 4 4
region Symmetric=[-10..10,-n..n]; 2 -10 10 21

Table 3.1. Examples of region declarations

main advantage to using named regions in array declarations is that the
arrays can have borders "automatically allocated" as described below.

Region Specifiers
Region specifiers are region names or region expressions in square brackets,
e.g. [V] . Though region specifiers are used for declaring arrays as just
explained, their most common use is as prefixes to statements. When
prefixing a statement, a region specifier of rank r asserts that all operations on
rank r arrays in the statement are to be performed for the indices specified by
the region. For example, assuming X, Y and Z are arrays with the same rank
as the region V, the statement

[V] X := Y + Z;

specifies that the elements of Y having indices in V are to be added to the
corresponding elements in Z, i.e. those with the same indices, and the results
of these sums are to be stored in the corresponding elements of X. X, Y and Z
must be declared to have at least the indices of V, though they can have other
indices as well. Any elements of X with indices not in V are unchanged by
the assignment.

For example, the declarations

region V = [1..5];
Vpre = [1..3];

var X, Y, Z : [V] integer;

define two regions and establish X, Y and Z as five element arrays with
indices given by V. Assuming initial values

ZPL Programming Guide

23

Y ≡ 1, 3, 5, 7, 9 Z ≡ 8, 6, 4, 2, 0

then the region specifiers on the statements

[V] X := Y + Z; -- X becomes 9, 9, 9, 9, 9
[Vpre] X := X / 3; -- X becomes 3, 3, 3, 9, 9

produce the indicated values. The second statement modifies only the first
three elements of X and leaves the last two elements unchanged because Vpre
contains the indices, (1) , (2) and (3) , corresponding to the first three values
of X, while its last two indices, (4) and (5) , are not in Vpre .

In general, (parallel) arrays cannot be used in ZPL unless a region specifier
defines the indices to be used for array operations. Arrays of rank r require
an r-dimensional region specifier. However, the region specifier does not
have to appear on the statement to apply to its arrays. Region specifiers are
scoped, which means that the applicable region specifier either prefixes the
statement, or it prefixes an "enclosing" statement. Thus, using the initial
conditions from the previous paragraph, in

[V] begin
...
X := Y + Z; -- X becomes 9, 9, 9, 9, 9

 [Vpre] X := X / 3; -- X becomes 3, 3, 3, 9, 9
X := X - 1; -- X becomes 2, 2, 2, 8, 8
...

 end;

region specifier [V] defines the indices used for all 1 dimensional arrays in all
statements within the begin-end , except for the statement where the Vpre
region specifier appears on the statement and over-rides it. Use of a region
specifier on a statement effectively shields arrays of that statement from any
enclosing region specifiers for that rank. If a rank r array is in the scope of a
rank r region specifier, it is the array's applicable region.

Since arrays of different ranks will frequently be used, it is possible to prefix
statements with multiple region specifiers. If V and W are regions of different
rank, V1 and V2 are arrays with the same rank as region V, and W1 and W2 are
arrays with the same rank as region W, then

[V] [W] if dim = 1
 then V1 := 2*V2; -- Use region V
 else W1 := 2*W2; -- Use region W
end;

has the same meaning as

if dim = 1

ZPL Programming Guide

24

 then [V] V1 := 2*V2;
 else [W] W1 := 2*W2;

end;

assuming that the dim variable is a scalar. That is, the statement in the then -
clause will use the [V] region specifier since in either case -- whether
prefixing the statement or prefixing an enclosing statement -- the
computation involving V1 and V2 is in its scope.

Finally, the region specifiers of statements can take a variety of forms,
including dynamic regions, as described in Chapter 5.

Directions

Directions are vector constants used in ZPL to refer to relative positions.
They are the mechanism for uniformly modifying the indices of a region to
implement transformations such as translation. They are used as operands
for the "at", "in" and "of" operators. Recall that in the Jacobi program four
directions were declared:

direction north = [-1, 0];
east = [0, 1];
west = [0,-1];
south = [1, 0];

These enabled the programmer to refer to the nearest neighbors of A as
A@north , A@east, etc.

Direction Declarations
In general, directions are declared as follows:

direction Dname = [d1, d2, . . ., dr];

where direction is a required keyword, Dname is a programmer selected
identifier, which is the name of the direction, the di are (signed) integer
constants, called offsets, and r is the rank of the direction. Directions of rank
r are only meaningful with arrays or regions of rank r.

In directions the sign of the offset applies in terms of array indices, rather
than Cartesian coordinates. Thus, a negative offset in a dimension refers to
elements with lower index values in that dimension, while a positive offset
refers to elements with higher indices. This allows a direction to be added to
a region to translate the dimension limits in matrix coordinates. For
example,

direction north = [-1, 0];

ZPL Programming Guide

25

refers to the position "above" in relative orientation in a two dimensional
array. As explained below, terms like "above" will be relative to array
coordinates, but this does not preclude a Cartesian interpretation.

Directions are "not first class" so, once declared, they cannot be changed,
assigned to variables, or passed to or from procedures.

Using Directions with "of"
It is often convenient to define one region from another. The most common
example is when a border is being defined for an array. The "of" operator
uses a direction and a region to define a new region adjacent to a previously
defined region. The general form is

[d of R]

where d is a direction and R is a region, called the base region. The semantics
are to define a new set of indices relative to R. Let

R = [l1..u1, l2..u2, . . ., lr..ur]

and

d = [d1, d2, . . ., dr]

then the region defined by [d of R] has indices such that the ith coordinate
ranges over the interval [l..u] , where

 [u i +1..u i +di] if d i > 0
[l..u] =  [l i ..u i] if d i = 0 (*)

 [l i +di ..l i -1] if d i < 0

Thus, the sign of the direction determines whether the dimension is
extended at the lower (negative) or the upper (positive) end of the base
region's index range, and the magnitude indicates by how much; a zero value
in a direction indicates that the whole interval for that dimension is
inherited from the base region. Figure 3.1 shows examples.

Although the regions defined by the "of" operation are simply index sets, e.g.
the regions of Figure 3.1 define the following index sets,

[SW2 of R] ≡ [9..10, -1..0]
[E2 of R] ≡ [1.. 8, 9..10]
[Top of C] ≡ [1.. 4, 0..0, 1..5]
[Edge of C] ≡ [1.. 4, 6..6, 6..6]

ZPL Programming Guide

26

they differ in an important way from the equivalent regions declared directly.
Specifically, because "of" regions specify the region relative to a base region,
they can be used to give arrays borders. That is, when an array is declared
over the base region and is then used in the context of an "of" region defined
relative to that base region, the referenced elements are treated as part of the
array. For example, using the definitions from Figure 3.1, and assuming A and
B are declared over the base region R,

[E2 of R] A := 0.1; -- Initialize border columns to east
[E2 of R] B := c*A; -- Set B's border to A's scaled by c

reference the 9th and 10th columns of A and B. Though A and B were not
originally declared to have these two columns, the use of the array names in
the context of an "of" region augments the arrays with the region [E2 of R] .
Thus, when a problem has "boundary conditions," the "of" region can
establish bordering regions to hold the boundary values. It is not necessary
(or advisable) to declare arrays "larger" to accommodate boundary values as is
necessary in Fortran or C.

R

[SW2 of R] [E2 o f R]

[Top of C]

C

[Edge of C]

SW2 = [2 ,-2]
E2 = [0 , 2]
Top = [0 ,-1, 0]
Edge = [0 , 1, 1]

Figure 3.1: Examples of applying "of" to regions
R=[1..8,1..8] and C=[1..4,1..5,1..5]

Summarizing, "of" defines a new region from a base region and a direction.
The region is adjacent to and disjoint from the base in the given direction. If
an "of" defines "new" indices for the variable on the left-hand side of the
assignment on which it appears, storage is declared for those new border
indices automatically, provided the region of the "of" expression is the same
symbolic region name as was used to declare the array.

Using Directions with "@"
The "@" operator is used to implement the concept of "offset-referencing" or
translation of arrays. Thus, in the Jacobi program, references to the nearest
neighbors of A's elements were expressed as A@north , A@east, A@west and
A@south.

In general, the "@" operator performs a uniform translation of a region's
indices and then references those elements of the array. Thus, in the
construction

ZPL Programming Guide

27

[R] . . . A@d . . .

the referenced elements of A (and possibly its borders) are those found by
adding the direction d to each index tuple in R. The result of the expression
is an array of the rank, size and index set of R. Thus, assuming
R=[1..5,1..8] , A is defined over R and has a one column eastern boundary
defined, and the value in each i,j position is j, then

[R] . . . A@E . . .

refers to the shaded items, given E = [0,1]

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

A =

It must be emphasized that the rank, size and index set of the result of
applying the "@" operator are determined by the region specifier, not the
array. The array (and possibly its borders) simply supply the values to be
referenced. Thus, certain uses of "@" will not result in an "array shift" or a
spill to a border. To illustrate, consider the declarations,

region R = [1..3, 1..n]; --A 3 x n region
 Mid = [2..2, 1..n]; --A 1 x n region

var A3, B3: [R] integer; --3 x n arrays

direction above = [-1, 0]; --Offset first index up
below = [1, 0]; --Offset first index down

which in the following statement

[Mid] A3@above := B3@below;

assigns the third row of B3 to the first row of A3. The region Mid , which is a
set of indices for the second row of the R region, is translated to indices for the
first row by above and to indices for the last row by below . The elements
transferred have the rank, size and index set of Mid .

In most programming languages, such a translation would be realized by
iteratively referencing each element of the array using one or more nested
loops, and for each tuple of indices, (i,j, ..., k), a constant offset would be added
when subscripting the array. ZPL's ability to operate on arrays in their
entirety saves the tedious looping, and the use of symbolically named
directions, e.g. northeast , avoids common errors in computing offsets in the
subscripts, e.g. [i-1, j+1].

ZPL Programming Guide

28

Whenever a region is applied to an array, it is necessary for all region indices
to refer to declared and initialized array elements. For many uses of regions
this is automatic, since the array declaration requires a region specifier, which
is then used as the region specifier in the computations. When an "@" is
used, however, it is typical for the references to spill beyond the base region of
the array. As a heuristic, then, if the applicable region is the defiining region
of the array, the operands using @ imply an earlier use of "of".

Comparison of "of" vs "@"
Notice that both "of" and "@" create regions from regions, but they perform
this operation in different ways. Stated in words,

• "of" extends a region by defining an adjacent set of indices
according to rule (*) above.

• "@" translates a region by adding the direction vector to each
index of the base region.

The indices of an "of"-defined region are necessarily disjoint from the base
region, while the indices of an "@" defined region (typically) overlap it. The
distinction is easily illustrated by an example. Assume the declarations,

region R = [1..8, 1..8];
direction N2 = [-2, 0];

NE2 = [-2, 2];
 E2 = [0, 2];

var A : [R] integer;

then the relevant regions of A are illustrated in Figure 3.2.

Borders
ZPL provides a convenient mechanism to implement two commonly
occurring boundary conditions: mirrored and periodic. The operations are
called reflect and wrap . Both require an "of"-defined region specifier as the
border, in order that there be an unambiguous reference point.

[N2 of R]

R

[NE2 of R]

[E2 of R]

[R] ...A@NE2 [R] ...A@E2 [R] ...A@N2

ZPL Programming Guide

29

Figure 3.2. Comparison of regions specified using "of" and "@"

The wrap operator has the general form

[d of R] wrap vars;

where vars is a list of array identifiers, separated by commas. The effect of
applying wrap to the d border of an array A is to set the border elements to be
the values from the "opposite" side of the array, that is, as if they "wrap
around." See Figure 3.3. The general form of the reflect operation is

[d of R] reflect vars;

where vars is a list of array identifiers, separated by commas. The effect of
applying reflect to the d border of an array A is to set the elements of the
boundary to be "mirrored around" the array's edge. See Figure 3.3.

A [E of R] wrap A; [E of R] reflect A;

Figure 3.3. Examples of wrap and reflect for a 2D array A
and direction E = [0,1] .

The operators are sufficiently intuitive that their rather complicated formal
definitions will be omitted. Notice that in the figure, the "hatching" is
meaningful. That is, in wrap the data is translated, preserving order, whereas
in reflect the data is mirrored, reversing the order.

Array and Cartesian Coordinates for Directions
ZPL's interpretation of directions in terms of array coordinates rather than
Cartesian coordinates leads to the simple, uniform rule for describing the
semantics of region expressions: A negative offset in a dimension refers to
elements with lower index values in that dimension, while a positive offset
refers to elements with higher indices. This interpretation, however, troubles
some first-time ZPL programmers, who prefer to think in Cartesian
coordinates. But, this is not a problem because ZPL programmers define their
own directions, and can therefore give them any meaning they wish
provided they are consistent. (This is why ZPL does not come with built-in
directions.) For example, the declarations

region FQ = [0..n, 0..n]; -- An n+1 x n+1 region
var Cart : [FQ] double; -- A variable declaration

ZPL Programming Guide

30

direction plusx = [1, 0]; -- Cartesian right
plusy = [0, 1]; -- Cartesian up
minusx = [-1, 0]; -- Cartesian left
minusy = [0,-1]; -- Cartesian down

used consistently, allow the Cart array to be thought of as though it were
indexed like the first quadrant of the plane, i.e. the (0,0) element is
conceptually in the lower left corner. So, for example,

[FQ] ... Cart@plusy ...

can be thought of as the array of values translated one unit in the upward
(positive y) direction of the plane, because when thinking of FQ as the lattice
points in the first quadrant, [0,1] translates the points upwards. The fact
that the ZPL compiler writers and possibly even the compiler itself interpret
this differently is irrelevant. The association of the letter sequence "plusy "
or "east " to [0,1] is completely arbitrary; it could be "moonward " or
"bzz333 ". If the Cartesian interpretation is used consistently, no
computational problems should arise.* Accordingly, programmers are
encouraged to adopt whatever interpretation makes sense to them, and to
include a comment to assist anyone who reads the program.

Promotion

Scalars can be used throughout ZPL as if they were arrays of the rank, size and
index set of the region specifier for the operand with which they are
composed. Scalars used in this role are said to be promoted to arrays. Thus,
in the expression from the Jacobi program,

[R] Temp := (A@north+A@east+A@west+A@south)/4.0;

the scalar constant 4.0 is promoted to an array, implementing elementwise
averaging, i.e. it becomes an array of 4.0 's of the rank, size and shape of R.
Scalar promotion applies to each occurrence, taking the form required by the
situation in which it is used. Thus, if c is a scalar variable in

if dim = 1
 then [V] V1 := c*V2;
 else [W] W1 := c*W2;
end;

* Probably the only way a consistent use of alternate directions can be "exposed" is with the use
of I/O, which is transmitted with the right-most-dimensions-varying-fastest rule applied to
the least index of the region. Thus, in this example, the (0,0) element of Cart would be
printed first. Users adopting an alternative set of directions may wish to preserve the illusion
by restructuring their arrays before printing, postprocessing the output off-line or simply
assuring that the visualization software accepts the ZPL output as given.

ZPL Programming Guide

31

the promotion is to an array of rank, size and index set of V in the then -clause
and to W in the else -clause. Scalar promotion does not apply to a scalar on
the left-hand side of an assignment statement. Thus

[R] c := A; -- ILLEGAL, scalar promotion not allowed on lhs

is not legal. (See the reduce operator below.)

Promotion also applies to sequential functions. Examples of sequential
functions are the built-in numerical functions such as sin() , or user defined
functions not employing array concepts in their definitions, e.g. concepts
defined in this chapter. For example, in the statement

err := max<< abs(A - Temp);

from the Jacobi program, the (floating point) absolute value function, abs , is
promoted to accept an array, the result of A-Temp, as its actual parameter. As
with variable promotion, function promotion applies to each occurrence, as
the situation requires. The meaning is to apply the scalar function to the
operand(s) for each index value of the region, i.e. elementwise.

Index1, Index2, ...

In ZPL (parallel) arrays cannot be explicitly indexed. This provides a
significant amount of "under constrained" computation for which a compiler
can plan efficient execution. This is one of the properties of ZPL that allows it
to execute fast on parallel computers. However, it is often useful to use the
index value in a computation. For this reason there are compiler-provided
constant arrays, known as Index d, that contain in each indexed position a
value of that index. (There are also "indexed" arrays," discussed in Chapter
5.)

For example, assuming V is a one dimensional region, V = [1..n] , and V1 is
a one dimensional variable defined over V, then the occurrence of Index1 in
the statement

[V] . . . V1 + Index1 . . .

is an n element vector containing in the ith position the value i, i.e.

Index1 ≡ 1 2 3 . . . n

In this case the Index d arrays are constant, they cannot be modified. Thus,
constructions like

Index1 := . . .; -- ILLEGAL, cannot modify Indexd

ZPL Programming Guide

32

are prohibited.

In general, the Index d constant arrays are used by replacing d with a
numerical value, say 2, specifying a dimension. The options are, therefore,

Index1 dimension 1 indices
Index2 dimension 2 indices
Index3 dimension 3 indices

. . .
Indexd dimension d indices

. . .
Indexr dimension r indices

where r is the highest dimension of any declared region of the program.
Clearly, the r limit can be different for different programs.

The value of Index d is an array of the indices of the d dimension as
determined by context. Thus, the shape and size of the array are the shape
and size of the operand region applicable to the operand with which it is
being combined. For example, if R = [1..3, 1..4] is a rank 2 region and
Any is a two dimensional array over these indices, then

[R] ... Any + Index1 ...

adds the row index to each element of Any , i.e. in this instance Index1 has the
value

1 1 1 1
2 2 2 2
3 3 3 3

Contrast this with the occurrence of Index1 applied to a rank 1 array above.
In each case, the shape and size of the Index d constant array are given by the
shape and size of R, the applicable region for the variable with which it is
composed.

Continuing the example,

[R] ... Any + Index2 ...

adds the column index to each element of Any , i.e. in this instance Index2
has the value

1 2 3 4
1 2 3 4
1 2 3 4

ZPL Programming Guide

33

So, Index d extracts the dth items from the index tuple.

In general, if Index d is combined with an operand of rank r, the applicable
region specifier that determines Index d's size and shape is the rank r region
specifier. (It is an error if d > r.) As a further example, if V = [1..n] is a
region, and V1 and V2 are rank 1 arrays, and W = [-5..5, 1..5] is a region
and W1 and W2 are rank 2 arrays, then the statement

[V][W] if dim = 1
then V1 := Index1*V2; -- Ref 1D indices
else W1 := Index1*W2; -- Ref first dim indices

 end;

causes (among other things) the first element of V2 to be multiplied by 1 if
dim = 1 , or the first element of W2 to be multiplied by -5 otherwise.

For a square region R = [1..n, 1..n] , the statement

[R] Identity := Index1=Index2;

results in the identity matrix,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

when n = 4, since the comparison of the Index d values is true (1) only on the
diagonal.

The Index d constant arrays can be used in assignment statements,

[R] X := Index2; -- Set X to second dim indices

where the applicable region specifier is given by the left-hand side variable.
Since the shape and size of an Index d constant array are determined by the
operand with which it is composed, there are a few cases where the applicable
region specifier cannot be inferred, e.g.

s := +<<Index1; -- Undefined use of Index1

and so the value is undefined.

Finally, it is frequently useful to initialize a multi-dimensional array such
that in the ith position enumerated, say, in row-major order there is the
value i. Row-major-order enumerates the items so the right-most indices
change fastest, e.g. like an odometer. This can be computed easily and

ZPL Programming Guide

34

efficiently using the Index d arrays. Assuming R is a region with 1-origin
indexing, i.e. the indices in each dimension begin with 1, the statement

[R] Irmo := (Index1-1)*dim2size+Index2; -- Init. to row-major indices

produces the array

1 2 3 4
5 6 7 8
9 10 11 12

if dim2size ≡ 4. If R is not 1-origin, then the obvious corrections are required.

Index d arrays are only logicial. The compiler does not allocate memory or
explicitly create the Index d arrays, so they are very efficient to use.

Reduce and Scan

ZPL has two functional forms that can be used in global computations: reduce
and scan. Both forms apply a function accumulatively to an array argument.
Thus, +<<A finds the sum of the elements in A, i.e. reduces A to its sum. The
forms are as follows:

Reduce Name Scan
 +<< plus +||
 *<< times *||
max<< maximum max||
min<< minimum min||
 &<< and &||
 |<< or |||

In general, for an array A the result of op||A is an array of the shape and size
of the applicable region in which the ith element is the op -accumulation of
the first i elements of the array, where the ordering is given by row-major
order. Thus, if for the applicable region of A

A ≡ 1 2 3
1 2 3

then the plus-scan of A

+|| A ≡ 1 3 6
 7 9 12

and

 max || A ≡ 1 2 3 min || A ≡ 1 1 1

ZPL Programming Guide

35

 3 3 3 1 1 1

In general, for an array A, the result of the reduction op<<A is a scalar that is
the op -accumulation of the whole array, i.e. the last element of op||A . Thus,
+<<A ≡ 12 , max<<A ≡ 3 , and min<<A ≡ 1 , given the previous definition of
A.

The operations available for use with scan and reduce are associative and
commutative as mathematical operations. They are treated as such in ZPL,
i.e. the compiler reserves the right to accumulate the elements in any order
that realizes the definition. However, in the finite precision of floating point
arithmetic, associativity is not strictly true for plus and times under all
circumstances.

The default is to apply reduce and scan to the entire applicable region of the
operand. In addition, a partial reduce or partial scan can be specified to
operate on a subset of the dimensions.

Partial scan is expressed by placing dimension specifiers -- dimension
numbers in square brackets -- to the right of the function symbol, before the
operand. The specifier indicates which dimension(s) are to be scanned.
Thus,

ColSum := + || [1] A; -- Add columns

is a plus-scan along the first dimension, i.e. the columns are added, assuming
A is 2D. As expected, a partial scan will produce a result that is the same
shape and size as the operand. Partial reduce is slightly more complicated,
since the number of dimensions in the result is logically smaller than the
operand, and so it is treated in Chapter 5.

If more than one dimension are to be partially scanned, the items in brackets
are separated by commas, e.g. +||[1,2] A . The dimensions are scanned in
the (left-to-right) order given in brackets. Since "wrapping" is part of
scanning, the order that the dimensions are scanned matters. See Figure 3.4.
Thus, for 2D arrays, op||[2,1] gives a row-major order complete op -scan,
i.e. is equivalent to op|| , and op||[1,2] gives a column-major order
complete op -scan. These are different from the consecutive application of one
dimensional scans, since separate scans will not wrap. Notice that as
mathematical operations the different orders of application of consecutive
separate scans are all equivalent. This is not strictly true in the finite
precision of a computer's floating point arithmetic.

To summarize, Figure 3.4 gives the logical order of accumulation for partial
scan operations.

ZPL Programming Guide

36

1 1 1 1 1 2 3 4 1 1 1 1 1 2 3 4
1 1 1 1 1 2 3 4 2 2 2 2 5 6 7 8
1 1 1 1 1 2 3 4 3 3 3 3 9 10 11 12
 A + || [2]A + || [1]A + || A

1 2 3 4 1 4 7 10 1 2 3 4 1 2 3 4
5 6 7 8 2 5 8 11 2 4 6 8 2 4 6 8
9 10 11 12 3 6 9 12 3 6 9 12 3 6 9 12
 +||[2,1]A +||[1,2]A +||[1](+||[2]) ≡ +||[2](+||[1]A)

Figure 3.4. Logical order of accumulation for scan.

ZPL Programming Guide

37

-- Chapter 4 --

Program Structure and Examples

The goal of this chapter is to illustrate the constructs presented in the last
chapter, and to introduce ZPL programming idioms and style. In order to
enable readers to run sample programs, basics of program structure and I/O
are treated first.

ZPL Programs

Though there is considerable flexibility in how ZPL programs are organized,
the programmer must observe a few rules regarding program structure.
Figure 4.1 shows the general schema of a ZPL program.

program Pname;

{config var declarations; } --
{constant declarations; } --
{type declarations; } --
{direction declarations; } -- Preamble
{region declarations; } --
{var declarations; } --
{Procedure_definitions; } --

procedure Pname(); -- Entry point procedure
Main_program_definition ;

Figure 4.1. Structure of ZPL programs

In the schema the non-italic text must be given literally, including the
punctuation. The italicized text is to be replaced with syntactically correct
code meeting the italicized description. Items in braces are optional. Pname
is an identifier that is the name of the program, and must match in its two
occurrences. The Preamble items can appear in any order. Notice how the
Jacobi computation of Figure 1.2 fits into this structure.

The config var declaration section is used to specify parameters to the
computation such as array sizes, convergence tolerances, etc. The config
var parameters are assigned default values in the declaration that can be
changed on the command line when the program is invoked. This allows

ZPL Programming Guide

38

the program to vary from run to run without recompilation. The declaration
has the form

config var
ident1 : type1 = val1;

...
identn : typen = valn;

where the italicized material must be replaced as follows: identi is an
identifier, typei is its value type (see Chapter 2), and vali is its default value, to
be used unless changed at execution time. The config var parameters can
be used throughout the program, including in the remaining declarations,
but they cannot be changed, i.e. they cannot appear on the left-hand side of an
assignment, nor be passed as var parameters to a procedure, see Chapter 5.

To change the value of a config var on the command line for UNIX
systems, use the syntax

-s name=val

for each configuration variable name that is to be assigned a new val. Thus,
for the Jacobi Iteration in Figure 1.2, which has the configuration variables n
and delta , the invocation

jacobi -sn=25 -sdelta=.0001

resets both variables to new values. Further details on changing the default
values of config var parameters are available as part of the compiler
installation documentation.

Following the configuration variables are other global declarations, including
constant declarations, region declarations (Chapter 3), type declarations
(Chapter 5), direction declarations (Chapter 3), and var declarations. The
constant declarations have the same form as the config var declarations
above, e.g.

constant sisters : integer = 7;

and the var declarations simply list the variables of each type.

Though these declarations can be dense lists, it is recommended
programming style to consider how formatting might make the variable
enumeration clearer. For example,

var x_x_,x0x_,x_x0,x0x0,x_y_,x0y_,x_y0,x0y0:sbyte;

is identical to

ZPL Programming Guide

39

var x_x_, x_y_, -- not present
x0x_, x0y_, -- single left
x_x0, x_y0, -- single right
x0x0, x0y0: -- filled

 sbyte; -- range is -128 to 127

except for comments and white space, but the formatting improves the
readability, makes it easier to verify that there are no notational errors, and
provides information to the program reader.

The procedures of the program are declared at this point. One of the
procedures, usually the last or the first to be declared, is the procedure whose
name is the same as the program. This is the main program or "entry point"
procedure, i.e. the place where the computation begins.

The config var , constant , type , region , and direction declarations are
global to the program, and are therefore declared before the procedure
declarations. Variables can be declared either in the preamble or in the
procedures, including the main procedure. Most scientific and engineering
computations will have global variables representing the problem state.
These are usually referenced by most or many of the program's procedures,
and their space needs may dominate the memory requirements of the
program. It is common to declare these variables in the preamble as part of
the context of the computation, and to declare all other variables within the
procedures.

All ZPL source code must appear in a single file, though files can be included.
That is, a line of the form

#include " filename"

will be replaced by the text in the file filename in the ZPL source file at the site
of the statement. Separate compilation is not presently supported.

Basic I/O

Programs must print out results, and most must also read in data. ZPL
provides input/output facilities, the most basic forms of which are treated
here.

Text I/O Because ZPL operates in a UNIX environment, three files are always
open, zin , zout and zerr , coresponding to UNIX's stdin , stdout and
stderr . Programs can use other files for input and output by declaring a
variable of type file ,

ZPL Programming Guide

40

var f : file; -- Declare variable for file descriptor

which is used to hold a file's descriptor. The file descriptor is set using the
open() procedure,

f := open("exprdata", "r");-- Open a file for reading

where the first parameter is the name of the file in quotation marks, and the
second parameter is one of three alternatives, "r" , "w" , "a" , stating that data
is to be read, written or appended to the file. The open() procedure returns a
descriptor for the file that is to be used for all subsequent references to the file,
or 0 if the opening operation was unsuccessful, e.g. the file could not be
found. Notice that open() is not a parallel procedure, so it requires no
region.

Data is read from or written to files using the procedures,

read({ file,} vars) ;
write({ file,} vars);
writeln({ file,} vars);

where file is the optional file descriptor, and vars is a list of identifier names
participating in the I/O, separated by commas. If the file descriptor is not
specified, zin is used for reading and zout is used for writing. The write()
and writeln() procedures differ only in that the latter writes a newline
character after all of the variables are written.

The vars list can contain either sequential or parallel variable names. If
(parallel) arrays are given, then appropriate region specifiers must apply to
the statements. The entire applicable region of the array is read or written,
with the items assigned positions in row-major order, or more generally in
rightmost-index-changes-fastest order. For example,

 read(n); -- Get problem size from zin
[R] read(f, A); -- Fill region R of A from file f
[R] write(fdata, Alast); -- Save results in output file
[V] writeln("Control Vector: ", C); -- Echo inputs to zout

 writeln("MegaFLOPS :", f10to6); -- Report performance

are sample input/output statements.

Files other than zin and zout should be closed after their last use. The
command is close(file), where file is the file descriptor returned from the
open() command. So,

close(f); -- Finish up with file f

ZPL Programming Guide

41

completes the use of the file f . Notice, close() is not a parallel procedure.
Check the compiler installation documentation for further information on
I/O.

Binary I/O ZPL also supports binary I/O. Though binary files are not
conveniently readable by humans and are not portable to different machines,
binary I/O has the advantage of being faster than textual I/O and more precise
because it is a direct copy of the computer's internal representation.
Accordingly, it is ideal for check-pointing files and for out-of-core
applications.

Binary I/O simply extends the concepts used for textual I/O. The procedures
open() and close() are unchanged. The binary versions of the I/O routines
are

bread({ file}, vars);
bwrite({ file}, vars);

where file is the (optional) file descriptor returned by open() , and vars is a
list of the variables or expressions to be read or written. As with text I/O the
applicable region specifier determines what portion of each array in the
variable list is to be read or written. ZPL's binary I/O commands generally
conform to the fread of fwrite of the underlying C platform. Also, on
many platforms text and binary I/O can be intermixed in one file.

As an example, check-pointing is accomplished by a instruction sequence of
the form

ckpt := open("dump", "w");
bwrite(ckpt, iter, -- save iteration number

 corrct, -- save accumulated correction
 lastx -- save x position of last step
 lasty); -- save y position of last step

[R]bwrite(ckpt, A, B, C, -- save entire
 D, E, F); -- state arrays

close(ckpt); -- wrap up

Repeated execution of this code will overwrite the last instance of the file. An
alternating file name scheme -- dump1 and dump2 -- can be used to protect
against the unlikely possibility that the machine crashes during the ckeck
pointing.

ZPL Programming Guide

42

Example Computations

In this section ZPL will be used to solve "typical" scientific and engineering
calculations. The emphasis is on illustrating standard ZPL idioms, i.e.
showing characteristic constructs and styles for solving problems:

• Computing over entire arrays without any indexing.
• Substituting computations over logical vectors for if statements.
• Comparing alternative solutions based on expected performance.

Though these techniques are highlighted here, they are all intuitive, and
easily understood and used.

Sample Statistics
The computation to be illustrated is that of finding the mean and standard
deviation of a set of data values. The overall structure of the program is to
read the data, compute the statistics, and print the results. The program is
shown in Figure 4.2.

The programmer has defined items , the size of the problem, to have the
default value 100, and this value is used to declare the region R. No direction
declarations are needed for this calculation. In the header of the main
procedure Sample is declared together with two scalars, mu and sigma . The
statistics are computed by a direct application of their defining formulae.

 1 program Sample_Stats;
 2 /* Program computing the mean and standard deviation of a sample */
 3
 4 config var items : integer = 100; -- Problem size
 5 region R = [1..items]; -- Problem space
 6
 7 procedure Sample_Stats(); -- Start of Program
 8 var Sample : [R] float; -- Declare data array
 9 mu, sigma : float; -- Declare scalars
10
11 [R]begin
12 read(Sample); -- Input from zin
13 mu := +<<(Sample/n); -- Mean
14 sigma := sqrt(+<<((Sample-mu)^2/n)); -- Std deviation
15 writeln("Mean: ", mu); -- Print
16 writeln("Standard Deviation: ", sigma); -- results
17 end;

Figure 4.2. Sample statistics program.

The mean, µ, defined as

ZPL Programming Guide

43

µ = ∑ i Samplei /n

is computed by

mu := +<<(Sample/n); -- Mean

where the summation is accomplished by the plus-reduction operation over
the Sample array. Notice that because of the precedence of the operators
(Table 2.1), the plus-reduction binds more tightly than the division, so
parentheses are required for each Sample item to be divided by n.
Eliminating the parentheses performs a single division after summing
Sample , which may be somewhat more precise at the risk of a greater
possibility of overflow. Parentheses showing the groupings are
recommended as good programming practice.

The standard deviation, σ, defined as

σ = √ ∑i (Samplei - µ)2/n

is translated directly into

sigma := sqrt(+<<((Sample-mu)^2/n)); -- Std deviation

where the sqrt function computes the square root. Notice that subtracting
mu from Sample has the effect of promoting the scalar to an array with shape
and size given by [R] , and then subtracting corresponding elements. The
results are printed and the program exits.

Correlation Coefficient
Figure 4.3 illustrates a program that is quite similar to Sample_Stats .
Coefficient finds the means of two samples and computes their correlation
coefficient,

Σ i (Sample1i - µ1)(Sample2i - µ2)
r = ---

√ Σ i (Sample1i - µ1)2 ⋅ Σ i (Sample2i - µ2)2

on Lines 19-20.

One difference with Sample_Stat is that Coefficient reads in its data from
files. The files, which are expected to be called "Expr1 " and "Expr2 ," are
specified by a call to the procedure open() that returns a file descriptor. This
is assigned to a variable of type file , and used in the subsequent read() and

ZPL Programming Guide

44

close() procedures. Though the program works if the files are not closed
before exit, it is a good policy to do so. As before, the results are written to
zout , since no file is specified in the writeln() statements.

The program is very similar to Sample_Stats . All computation in the body
is performed within the scope of the region specifier [V] , so all array
operations apply to all n items of the two arrays. In lines 15-16 the plus-
reduction operation is used to sum the elements to compute the two means.
Then, in lines 17-18 these means are promoted to n element arrays to match
the Sample arrays, and corresponding elements are subtracted. An
alternative way to express these two computations employs ZPL's extended
assignment operators,

Sample1 -= mu1; -- Center about mean
Sample2 -= mu2; -- Same for next sample

The correlation coefficient is computed in an expression that breaks across
lines 19-20. Notice that the second line starts with the divide operator. It is
helpful to begin continuation lines with an operator as a visual cue to
indicate a multiline statement, but of course, it is not required. Finally, the
results are printed out.

 1 program Coefficient;
 2 /* Compute the means and correlation coefficient of two samples */
 3
 4 config var items : integer = 100; -- Problem size
 5 region V = [1..items]; -- Problem space
 6
 7 procedure Coefficient(); -- Start of Program
 8 var Sample1, Sample2 : [V] float; -- Declare data array
 9 mu1, mu2, r : float; -- Declare scalars
10 f1, f2 : file; -- File name variables
11
12 [V]begin
13 f1 := open("Expr1","r"); read(f1,Sample1);--Data from file Expr1
14 f2 := open("Expr2","r"); read(f2,Sample2);--Data from file Expr2
15 mu1 := +<<(Sample1/n); -- First sample mean
16 mu2 := +<<(Sample2/n); -- Second sample mean
17 Sample1 := Sample1 - mu1; -- Center about mean
18 Sample2 := Sample2 - mu2; -- Same for next sample
19 r := (+<<(Sample1*Sample2)) -- Correlation coeff'nt
20 / sqrt((+<<(Sample1^2))*(+<<(Sample2^2)));
21 writeln("Sample means: ", mu1, mu2); -- Print
22 writeln("Correlation coefficient: ", r); -- results
23 close(f1); close(f2); -- Wrap up for exit
24 end;

Figure 4.3. Computing the correlation coefficient

ZPL Programming Guide

45

Histogram
Computing the values for a histogram of a data set is straightforward. First
the interval spanned by the entire data set of Values is found by determining
the smallest and largest elements,

small := min<<Values;
big := max<<Values;

using the reduction operators. If this range is to be divided into b equal size
bins, then each bin has a size determined by

size := (big - small)/b;

To assign the Values to one of the b equal sized bins, it is expedient to shift
the values by subtracting small so the smallest is zero, then to divide the
size into each item,

BinNo := ceil((Values-small)/size);

rounding-up the fractional part to the next highest integer. This results in
BinNo i containing the bin number for Values i.

This assigns each of the Values to the proper bin except those items equal to
small , the low end point of the whole interval. They are assigned to the
nonexistent bin 0. Assuming such elements are to be assigned to bin 1, it is
necessary to increment all BinNo s having a value 0. It is possible to fix up
these entries with an if -statement that tests for 0 and then increments it. But,
it is also possible to write

BinNo := BinNo + !BinNo; -- Put "small" elements in bin 1

which uses the fact that nonzero BinNo values are treated as logical true and 0
BinNo values are treated as logical false. Thus, the negation !BinNo yields a
vector of trues (1) and falses (0) where 0s and nonzeroes occur in BinNo . By
adding these to BinNo , the 0s are incremented.

For example, if

 b ≡ 3 and Values ≡ 6.3 -4.2 0.0 1.9 5.4 -2.2 -4.2 -2.2

then

small := min<<Values; -- small ≡ -4.2
big := max<<Values; -- big ≡ 6.3
size := (big-small)/b; -- size ≡ 3.5
BinNo := ceil((Values-small)/size);-- BinNo ≡ 3 0 2 2 3 1 0 1
BinNo := BinNo + !BinNo; -- !BinNo ≡ 0 1 0 0 0 0 1 0

ZPL Programming Guide

46

producing a final value

BinNo ≡ 3 1 2 2 3 1 1 1

as intended.

This programming technique -- using the addition of a Boolean vector as a
substitute for an if -statement -- is an example of computing with logical
vectors. This is a recommended approach not only because of the clean and
succinct program, it uses computation instead of control to achieve the result.
Since modern pipelined computers are slowed by the "control jumps" typical
of if -statements, using logical vectors will likely result in faster code.

 1 program Histo;
 2 /*
 3 The n nonegative values read from zin are grouped into b equal
 4 sized intervals over their range, counted and printed out.
 5 Values on the boundaries are associated with the higher interval.
 6 */
 7 config var n : integer = 100; -- Size of data
 8 b : integer = 8; -- Number of intervals in histogram
 9 region S = [1..n]; -- The index space of the data
10
11 procedure Histo(); -- Entry point
12 var small, -- Smallest value
13 big, -- Largest value
14 size : float; -- Interval size of bin
15 count, i : integer; -- Integer scalars
16 Values : [S] float; -- Data value array
17 BinNo : [S] ushortint; -- Bin numbers are nonnegative
18
19 [S]begin
20 read(Values); -- Get the data from zin
21 small := min<<Values; -- Get smallest value
22 big := max<<Values; -- Get largest value
23 size := (big-small)/b; -- Figure size of the intervals
24 BinNo := ceil((Values-small)/size);
25 -- Compute position, round up
26 BinNo := BinNo + !BinNo; --Include lo endpoints in first bin
27 writeln("Histogram of ", n,
28 " values, ranging from ", small,
29 " to ", big,
30 " grouped into ", b,
31 " intervals of size ", size);
32 for i := 1 to b do
33 count := +<<(BinNo = i); -- Count how many in this interval
34 writeln("Interval ",small + (i-1)*size,
35 " : ", small + i*size,
36 " = ", count);
37 end;
38 end;

Figure 4.4. Program to print the count of samples in b equal-sized bins.

ZPL Programming Guide

47

In the Histo program shown in Figure 4.4 there is a second application of
computing with logical vectors. After writing out the header information for
the computation (lines 27-31), a for -loop is entered in which on the i th

iteration, the number of elements in bin i are counted and then printed. To
count the number of elements in bin i , BinNo is compared to i producing a
logical vector over which a sum reduction is applied yielding the number of
elements in the bin

count := +<<(BinNo = i);

Again, this is an efficient alternative to the use of an if -statement A variant
of this histogram program is given in Chapter 6.

 1 program UniConv_Shift;
 2 config var N : integer = 512; -- No. pixels in 1 dim.
 3 boxb : ushortint = 4; -- Default size box base
 4 boxh : ushortint = 4; -- Default size box height
 5 w : ushortint = 16; -- Default weight
 6 filename : string = "Image"; -- Name of input file
 7 region I = [1..N, 1..N]; -- Problem space
 8 var Im : [I] ubyte; -- Image of pixels
 9 BoxSum, T : [I] ushortint; -- Result and temp
10 fptr : file; -- Unix file descriptor
11
12 direction west = [0,-1];
13 north = [-1, 0];
14
15 procedure UniConv_Shift(); -- Entry point
16 var i : integer; -- Loop variable
17
18 [I] begin -- Refer to entire image
19 fptr := open(filename,"r");-- Locate the file
20 read(fptr,Im); -- Get the image
21 [west of I] T := 0; -- Init west boundary
22 [north of I] T := 0; -- Init north boundary
23 BoxSum := Im; -- Init BoxSum w/1st val
24 T := Im; -- T will shift around
25 for i := 1 to boxb - 1 do -- Across box ...
26 T := T@west; -- Shift image L-to-R
27 BoxSum := BoxSum + T; -- Accumulate
28 end; -- ... sweep rows
29 T := BoxSum; -- Init T w/ box row sums
30 for i := 1 to boxh - 1 do -- Across box ...
31 T := T@north; -- Shift row sums down
32 BoxSum := BoxSum + T; -- Accumulate
33 end; -- ... sweep columns
34 BoxSum := BoxSum/w; -- Weight entries
35 writeln(BoxSum); -- Print results to zout
36 close(fptr); -- Close up
37 end;

Figure 4.5. Shift and Add solution to uniform convolution

ZPL Programming Guide

48

Uniform Convolution

In this application the values stored in the 512×512 array are picture elements
or pixels. The uniform convolution problem is to treat every point in the
image as the lower right corner of a x×y box of pixels, and to store the
weighted sum of the elements of the box into that position. Perhaps the
most straightforward solution is to shift the array around, adding up the
pixels. But there is an ingenious solution using the scan, which will also be
considered.

Shift-and-Add Solution
This solution of the uniform convolution computation conceptually shifts
the image to the right, accumulating in each position the pixel values of the
row to its left. These values, i.e. the box's row sums, are then shifted down
and accumulated, scaled and written out. The program is shown in Figure
4.5.

The program begins by defining the default sizes of the box base, boxb , box
height, boxh , and weight, w, since these quantities will tend to be the same
from run to run. By being declared as config var s, however, their values
can be changed on the command line when the program is executed. Im is
declared to be an unsigned byte array, allowing the pixels to have at most 256
distinct values, and BoxSum, the array that will accumulate the values from
the various positions, is declared ushortint . This specification allows for
boxes with area up to 256 pixels without overflow, because if boxh × boxb =
box area ≤ 256 then the

largest pixel value × box area ≤ 255 × 256 = (28-1) × 28 < 216-1

the typical precision of unsigned short integers. Notice that because BoxSum is
an integer value, the scaling (Line 34) will truncate any fractional parts.

The program begins by opening a file that has the default name "Image ",
which can be changed on the command line, and reading the contents into
Im .

The computation begins by initializing to 0 the west and north boundaries of
T, the copy of the image (and later the row sums) that will be shifted around
to accomplish the summation. The shifting will first go to the right, and then
downwards, which means that 0's will be introduced into T from the west
and north boundaries.

BoxSum is initialized to Im , which would be the final result for a degenerate
1×1 box, and T is initialized to the image. Shifting to the right is implemented
in the for -loop (Lines 25-28), yielding the effect of summing across the rows

ZPL Programming Guide

49

of a box of width boxb . This intermediate result is then assigned to T, and the
columns are added up. Since the column above a given position contains the
sums of the rows of the box, this produces the result, which is then scaled and
written out.

 1 program UniConv_Scan;
 2 config var N : integer = 512; -- No. pixels in 1 dim.
 3 w : integer = 16; -- Weight
 4 region I = [1..N, 1..N]; -- Problem space
 5 var Im : [I] ubyte; -- Image array
 6 BoxSum : [I] uinteger; -- Result array
 7 filename : string; -- Name of input file
 8 fptr : file; -- Unix file descriptor
 9
10 direction west = [0,-4]; --\
11 north = [-4, 0]; -- Box specifications
12 NW = [-4,-4]; --/
13
14 procedure UniConv_Scan(); -- Entry point
15 [I] begin -- Refer to the entire image
16 [west of I] BoxSum := 0; -- Initialize the
17 [NW of I] BoxSum := 0; -- boundaries of the
18 [north of I] BoxSum := 0; -- result to 0
19 write("Image? ");read(filename);--Get name from zin
20 fptr := open(filename,"r");-- Locate the file
21 read(fptr,Im); -- Get the image
22 BoxSum := +||[2] Im; -- Find row sums
23 BoxSum := +||[1] BoxSum;-- Find column sums
24 BoxSum := BoxSum - BoxSum@north -- Correct row sums
25 - BoxSum@west -- Correct column sums
26 + BoxSum@NW; -- NW subt'd twice, add in
27 BoxSum := BoxSum/w; -- Weight entries
28 writeln(BoxSum); -- Print results to zout
29 close(fptr); -- Button up
30 end;

Figure 4.6. Scan solution for the uniform convolution.

Scan Solution
If the box size can be fixed at compile time, the programmer has available an
alternative implementation based on the scan operation. Rather than adding
up the rows and columns of the box, the basic idea is to use the scan to sum
across the rows and columns of the whole image, and to derive the BoxSum by
performing some simple arithmetic on these values. Figure 4.6 shows a
uniform convolution solution using scan for a fixed 4×4 box.

The first difference is that BoxSum must be declared to be an unsigned integer,
because summing over the entire array means that the magnitudes of the
intermediate terms can be larger than can be represented in a shortint . A
second difference is that the declarations for the directions (Lines 10-12) are
larger. These correspond to the size of the box rather than the unit of motion

ZPL Programming Guide

50

as they did in the shift-and-add solution. When the border initialization is
specified (Lines 16-18), these directions produce somewhat "thicker" borders

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

BoxSum

than the 1-wide borders of the shift-and-add solution.

After reading in the image, the program proceeds to compute the row and
column sums using partial scans, i.e. scans that apply over one dimension
only (Chapter 3). Recall that the dimension over which the sum is
performed is given in brackets (Lines 22-23), so +||[2] adds across rows,
while, +||[1] adds down columns.

The logic of the computation is simple. By plus-scanning the rows of Im (Line
22), and then plus-scanning the columns of that result (Line 23), each position
contains the sum of itself and all pixels to the north and west. The values for
these elements are the sum of the entire array to their northwest. For all
elements with indices larger than four in either dimension, this is too much.
So, the value from four rows above is subtracted (Line 24), as is the value four
columns to the left (Line 25). However, this has subtracted the values to the
northwest twice, so they must be added back in again (Line 26), as the
following example, using an array of 1 pixels, illustrates

 1 1 1 1 1 1 1 2 3 4 5 6
 1 1 1 1 1 1 1 2 3 4 5 6
 1 1 1 1 1 1 1 2 3 4 5 6
 1 1 1 1 1 1 1 2 3 4 5 6
 1 1 1 1 1 1 1 2 3 4 5 6
 Im Line 22

 1 2 3 4 5 6 1 2 3 4 5 6
 2 4 6 8 10 12 2 4 6 8 10 12
 3 6 9 12 15 18 3 6 9 12 15 18
 4 8 12 16 20 24 4 8 12 16 20 24
 5 10 15 20 25 30 4 8 12 16 20 24
 Line 23 Line 24

ZPL Programming Guide

51

 1 2 3 4 4 4 1 2 3 4 5 5
 2 4 6 8 8 8 2 4 6 8 8 8
 3 6 9 12 12 12 3 6 9 12 12 12
 4 8 12 16 16 16 4 8 12 16 16 16
 4 8 12 16 15 14 4 8 12 16 16 16

 Line 25 Line 26

Restoring the northwest component is required because the original value of
BoxSum, as of Line 23, is used throughout the computation of Lines 24-26. As
an exercise, the reader can verify that had the rows above and the columns to
the left been subtracted off in separate statements, say with

BoxSum := BoxSum - BoxSum@north;
BoxSum := BoxSum - BoxSum@west;

no "northwest" correction would have been required. This is because the
separate statements update the Boxsum value.

If the box size is known at compile time, the programmer has a choice of
implementations. Which is preferable depends on the box size. For small
boxes, e.g. 2×2, the shift solution is better since it reduces data motion. As the
box size grows, however, the pair of scans becomes more efficient.

Counting Connected Components
The problem considered is counting the "connected components" of an image
that is represented as a two dimensional array of binary pixels. Two 1's are in
the same connected component if there is a path between them composed
only of 1's, where the "steps" permitted in the path are any of the eight
compass directions. This is the 8-way connected components definition;
there is also a 4-way definition as well.

The program to count 8-way connected components will illustrate how ZPL
programming benefits from thinking globally. The solution [Cypher et al. 90]
relies on the "amazing" shrinking operator due to Levialdi. This
morphological transformation preserves connectedness while reducing the
size of a component. It is applied iteratively. The pixels are simultaneously
rewritten to form the next iteration according to the following rule:

Levialdi Shrinking Operator (8-way): Pixels simultaneously change from
one iteration to the next according to the rule:

  remains 1 if there is a 1 to its west, northwest or north, (1→1) (a)
1 
  becomes 0 if there are 0's to its west, northwest and north (1→0) (b)

ZPL Programming Guide

52

  becomes 1 if there are 1's to its west and north (0→1) (c)
0 
  remains 0 if there is a 0 to its west or north (0→0) (d)

As the array is iteratively rewritten the connected components "shrink" to
the lower right-hand corner of their bounding boxes, at which point they
"disappear" on the next step. Figure 4.7 shows an example.

Figure 4.7: Example of shrinking connected components. The
three components "disappear" where the "bursts" are shown.

The strategy used in the algorithm is to apply the Levialdi operator iteratively
until the array has no more 1's. Whenever connected components
"disappear" they are counted. The only subtlety is to recognize the difference
between 1's that are changed to 0's in the course of normal shrinking, i.e. due
to rule (b), and the 1's that are changed to 0's in connection with a
disappearance. The difference can be recognized by testing for the following
conditions:

Disappearance: A disappearance occurs at a position that is 0 on the
present iteration, if it was 1 on the previous iteration, and on the previous
iteration there were no 1's in adjacent positions to its east, southeast, or
south.

The condition excludes 1→0 transitions where a 1 exists to the east, southeast
or south, since these will be preserved (by the adjacent 1), and therefore are
simply artifacts of shrinking. The program is shown in Figure 4.8

The body of the program is a loop. The logic implements the conditions of
the Levialdi shrinking operator and the disappearance test directly. At the
bottom of the loop, the iteration is advanced, the condition to continue is
tested and the count is accumulated.

The program exhibits important properties that enable the compiler to
perform optimizations. Notice that all of the "at" references are to Im . The
communication for these will be performed at the top of the loop. Once this
communication is completed all of the computation in the first five lines of
the loop are local. Additionally, the compiler will likely combine the two
reductions. This is significant since for most parallel computers the cost of

ZPL Programming Guide

53

reduction is dominated by interprocessor communication, and since they can
usually communicate two words for the same cost as communicating one,
combining the two costs little more than a single reduction.

 1 program CountCon; -- Count Connected Components
 2 config var n : integer = 512; -- Image size in 1 dim.
 3 region I = [1..n, 1..n]; -- Problem space
 4 var Im, Conn, Next : [I] ubyte; -- Image arrays
 5
 6 direction north = [-1, 0]; NE = [-1, 1];
 7 east = [0, 1]; SE = [1, 1];
 8 west = [0,-1]; SW = [1,-1];
 9 south = [1, 0]; NW = [-1,-1];
10
11 procedure CountCon(); -- Entry point
12 var smore : boolean; -- Loop control
13 count : integer; -- Num components
14 fptr : file; -- UNIX file pointer
15 [I] begin
16 [north of I] Im := 0; -- Set boundaries to 0
17 [NE of I] Im := 0; -- |
18 [east of I] Im := 0; -- |
19 [SE of I] Im := 0; -- |
18 [west of I] Im := 0; -- |
20 [SW of I] Im := 0; -- |
21 [south of I] Im := 0; -- |
22 [NW of I] Im := 0; -- V
23 count := 0; -- Initialize count
24 fptr := open("Image","r"); -- Find file
25 read(fptr, Im); -- Get the image
26 repeat -- Over all I, iterate
27 Next := Im & (Im@north | Im@NW | Im@west);
28 -- Apply rules (a), (b)
29 Next := Next | (Im@west & Im@north & !Im);
30 -- Apply rules (c), (d)
31 Conn := Im@east | Im@SE | Im@south;
32 -- Find the 1's
33 -- preserving
34 -- connectedness
35 Conn := Im & !Next & !Conn;
36 -- Check disappearance
37 Im := Next; -- Advance iteration
38 smore := |<<Im; -- Decide if continuing
39 count += +<<Conn; -- Count all vanished
40 -- this time
41 until !smore; -- Stop when all zeroes
42 writeln(count); -- Report results
43 close(fptr); -- Close up
44 end;

Figure 4.8. Connected components counting program using the Levialdi
shrinking operator.

Notice that although the two reductions can generally be combined by the
compiler to remove half of the communication overhead, the programmer

ZPL Programming Guide

54

could remove the reduction over Conn from the loop. Specifically, let Accum
be an array of ubyte s initialized to 0. Then, replacing line 39 by

Accum := Accum + Conn;

or its more succinct form

Accum += Conn;

the count of the components vanishing at a given position is kept. When the
loop exits, the total can be computed by reducing Accum,

writeln(+<<Accum);

eliminating the need for the variable count at the expense of adding the array
Accum.

References

R. E. Cypher, J. L. C. Sanz and L. Snyder, 1990. "Algorithms for Image
Component Labeling on SIMD Mesh Connected Computers," IEEE
Transactions on Computers, 39(2):276-281.

ZPL Programming Guide

55

 -- Chapter 5 --

Generalizing ZPL

In earlier chapters the basic array capabilities of ZPL were introduced. Many
of those features have more advanced forms, which will be described in this
chapter. The following specific topics will be treated.

Additional Region Specifications
Degenerate Ranges
@ Compositions
"At" In Region Specifiers
"Of" Compositions
"In" Regions
Combined Specifications

Dynamic Regions
Inheritance
Ditto

Indexed Arrays
Type Declarations
Flooding
Reduction/Scan Revisited
Region Conformance
Procedures

Declarations
Prototypes
Calls
Promotion
Recursion

Shattered Control Flow
Masks

Familiarity with the basic concepts from previous chapters is assumed.

Additional Region Specifications

There are a variety of simplifications that make defining regions easier.

Degenerate Ranges
In region specifications, a degenerate range, i.e. an index range of length 1, can
be specified simply by giving that item. (One is the minimum length of any
range of a dense region. See below.) Thus,

region Col1 = [1..n, 1..1];

ZPL Programming Guide

56

is equivalent to

region Col1 = [1..n, 1];

The rule also applies for dynamic regions (see below).

@ Compositions
Multiple directions can be composed using @. For example, A@east@north
has the same meaning as A@northeast , assuming the directions have their
obvious definitions, north=[-1,0], east=[0,1], northeast=[-1,1] .
The rule is that the resulting direction is found by adding the directions of the
composition as vectors. Notice that because addition is commutative and
associative, the resulting direction is the same regardless of the order of
application, e.g. A@north@east ≡A@east@north . Accordingly, no
parenthesization is necessary, nor is it allowed.

It is believed that a program's clarity is improved by declaring frequently used
directions rather than repeatedly composing them. However, for occasional
use compositions allow the direct formation of specialized regions from basic
parts.

"At" in Region Specifiers
So far, @ has been used to translate arrays, but an analogous translation is also
available for region specifiers using the letter sequence at . The symbols are
restricted: the letter sequence at is used in the region specifiers only, while @
applies to array operands only. Thus, if west = [0,-1] and R = [1..n,
1..n] , then

[R at west] . . .

specifies the region with a 0th column and no nth column. And in

[R at west] . . . A@east . . .

the R region of A is specified, assuming east = [0,1] . That is, the
directions cancel. Cancelling directions are useful, as illustrated in the
"move particles" code in Chapter 9. Compositions are allowed with the
region specifier form of at , e.g. [R at east at north] is allowed. Like @
compositions, the resultant direction is found by adding the directions as
vectors. Parentheses are not necessary or allowed.

"Of" Compositions
Multiple directions can be composed using of . For example, east of north
of R is equivalent to northeast of R , assuming the directions have their
obvious definitions given above. But the situation is more subtle than with

ZPL Programming Guide

57

the at . The rule for of computations is that the resulting region is found by
evaluating the expression "inside-out," i.e. by applying the rightmost
direction to the region, and then working out. Thus, the foregoing expression
would be evaluated as if it were east of (north of R) , although
parenthesization is not permitted. The inside-out rule for of compositions is
natural: Since of is an operator taking both a direction and a region as
operands and yielding a region as a result, applying the inside-out rule to an
of composition effectively collapses d of R to R', a new region, enabling the
next outer most application of of .

Notice that because of -regions are disjoint from their base regions,
expressions that would seem to "cancel," e.g. west of east of R , can be
meaningful. So, assuming a 2D region R and the usual definitions for
directions, the region west of east of R refers to the last column of R.

"In" Regions
The of operator constructs a border region that is adjacent to and just outside
the edge of a base region. The in operator constructs a similar region just
across the edge on the "inside" of the base region. That is, if R = [1..n,
1..n]

[east in R] . . .

refers to the last column of R, assuming east = [0, 1] . Also, assuming
se = [1, 1]

[se in R] . . .

refers to the single element region {(n,n) } in the lower right corner of R.
Notice that combinations of in are permitted without parentheses, allowing

[south in east in R] . . .

to be an alternative formulation for {(n,n) }. As with of , in combinations
are evaluated inside-out from the base region.

Combination Specification
Two classes of combinations are permitted: in and of specifications can be
mixed on the left hand side of a base region, and at can be simultaneously
applied to a region that is constructed using in or of or a combination of the
two.

To interpret a combination of in and of operators applied to a base region,
evaluate them inside-out, just as with expressions composed exclusively of
in or of .

ZPL Programming Guide

58

For expressions containing at together with in or of , the region is found by
applying the inside-out rule to the region as modified by the composed at 's.
Thus, if R is a rank 2 region

[east of south of R at north at west]

refers to the lower right corner index of R, since R at north at west shifts
the array one position up and left, south of that region describes the last row
shifted one position left, and east of that is the element to its right, i.e. the
lower right corner.

R

(a) (b) (c) (d) (e)

Figure 5.1. Combination of at and of . (a) Region R, (b) R at north ,
(c) R at north at west , (d) south of R at north at west ,

 (e) east of south of R at north at west .

As previously mentioned, clarity is likely promoted by declaring frequently
used regions rather than repeatedly specifying them using compositions.

Dynamic Regions

Regions, as explained so far, allow index sets to be named, i.e. declared, and to
be formed by transformation using various prepositions. These are all static
specifications of index sets in that once defined they are unchangeable. It is
usually sensible to use statically known regions wherever possible, since a
meaningful name can convey information to the programmer, there is less
chance of error, and the compiler may be able to apply more optimizations in
such cases. But there are computations that require an index set to vary, and
for those cases dynamic regions are provided.

A dynamic region is not named, but is given literally within the region
specifier of a statement. Typically, some of the lower or upper limit values
will be computed. The index set defined by a dynamic region is computed
each time the statement is executed, allowing the region to be different on
each execution of the statement. For example, the assignment to A in

 for i := 1 to n do
[i, i..n] A := 0;

 end;

ZPL Programming Guide

59

has the cumulative effect of zeroing the diagonal and the upper triangle of A,
assuming A is declared over region [1..n, 1..n] . The dynamic region
specifies a rank 2 index set of shape 1 × (n-i+1) , where the value of the first
index and the lower limit of the second index are different on each iteration.
Thus, the assignment is applied to positions i through n of A's ith row on the
ith cycle through the loop. As a further example of a dynamic region,

[1..n, j..n] pivot := max<<A;

limits the reduction to the last n-j+1 columns of A.

Dynamic regions are identical to static regions in every respect except that
dynamic regions have their index sets recomputed each time they are
encountered, and they cannot induce automatically allocated implicit storage,
i.e. borders. They can greatly simplify programming, and should be used
when needed, even though they are negligibly more expensive than static
regions because of the repeated evaluation. Of course, they should be used
where the capability they provide is not readily achieved by statically defined
regions. Thus, one prefers the highly efficient

[R] A := Index1;

to the less efficient text

 for i := 1 to n do
[i, 1..n] A := i;

 end;

which is also probably a less transparent way to assign the elements of the i th

row the value i .

The careful reader, recognizing that dynamic regions are given in square
brackets and recalling that region specifiers on statements are also given in
square brackets, might wonder why there are not two sets of brackets when
the region specifier is a dynamic region? That is, if

[R] A := ...;

is correct for static regions, why is

[1..n, 1..n] A := ...;

the equivalent dynamic region, instead of

[[1..n, 1..n]] A := ...;

ZPL Programming Guide

60

with its double brackets? Strictly speaking, the double brackets are correct,
and this specification is allowed. However, it is also somewhat tedious to
type the double brackets, so the ZPL compiler accepts either.

Simplified Region Specification

In addition to the simplifications of defining regions using prepositions
shown above, there are two other very helpful facilities in ZPL, inheritance
and dittoing.

Inheritance
To simplify specifying dynamic regions, it is possible to elide, or leave out,
range specifications for any dimensions that are unchanged from the
enclosing region. Those dimensions are said to inherit their ranges in those
dimensions. Thus, for example, in the compound statement

 [1..m, 1..n] begin
 ...

 [,2..n-1] A := ... -- First dimension inherits 1..m
 ...
end;

the assignment to A is performed over the region [1..m, 2..n-1] . The
second dimension, which differs from that of the enclosing region, must be
given explicitly, but the first dimension, which is intended to be unchanged,
need not be specified.

Ditto
Whereas inheritance allows a single dimension to be acquired from the
enclosing region scope, the quote symbol ("), referred to as ditto, allows the
whole applicable region to be referenced. One application of ditto is simply to
save typing, as in

 [1..m, i..n] begin
 ...

 [E of "] A := ... -- Refer to [1..m, n+1]
 ...
end;

where it would have been necessary either to repeat the region [1..m,1..n]
for the "of" expression, or to give the border explicitly, e.g. [1..m, n+1] .
The direction with the ditto is thought to be better technique when there is no
named region. (Notice that the rank of the applicable region is inferred by the
way it is used, i.e. A is presumably, a rank 2 array and E is a 2D direction, so the
ditto refers to the applicable rank 2 region.) Dittoes can be used wherever
regions would be used in region specifiers. Thus [" at south] is another
illustration of typical usage.

ZPL Programming Guide

61

A second use of ditto is in implicit region references within procedures (see
below). For example, suppose a procedure P is called within the scope of the
2D region R, i.e.

[R] X := P(...); -- Call procedure P

Then, in the body of the procedure, it is possible to refer to R using the ditto
notation. For example, within the procedure

[west in "] ... -- Refer to first column

region expressions can use ditto and refer to the applicable region at the call
site, in this case, R. See Procedures below for further information.

Indexed Arrays

ZPL has a second form of array, the indexed array. Syntactically, these look
similar to arrays of scalar languages. The critical property for the ZPL
programmer is that indexed arrays are not a source of concurrency. Unless
used as components of parallel arrays (as described below), indexed arrays are
replicated on each processor, and operations on indexed array values are
repeated on each processor as scalar operations are. Nevertheless, indexed
arrays are useful in many programming situations.

Indexed arrays are declared using the array keyword, followed by the range
specifications for each dimension, followed by the keyword of , followed by a
data type. (Notice that this use of of is unrelated to the of region operator
from above.) The range specifications adhere to the same rules used for
declaring regions. Thus,

var ATMWGT : array [1..92] of float; -- Define 1D index array
 PIXMAP : array [1..8, 1..8] of ubyte; -- Define 2D index array
 LISTOLIST : array [1..10] of array [1..4] of integer;

-- 1D array of 1D arrays

declares a variety of indexed arrays. Indexed array elements are referenced in
the usual way by specifying the index of each dimension enclosed in square
brackets. Thus,

. . . ATMWGT[30] . . .

. . . PIXMAP[1, 4] . . .

. . . LISTOLIST[4][3] . . .

illustrate references to specific items of the previously declared indexed
arrays. As usual, expressions can appear in the brackets where constants are
shown here.

ZPL Programming Guide

62

References to indexed arrays must always be appended with index brackets.
Also, some array operations from (parallel) arrays are available. These
include the arithmetic and logical operators, and assignment. Array
operations are signaled by specifying an empty index reference. Thus,

PIXMAP[] := PIXMAP[] + 1; -- Array ops on indexed arrays OK

increments all elements of PIXMAP. For such expressions to be legal, only
indexed arrays (or scalars) can be used on the right-hand side. Nor is it legal
to apply reductions, scans, wrap , reflect , flood or permute operators.

It is possible to use indexed arrays as elements of parallel arrays, and vice
versa. The resulting data structures are parallel. Thus, assuming R is a rank 2
region, then a 2D (parallel) array of 1D indexed arrays would be declared

var A : [R] array [1..10] of float;-- 2D array of 1D indexed items

Every floating point number in the array can be initialized by

A[] := 0.0; -- Initialize entire array

and individual positions can be treated as a unit, as in

A[10] := MAXFLOAT; -- Set all last items to large

which sets the 10th element in each of the 1D arrays. Wrap and reflect
apply, so

[west of R] reflect A[]; -- Mirror boundary

copies the indexed arrays, i.e. the 1D vectors, of the first column across to the
western boundary.

Not only can indexed arrays be elements of parallel arrays, as just illustrated,
but parallel arrays can be elements of indexed arrays. For example,

var StateHist : array [1..3] of [R] float;

declares an indexed array whose elements are parallel arrays over [R] of
floating point numbers, i.e. three parallel arrays. Reference to the parallel
arrays is by indexing, e.g. StateHist[3] . The usual operations are applied in
the usual way, e.g.

 past := 1; pres := 2; futr := 3; -- Adopt names for states
 . . .

[R] StateHist[past] := StateHist[pres];-- Make current state old

ZPL Programming Guide

63

which assigns one parallel array to another. As always, the parallel array
operations must be performed in the context of the appropriate region.

Of course, it is also possible to have an indexed array of parallel arrays whose
items are themselves indexed arrays. However, no declaration can use more
than one region specifier, i.e. only "one level" of parallel arrays is permitted.
Since concurrency is expressed with parallel arrays, limiting the
generalization in this way allows the concurrency to be focused at a particular
site, namely, parallel arrays. There is no loss in expressive power, since both
forms of array implement the array concepts.

Finally, when parallel arrays contain indexed arrays, it is possible to translate
an operand with @ as well as to index it. In such cases the rule is: "the @
hugs the parallel array identifier". Thus,

... StateHist@east[pres] ... -- @ hugs array

is correct, while

... StateHist[pres]@east ... -- ILLEGAL subscript

is syntactically incorrect.

Type Declarations

Many quantities of interest in scientific computing are represented by
multiple primitive values. Dates are composed of day, month and year,
position is expressed by latitude, longitude and elevation, and orientation is
given by roll, pitch and yaw. It is often convenient to refer to such composite
quantities as whole units, while retaining the ability to use their constituent
parts in computations. Such situations call for custom type declarations.

A type declaration is indicated by the keyword type , followed by an equal
sign, followed by a type specification. So,

type triple = array [1..3] of uinteger; -- Declare triples

declares a new type called a triple composed of a three element integer
array. These types can then be used wherever the built-in types are allowed.
For example,

var date, date_new, box_score : triple; -- Three valued variables

declares variables of the triple type. These variables can be manipulated as
a whole

ZPL Programming Guide

64

date_new[] := date[]; -- Assign all three fields

or as individual elements

date_new[2] := 1 + (date_new[2] % 12); -- Advance month

The empty brackets are required, as usual for indexed arrays, when all
elements are to be referenced.

An alternative to defining composite types by arrays is to define them as
records. This is particularly useful when the constituent values are of
different base types, or when symbolic names are particularly critical. So, for
example,

type box_score = record
runs : ushortint;
hits : ushortint;
errors: ubyte;

 end;

defines a type, box_score , composed of three integral fields. Fields are the
constituents of a record. They are named, and within any record declaration
the names must be unique. Note that the field types can be different.

The field names are used to refer to the values by means of the "dot"
notation, in which the reference has the form v.f where v is a variable of the
indicated type, and f is a field name of that type. So, for example given the
declaration

var inning : box_score;

the value of the runs field can be referenced by inning.runs , as in

inning.runs := inning.runs + 1; -- Another RBI

Since it is possible to have indexed arrays of defined types, the dot notation
composes with indexing. So,

var GAME : array [1..2, 1..9] of box_score; -- Declare indexed array

leads to references of the form GAME[2,7].runs . This can be contrasted with

ZPL Programming Guide

65

type box_rows = record -- Declare an alternate form
runs : array [1..9] of ushortint;
hits : array [1..9] of ushortint;
errors: array [1..9] of ubyte;

end;

var GAMEa : array [1..2] of box_rows; -- Declare GAME with alternate

in which the reference to the "runs in the bottom of the seventh" is now
GAMEa[2].runs[7] . The field is an array, so the field reference, runs[7] ,
requires an index. This is probably less intuitive than GAME[2,7].runs for
the baseball context, but it is equivalent in storage.

Indexed arrays and records are often alternative ways of defining data types,
but they present different advantages and disadvantages. On the one hand
indexed arrays allow limited use of array operations, e.g. all values can be
initialized at once, but all of the values must be of the same type. Records, on
the other hand, can have values of differing types, but these values must be
manipulated one item at a time. Clearly, both mechanisms are valuable tools
for customizing a program's data representation to real world problems.

Flooding

One of the powerful features of ZPL is the ability to fill a matrix with copies of
a row or a column, or more generally, to fill a higher dimensional array with
copies of a lower dimensional array. This operation, called flooding in ZPL is
a generalization of the idea of scalar promotion. In order to describe flooding,
some basic vocabulary must be introduced:

floodable dimension -- a dimension in a region specification in which the
range is replaced by an asterisk. For example, the second dimension in the
region specification [1..n, *] is a floodable dimension.

flood region -- is a region defined with one or more floodable dimensions.
For example, region F = [*, 1..n] is a flood region with a floodable
first dimension.

flood array -- is an array declared over a flood region. For example,

var Flrows, Flrose : [F] float

declares two flood arrays, assuming F region from the previous definition.

The concept behind flooding is that the specified dimensions, i.e. the
nonfloodable dimensions, define the size of the items that are replicated. The
asterisk specifying a floodable dimension might be read as "an indeterminate

ZPL Programming Guide

66

number of," as in "the arrays Flrows and Flrose have an indeterminent
number of n-item rows."

Flooding differs from the concepts introduced so far in that it requires two
regions, the region defining the item to be replicated, and the region of the
floodable array. The region of the flood array is simply the region "on the
statement." The region of the array being replicated is given in brackets
following the flood operator, >>. For example, the last row of the n × n matrix
A can be flooded into the array Flrows by the statement

[F] Flrows := >>[n,1..n] A; -- Copy last row of A (5.1)

yielding an array with an indeterminate number of identical rows. The
region following the operator specifies the last row and the region applying to
the whole statement gives the region of the result. Alternative forms of this
flood statement would be

[F] Flrows := >>[n,] A; -- Copy last row of A

where the bounds of the second dimension are inherited, and

[F] Flrows := >>[south in R] A; -- Copy last row of A

where an in specifies the final row. As another example, the statement

[F] Flrose := >>[i,] B; -- Flood row i of B

replicates row i of B into Flrose .

The two regions of a flood -- the region of the replicated subarray, specified
after the operator, and the region of the result, specified as the applicable
region for the statement -- must have the same rank. The array being
replicated has to be "smaller," of course, in order to be replicated, but this is
achieved by having "collapsed" dimensions, i.e. dimensions in which a
specific index is given. In the above examples, the first dimension is
collapsed. (See Region Conformance, below.)

As an example of flooding, consider the problem of determining if the last
row of A is equal to any row of B. A temporary array, Flrows is filled with the
last row of A, as in statement (5.1) above. This allows an element-wise
comparison over B

[1..m,1..n] ... Flrows = B ...

that will yield an array with one or more rows filled with 1's if a match is
found. See Figure 5.2. (A partial reduction can be used to determine if a
match exists; see below.) A flood array conforms to whatever number of

ZPL Programming Guide

67

items are required in the floodable dimension, so Flrows is treated as if it has
m rows.

An important property of flooding is that only the defining data is stored in
the representation of the flooded array, e.g. only the row defining Flrows in
Figure 5.2. This means that flood arrays get particularly good cache utilization
as compared to fully represented arrays.

...

...

1 01 1 1 1
11 1 1

1 1 1 1
11 1 1 1 1
1 1 1 1 1

1 1 1 1 1

0
0

0
0

0
0

A Flrows B result

=

Figure 5.2. The last row of array A is flooded into Flrows ,
and compared to B to create the logical result array.

Reduction/Scan Revisited

Recall from Chapter 3 the concept of a partial scan was introduced, i.e. a scan
across a subset of the dimensions, allowing, for example, the "running sum"
across each of the rows of an array to be computed. There is an analogous
partial reduction formulated around the usual set of scan/reduce operations,
+, * , max, etc. The principal complication to partial reduce is that it reduces a
subset of the dimensions, producing a logically "smaller" array. Like flood,
then, partial reduction requires that two regions be specified -- the region of
the operand and the region of the ("smaller") result. Like flood, a region is
specified after the reduce operator to indicate a partial reduction.

So, for example,

[1..m,1] A := +<<[1..m,1..n] B; --Add B's columns, save in A's col 1

the region of the statement indicates that the first column is to be assigned.
The region following the reduction operator is compared with the region on
the statement. The difference in the second dimension indicates that the n
columns reduce (by addition) to produce a single column, that is stored in the
first column position of A. An alternate form of this statement might be

[1..m,1] A := +<<[,1..n] B; --Add B's columns, save in A's col 1

where the column specification of the operator's region specifier is inherited,
and

ZPL Programming Guide

68

[west in R] A := +<<[R] B; --Add B's columns, save in A's col 1

where the first column is specified symbolically.

As another example, if A contains Pascal's triangle, its second dimension sum
reduction results in the powers of 2,

1 0 0 0 0 1
1 1 0 0 0 2
1 2 1 0 0 4
1 3 3 1 0 8
1 4 6 4 1 16

 A [1..5,1] ... +<<[1..5,1..5] A ...

Notice that the region to the right of the operator specifies the region for
operations "preceding" the reduction, i.e. in computing the operand, while
the region on the statement specifies the operations "after" the reduction.
So, if R = [1..m,1..n] , and south = [1,0] , then in

[south in R] A := (max<<[R](B+C))/Index2;

the sum of B and C is computed over the entire R region, since that operation
is performed prior to the reduction, and so is determined by the right-hand
side region. The reduce operates down columns, since [south in R] ≡
[m,1..n] , implies a row result. The max of each of the columns forms the
row that is divided by Index2 , i.e. the integers 1 to n, and stored in the last
row of A. The division and the assignment are both over the [south in R]
region since they happen after the reduction.

It is a common programming idiom to partially reduce an array in one or
more dimensions, and then replicate the result in these dimensions. For
example,

[*, 1..n] Afl := >>[1,] +<< [R] A; -- Add up cols, replicate result

sums the columns into the first row, and then floods Afl with the result. A
curious aspect of the region requirements for flood and partial reduction is
that some row, in this case 1, must be specified as a place to reduce to, and the
place to flood from. This is arbitrary in that any row will do. Accordingly,
specifying it is not necessary. Reducing into a flood array is sufficient to
accomplish the flood, as in

[*, 1..n] Afl := +<<[R] A; -- Recommended way to add columns
-- and replicate the result

ZPL Programming Guide

69

which is conceptually cleaner, and is recommended.

Notice two points. First, although partial reduce and partial scan are related,
the dimension over which the operation is performed is expressed differently
-- for scan it is given in brackets, while for reduce it is given by the "change"
in the region between the operand and result.

 [1..n, 1] ... +<<[R] A ... -- Sum reduce rows
 [R] ... +||[2] A ... -- Sum scan rows

This difference is a consequence of the fact that the reduce must specify two
regions, while only one is needed for the scan. Second, neither operation
changes the rank of the operand, i.e. the result has the same rank as the
operand. So, in this example when the rows are summed up, the result is
defined over a column region, i.e. a rank 2 region, as shown on the
statement's region. This property motivates the topic of the next section.

As a closing observation, notice that there is a heuristic for remembering the
operators reduce, scan and flood. In reduce (<<), the result is "smaller" than
the operand, in scan (||) the result is the same size as the operand, and in
flood (>>), the result is "larger" than the operand. In addition, scan is
sometimes known as "parallel prefix."

Region Conformance

ZPL's operators have the property that their operands must be of the same
rank, so that the selected values come from the same index set, possibly
modified by an @. Thus, if A and B are declared over R = [1..n,1..n] , then
i n

[R] ... A + B ...

the addition refers to those elements of A and B with like indices from R. This
is a strict rule. Thus, for example, if C is a rank three array declared over
[1..c,1..n,1..n] , it might seem reasonable to write

[R][4,1..n,1..n] ... A + C ... -- ILLEGAL mixing of ranks

but the application of binary operators to operands of different rank is not
permitted.

A feature called rank change is planned for Advanced ZPL, which allows the
rank of arrays to be changed to accommodate situations like the one just
illustrated. However, even when the capability is available, programmers
will achieve the best performance when they "work within the rank." This is
because arrays are stored based on their ranks, and computing on operands of

ZPL Programming Guide

70

like rank assures that logically related values will be stored near one another,
promoting efficiency. As will be seen, accommodating this requirement is
not onerous.

The situations where "working within a rank" become relevant typically
involve flooding, partial reductions, and, since they are often used to select a
lower rank array, dynamic regions. Partial reductions provide a good
example. Consider a 2D array A that is updated by some computation, and for
which at the end of the iteration, the largest value in each row is compared to
the largest on the last iteration. This computation is given by

[1..n, 1] BigNew := max<<[R] A; -- Find largest in each row
[1..n, 1] Ratio := BigNew/BigOld; -- Trend? >1 ==> increas'n

BigNew , BigOld and Ratio are logically one dimensional, but have been
declared (elsewhere) to be "collapsed" 2D arrays, i.e. columns. This is because
the partial reduce produces a single column result, determining BigNew . The
"like rank" rule then forces BigOld and Ratio to conform.

Procedures

ZPL provides the usual procedure mechanism, including recursion. As with
other languages, procedures in ZPL are a powerful structuring mechanism
making a program easier to write, understand and maintain. But, procedures
are also a convenient mechanism for specifying concurrency through the use
of promotion. This section covers procedure declarations, prototypes, calls,
promotion and recursion.

Procedure Declarations
Procedures are declared anywhere after the program statement, though it is
conventional to declare them following the config var , constant ,
direction , region , type and var declarations, since these are typically
global information applicable to all procedures, implying they should be
specified first. The general form of a procedure declaration is

procedure PName ({ Formals}) {: Type}
{ Locals}
Statement;

where the non-italicized items must be given literally, the italicized items
must be replaced with text of the indicated type, and the items in braces are
optional. PName is a user specified procedure identifier. Type gives the type
of the procedure's result, i.e. the type of the value return ed for functions.
Locals is an optional set of local-to-the-procedure variable declarations,
which come into existence when the procedure is entered and are discarded

ZPL Programming Guide

71

when the procedure is exited. Statement is a single statement performing the
computation, called the procedure body. This is usually, but not always, a
begin -end compound statement. For example, an exceptional case would be

procedure absolute(x: float) : float;
if x ≥ 0.0
 then return x
 else return -x
end;

a value returning procedure, i.e. a function, computing the absolute value of
its argument. Since the if -statement is a single statement, no begin -end is
required to enclose it.

The (possibly empty) Formals list gives the procedure's formal parameters,
separated by semicolons, i.e. the names of the arguments to be used in the
procedure's definition.* A single list item typically declares a sequence of
parameters of a single type according to the following scheme:

{ var } Id_List : Type

where the non-italicized items must be given literally, the italicized items
must be replaced with text of the indicated type, and the braces indicate an
optional item. The Id_List is a subsequence of the procedure's parameters, all
of the same Type. For example,

procedure squarefloor(x, y : float; var xf, yf : integer);
begin
 xf := floor (x * x);
 yf := floor (y * y);
end;

has four parameters, two of which are float s, and two of which are
integer s. Further, the last two parameters are "by-reference" parameters,
discussed momentarily.

If a formal parameter is an array, its characteristics must also be specified
analogously to its original declaration, as in

procedure even_up (Odds : [R] integer) : [R] integer;
return Odds - Odds % 2;

Such a specification requires that the arrays passed to the procedure be
declared over R, but it does not require the computation be performed over all
of R. Rather, the region over which the computation is performed will be

* Notice that the required parentheses explain why the program procedure, i.e. the procedure
with the program's name which typically has no arguments, is always specified with empty
parentheses.

ZPL Programming Guide

72

inherited from the call site, because no region specifier is given in the
procedure. Thus, for example, the procedure Compress0s , to shift a row of an
array left z positions,

procedure Compress0s(var z : integer; var Row : [R] float);
while z > 0 do
 begin

Row := Row@east;
z := z-1;

 end;

has no region specifier in it. So, when it is called in a loop,

for i := 1 to m do
 j := amt; -- The amt of shift is j

[i, 1..n] Compress0s(j, A); -- Shift row i of A by j
end

the region specifying the row to be shifted is inherited from the site of the call.
That is, on the ith call to Compress0s , the region applying to the statement
Row := Row@east will be [i, 1..n] .

Another way for a procedure to accept arrays as parameters is by the rank
defined mechanism. A rank defined specification gives only brackets and
possibly commas. These imply the argument's structure and allow the
flexibility of arguments defined over different regions. Thus for example,

procedure Twice (X : [,] float) : [,] float;
return 2.0 * X;

the X array is rank defined. All arguments passed to Twice must be rank 2,
and their dimensions will be inherited. The applicable region will be
whatever the applicable rank 2 region is at the call site. Thus, in

[1..2, 1..2] A := Twice(B);

a 2 × 2 region of B is doubled, while in

 [1..n,1] A := Twice(B);

the first column is doubled.

The rank of the parameter must be inferable from the rank of the array
specification. This is trivial when the region is given literally,

procedure P0(X : [R] float); -- X is a parallel array over region R

and straightforward for rank defined arrays.

ZPL Programming Guide

73

procedure P1(X : [,] float); -- X is a parallel array of rank 2 that
 -- inherits its region specification
 -- from the call site

It is not possible to infer the rank from a ditto specification, however, since
the procedure might be called from sites where different ranks prevail. So,

procedure P2(X: ["] float); -- ILLEGAL use of ditto

is illegal. Finally, passing an indexed array

procedure P3(X : array[1..n] of float); -- X is an Indexed array

requires the array declaration to be given explicitly in the procedure
specification.

Parameters can be passed to a procedure by either of two methods, as by-value
parameters or as by-reference parameters. The procedure header indicates
which form is being used: The keyword var indicates that the names
following are by-reference parameters; otherwise, they are by-value
parameters. As a heuristic var means that the procedure can only be called
with var iables in corresponding parameter positions.

In the case of value parameters the actual parameter's value (from the
procedure call site) is copied "into" the formal parameter variable of the
procedure. All references to this parameter within the procedure refer to the
local copy. Modifications to by-value parameters change only the local copy.
When the procedure exits, the copy is discarded. Consequently, any
assignments to the local copy will be lost.

For by-reference parameters, i.e. var parameters, no copy is made. Rather, all
references to the formal parameter within the procedure simply refer to the
variable that is the actual parameter value from the call. Modifications to the
formal parameter will change the actual parameter. Thus, by-reference
parameters are a secondary means of returning results to the caller, as shown
in the squarefloor procedure above. The main purpose of by-reference
parameters is to save copying large parameters such as arrays and large
records into the procedure. Wherever possible, var parameters should be
used for this benefit.

Procedure Prototypes
It is essential that a procedure be declared before it is used. But, if in
procedure P there is a call to procedure Q, and within procedure Q there is a
call to P, how can the declare-before-use rule be respected? The solution is
the procedure prototype, which is simply a completely specified procedure

ZPL Programming Guide

74

header in which the keyword prototype replaces the keyword procedure .
For example,

prototype absolute(x: float) : float;

is a prototype for the absolute procedure from above. Notice that all
information about the parameter types and return value are given as in the
declaration. The prototype simply "stands in" for the declaration prior to the
actual declaration. Thus, the sequence

prototype Q (var x, y : float): float; -- State basics of Q's call
procedure P (var u, v : float); -- Declare procedure P

. . .
procedure Q (var x, y : float): float; -- Declare procedure Q

. . .

gives a prototype for procedure Q so that it can be called (in procedure P) prior
to its declaration. All parts of the procedure header must be given in both
places and be identical.

Procedure Call
A procedure is called, or invoked, by giving its name and supplying the
parameters. If the procedure is a value returning procedure then it may be
invoked in an expression as if it were an identifier. Thus

change := change + absolute(segment); --Accumulate magnitude

invokes the absolute procedure declared above. If the procedure is not
value returning, it is invoked as a statement and must appear alone, followed
by a semicolon. Thus, the squarefloor procedure, given above, is treated as
a statement

squarefloor(xbase+deltax, ybase+deltay, xlimit, ylimit);

since it is not value returning, i.e. it returns its results by changing its last two
parameters. Notice that the (actual) parameters supplied in the procedure
call can be variables or expressions if the corresponding parameter is declared
as a by-value parameter. But if the parameter is declared as a by-reference
parameter using var , then the actual parameters in the call can only be
variables. Thus, in the squarefloor procedure call just illustrated,
expressions can be used in the first two parameter positions only.

Promotion
Sequential procedures are procedures that use no array constructs, i.e. do not
contain parallel array declarations, region specifiers, uses of parallel arrays,
wrap , reflect , flooding, mask, reduce or scan. They also cannot call non-
sequential procedures. The absolute and squarefloor procedures defined

ZPL Programming Guide

75

above are sequential procedures. Sequential procedures can be promoted to
apply to arrays. That is, their scalar (formal) parameters can be bound to array
(actual) parameters in a call, to give the effect of applying the procedure to
each item of the arrays. For example,

[R] A := absolute(A); -- Remove negatives

applies the sequential procedure to items of the array A over the region R.

Promotion of sequential procedures is a convenient (and an efficient) way to
perform complex operations in parallel on arrays. See Chapter 9 for
examples.

Recursion
A procedure that calls itself, or calls a procedure sequence that ultimately
results in a call to itself, is said to be recursive. ZPL procedures can be
recursive.

Procedure Declaration and Call Check List

A parameter's type must be declared, as well as the ranks of any arrays.
Value parameters keep a local-to-the-procedure copy.
With no local copy, by-reference parameters, i.e. var parameters, refer

indirectly to the actual parameters.
Any changes in a procedure to value parameters are lost on exit.
Any changes in a procedure to reference parameters persist on exit.
Value parameters can be passed as an identifier or an expression.
Only identifiers can be passed as by-reference parameters.

Figure 5.3 Procedure Usage Check List

Shattered Control-flow

ZPL programs that use scalars in control-flow expressions, such as

if n%2 = 0 then -- Check if problem size is even
...

have a single, sequential thread of control, i.e. one statement is executed at a
time. Specifically, in the statement forms

if lexpression then statements { else statements } end;

if lexpression then statements

ZPL Programming Guide

76

 {{elsif lexpression then statements}}

 {else statements} end;

for var := low to high { by step } do statements end;

while lexpression do statements end;

repeat statements until lexpression;

when the lexpressions, var, low, high and step are scalar values, there is only
one statement executing at any time.

It is permissible to use parallel arrays in the lexpressions, var, low, high and
step positions of these control-flow expressions, subject to certain restrictions.
Parallel arrays used for any of these values are said to cause the control-flow
to shatter. In shattered control-flow, each index value has its own thread of
control. When the statement list execution is completed, the control-flow
returns to sequential execution. The limitations are as follows:

Restrictions on shattered control-flow: The statement list forming
statements cannot assign to scalar variables. A variable modified by @
must be identical in all instances. Uses of wrap , reflect , flooding,
permutation, reduction, scan, mask and region specifiers are prohibited.

The restrictions ensure that when the control-flow shatters, the computation
performed at each index value is based on values that are "known" to that
index. The intuition behind the restriction is that when the control-flow
shatters, there is no guarantee what computation is taking place at other
index positions, and so operations that reference other index positions, e.g.
wrapping, may not be meaningful.

Though shattered control-flow may seem curious, it simply allows operations
to be written in the body of the program that could be realized by writing a
scalar function and promoting it. For example, to compute factorial of each
element of an array without shattered control flow, a scalar factorial
procedure would be defined,

procedure fact(n: integer): integer;
begin
 var product, i: integer;
 product := 1;
 for i := 2 to n do

product := product*i;
end;

 return product;
end;

and then applied to a (parallel) array of non-negative integers by promotion,

A := fact(B);

ZPL Programming Guide

77

to realize the result.

With shattering the factorial computation can be realized by the code,

A := 1; -- Initialize, so 0! is 1 and 1! is 1
for I := 2 to B do

A := A*I; -- Compute the factorial of B
end;

assuming that I is declared as an array. The index variable of the for -loop is
the array I , and the loop limit is the array B. This is more direct and more
succinct than the promoted function solution.

It is generally believed that using procedures is a good programming
technique, since they promote code reuse, encapsulate common processing
logic, promote abstraction, etc. But writing procedures for operations just for
promotion when they could easily be placed in-line in the program causes
unnecessary proliferation of procedures. Shattered control-flow allows for in-
line program text to behave like the application of a promoted scalar
procedure. Notice that if the factorial computation were required multiple
times in a program, the explicit use of a promoted function would become the
preferred solution, since it is about as efficient, names the operation and
reduces the chance of making a notational error in writing the code.

The most common application of shattering is to perform different
computations on different array elements based on an if test. Thus,

if A >= 0
 then
 B := sqrt(A);
 else
 B := sqrt(-A);
end;

which is an effective way to realize selective execution. Masks are another
alternative.

Masks

ZPL makes it trivial to operate uniformly on all elements of arrays, and it is
nearly as simple to operate selectively on arbitrary subsets of regions. The
mechanism is called a mask, and it is expressed as a modifier in a region
specifier. Thus, in the sequence

M := A > 0; -- Boolean array, 1's at pos. positions
[R with M] B:= sqrt(A); -- Take square roots of positive items

ZPL Programming Guide

78

M is an array of 1s and 0s indicating the truth value of the test. In the second
line, M is used as a mask. It specifies that the statement is to be applied only to
those indices of the region where M is nonzero, i.e. logically true. The forms
of masking are,

[R with M]
[R without M]

where R is any region specifier including ditto, and M is a boolean , ubyte or
sbyte . The without operator is the opposite of with , i.e. the statement is
applied to index values corresponding to zero's, i.e. logical false.

Masking, like all region specifiers used with statements, are scoped. Thus, a
mask applies to all of the statements within its scope. When masks are
cascaded, i.e. a masked statement appears in a sequence of statements already
masked, the inner mask supersedes the outer mask(s). Thus, if

M1 ≡ 1 0 1 0 1 0 and M2 ≡ 1 1 1 0 0 0

then

[V] X := 1; -- X ≡ 1 1 1 1 1 1
[V with M1] begin

 X:=X+1; -- X ≡ 2 1 2 1 2 1
 [V with M2] X:=0; -- X ≡ 0 0 0 1 2 1
[V without M2] X:=4; -- X ≡ 0 0 0 4 4 4

end;

has the affect of applying operations within the begin-end compound
statement to the odd index positions. Within the compound statement, that
application is superseded by M2 and its complement.

Finally, a mask can be changed within the scope in which it is applicable, but
the change is not manifest until after the completion of execution of the
scope. Thus, in

[" with M1] begin
 S1;
 M1 := M1@west;

S3;
 end;

the changes to M1 will not apply until the next execution of the begin-end
statement.

Though the restrictions on shattered control-flow prohibit the use of masks,
these can generally be performed prior to the shattering. For example,

ZPL Programming Guide

79

A := 1; -- Initialize
M := B >= 0; -- Find nonnegatives

[R with M] for I := 2 to B do -- Mask outside the loop
A := A*I; -- Factorial

 end;

computes the factorial on only nonnegative values using masking. Since the
mask is applied to the statement, rather than to a statement in the body of the
shattered loop, it is legal.

ZPL Programming Guide

80

-- Chapter 6 --

Programming Techniques

The power of ZPL derives largely from the fact that computations are
expressed by manipulating whole arrays rather than by manipulating
individual scalar values, as in Fortran or C. There are several advantages:
The programming is simpler when less detail is required, making the
program easier to write in the first place and easier to understand later when
it must be changed. Also, arrays in ZPL express the computation in a simple,
succinct way that is more likely to be analyzed successfully by the compiler
than is intricate scalar logic. When the compiler "understands" the program,
it can produce highly efficient code customized to the target computer. Thus,
the computations can actually be more efficient when expressed as arrays.

Though the examples in previous chapters have all been quite natural and
obvious, programming with arrays may be sufficiently new to many
programmers that a discussion of principles and further illustrations of
"standard" array techniques should be useful. Accordingly, this chapter
works through a series of computations solved using whole arrays:

Computation Constructs Illustrated
Matrix Multiplication

Cannon's Algorithm Wrapping, dynamic regions
SUMMA Flooding

Sparse Matrix Product Indexed arrays
Ranking Partial reductions
Histogramming, revisited Flooding, Partial reductions
Vector Quantization Data Compression Indexed arrays
Odd/Even Transposition Sort Masking

The emphasis will be on using the new techniques introduced in the last
chapter, and illustrating good style. (To reduce detail, the "whole program"
aspects of the examples such as including I/O will be dispensed with, since
these are illustrated in Chapter 4.)

Matrix Multiplication

As mentioned in Chapter 1, finding the product of an m×n matrix A and an
n×p matrix B producing an m×p matrix C is usually written in a scalar
language as a triply nested loop:

ZPL Programming Guide

81

FORTRAN MM C MM

DO 10 J = 1,M for (i=0;i<m;i++){
 DO 10 I = 1,P for (j=0;j<p;j++){
 C(I,J) = 0 c[i][j]=0;
 DO 10 K = 1,N for (k=0;k<n;k++){

 10 C(I,J)=C(I,J)+A(I,K)*B(K,J) c[i][j]=c[i][j]
 +a[i][k]*b[k][j];

 }
 }
}

This specification is too rigid for effective use on high performance
computers, since it specifies how to produce the result in a strict one-
operation-at-a-time order. It states that c1,1 is to be produced before c1,2, and
that in producing each ci,j, the product ai,1b1,j is to be produced before ai,2b2,j,
which in turn is to be computed before ai,3b3,j, etc. But, it is not necessary to
follow this rigid order to produce the result. All of the ci,j values can be
computed independently in any order or in parallel, all of the ai,kbk,j
multiplications of each dot product could be computed simultaneously, and
even the addition of these k subproducts to form ci,j can be performed with
considerable concurrency. Some compilers attempt to figure out that such
rigid sequencing is not strictly necessary, and since matrix multiplication is an
intensively studied example, they are frequently, but not always successful on
this computation [Ngo 97]. In general, however, computations are much
more complex, compilers fail to eliminate the unnecessary sequentiality, and
the resulting object programs have very limited concurrency. Thus, when a
computation does not require a specific order of execution, it is preferable not
to specify one. This is the concept behind ZPL's array operations. The
compiler is more likely to produce efficient object code when irrelevant
constraints are not imposed by the programmer.

From these considerations a guideline emerges for formulating effective
algorithms for ZPL programs. Since the operations in each statement of a ZPL
program apply independently to all indices of the region, a useful rule is:

Maximize the size of the regions over which each statement applies.

This will result in a maximum number of independent operations for which
the compiler can plan fast execution. Even when a ZPL program is not
executed on a parallel machine, the rule will often aid the compiler in
improving performance of the cache, instruction pipeline, etc. A corollary to
the rule is suggested by previous discussions:

Minimize the use of intricate control-flow.

Since the control-flow enforces a specific order of execution, the more
involved it becomes, the less likely it is that a compiler will be successful in

ZPL Programming Guide

82

finding optimizations. Of course, both guidelines must be applied with
judgment.

How should matrix product be expressed in accordance with these guidelines?
There are several ways to compute matrix product in ZPL, and two are
considered here to illustrate computational ideas that are further discussed
later.

c11 c12 c13 a11 a12 a13 a14
c21 c22 c23 ⇐ a21 a22 a23 a24
c31 c32 c33 a31 a32 a33 a34
c41 c42 c43 a41 a42 a43 a44

⇑

 b13
 b12 b23
b11 b22 b33
b21 b32 b43
b31 b42
b41

Figure 6.1. Cannon's matrix product.

Cannon's Algorithm: A well known approach that leads to a clean ZPL
solution is Cannon's algorithm [Cannon 69, Kung & Leiserson 80]. To
explain the approach, visualize the computation (Figure 6.1) as taking place in
space. The result matrix C, initialized to 0.0, remains in a fixed position while
skewed instances of the A and B matrices are logically "passed over" C at right
angles. As elements of A and B "pass over" a result position, they are
multiplied together and added into that result position. Thus, on the first
step the value a4,1b1,3 is added to c4,3. On the second step both arrays advance
so that a4,2b2,3 is added into c4,3; additionally, a3,1b1,3 is added into c3,3, and
a4,1b1,2 is added into c4,2. And so forth. The process completes when the A
and B matrices have completely passed over C.

At the mid-point in the computation multiplication and addition operations
are taking place at every position in the result array, a property that is
consistent with globally maximizing the independent operations. Towards
improving the concurrency of the earlier and later steps, where not all
positions are participating, notice that the matrices can be given in a more
normal rectangular orientation by wrapping the skewed portions from the
front of the representation to the back in the case of A and from the top to the
bottom for B. See Figure 6.2.

The lines show the boundary between the end of the skewed array and the
"wrapped" portion. The principal effect of removing the skewing is that for
the computation to be correct, the two operand arrays must begin in a
superimposed position "above" C, and as the computation proceeds, their

ZPL Programming Guide

83

values must circulate by wrapping around in the direction of the arrows so
that the operand pairs of the subcomputations align. For example, in the c3,3
position a3,1 of the A matrix is multiplied by b1,3 in the B matrix on the first
step. See Figure 6.2. If A is shifted-and-wrapped left on each step, and B is
shifted-and-wrapped up on each step, the property that subcomputations of
ci,j are performed at the i,j position will hold.

c11 c12 c13 a11 a12 a13 a14 |
c21 c22 c23 a22 a23 a24 |a21
c31 c32 c33 a33 a34 |a31 a32
c41 c42 c43 a44 |a41 a42 a43

 ⇐

b11 b22 b33
b21 b32 b43 | ⇑
b31 b42 |b13
b41 |b12 b23

Figure 6.2. Packing the skewed arrays into rectangular form
for the revised algorithm.

The key feature of this reformulation is that at each step computation is
taking place at all positions in the result array, i.e. over its whole region,
which achieves the goal of maximizing the region over which the
computation is performed. The entire ZPL program to implement the
Cannon matrix multiplication solution is shown in Figure 6.3.

The first step is to formulate the declarations, beginning with the appropriate
regions

region Lop = [1..m, 1..n]; -- Left operand shape
 Rop = [1..n, 1..p]; -- Right operand shape
 Res = [1..m, 1..p]; -- Result shape

which would collapse to a single region if the matrices were square.
Although the shifting will be left for A and up for B, it will be more
convenient, as explained below, if the directions point in the direction from
which the operands will come.

direction right = [0, 1]; below = [1, 0];

The remaining declarations

var A: [Lop] float; -- Left operand matrix
B: [Rop] float; -- Right operand matrix
C: [Res] float; -- Result matrix
i: integer; -- Iteration variable

define the variables of the computation.

ZPL Programming Guide

84

 1 region Lop = [1..m, 1..n]; -- Left operand shape
 2 Rop = [1..n, 1..p]; -- Right operand shape
 3 Res = [1..m, 1..p]; -- Result shape
 4
 5 direction right = [0, 1]; below = [1, 0];
 6
 7 var A: [Lop] float; -- Left operand matrix
 8 B: [Rop] float; -- Right operand matrix
 9 C: [Res] float; -- Result matrix
10 i: integer; -- Iteration variable

 . . .
12 for i := 2 to m do -- Skew A
13 [right of Lop] wrap A; -- Move 1st col beyond last
14 [i..m, 1..n] A := A@right; -- Shift last i rows left
15 end;
16
17 for i := 2 to p do -- Skew B
18 [below of Rop] wrap B; -- Move 1st row below last
19 [1..n, i..p] B := B@below; -- Shift last i cols up
20 end;
21
22 [Res] C := 0.0; -- Initialize C
23
24 for i := 1 to n do -- For A&B's common dimension
25 [Res] C := C + A*B ; -- Form product and accumulate
26 [right of Lop] wrap A; -- Send first col right
27 [Lop] A := A@right; -- Shift array left
28 [below of Rop] wrap B; -- Send top row down
29 [Rop] B := B@below; -- Shift array up
30 end;

Figure 6.3. Cannon's Matrix Multiplication

The first step is to skew the arrays in place. No skewing is required for the
first row of A. The second row of A needs to be shifted left and wrapped one
position, the third row must be shifted and wrapped around two positions,
etc. The skewing will be performed iteratively, such that on the ith step, rows
i+1 through m are wrapped and shifted one position. A dynamic region
limits the shifting to rows i through m.

for i := 2 to m do -- Skew A
[right of Lop] wrap A; -- Move 1st col beyond last
 [i..m, 1..n] A := A@right; -- Shift last i rows left

end;

The effect of the wrap statement is to copy into the column to the right of
the Lop region of A, the column on the opposite side of the array, i.e. the first
column. Then, when A is replaced with itself offset to the right , the result is
to shift the array left. The results of the three iterations needed to skew A of
the previous example are shown in Figure 6.4.

ZPL Programming Guide

85

a11 a12 a13 a14| - a11 a12 a13 a14|a11
a21 a22 a23 a24| - a22 a23 a24 a21|a21
a31 a32 a33 a34| - a32 a33 a34 a31|a31
a41 a42 a43 a44| - a42 a43 a44 a41|a41
 Initial i=2 step

a11 a12 a13 a14|a11 a11 a12 a13 a14|a11
a22 a23 a24 a21|a22 a22 a23 a24 a21|a22
a33 a34 a31 a32|a32 a33 a34 a31 a32|a33
a43 a44 a41 a42|a42 a44 a41 a42 a43|a43

i=3 step i=4 step

Figure 6.4. Intermediate values at the bottom of the loop while skewing A.

The logic

for i := 2 to p do -- Skew B
[below of Rop] wrap B; -- Move 1st row below last
 [1..n, i..p] B := B@below; -- Shift last i cols up
 end;

for skewing B vertically is analogous. The final preparatory step is to
initialize the result array C.

Now, for as many items as there are in the common dimension, i.e. n , A is
multiplied by B and accumulated into C over the [Res] region, and the entire
operand arrays are cyclically shifted one position on each iteration.

for i := 1 to n do -- For A&B's common dimension
[Res] C := C + A*B; -- Form product and accumulate

[right of Lop] wrap A; -- Send first col right
[Lop] A := A@right; -- Shift array left

[below of Rop] wrap B; -- Send top row down
[Rop] B := B@below; -- Shift array up

end;

Notice that unlike the initial skewing of the operand arrays, the wrapping in
the main loop involves all elements of both operands.

One property of this solution is that it leaves the operand arrays in the
compact-skewed position. If they are required in their proper form later, they
must be "unskewed." If so, it is preferable to begin by copying the arrays to
temporaries which are used in the computation. These can be discarded
rather than unskewed when the computation is completed. Notice that the C
array is oriented in its proper position. Finally, this solution accumulates the
results in an order different than is given in the sequential algorithm shown
at the start of this section. The solution is equivalent for real numbers, of
course, but not necessarily identical in the finite precision of floating point
computer arithmetic.

ZPL Programming Guide

86

SUMMA Algorithm: Another solution that is especially easy to program in
ZPL is the Scalable Universal Matrix Multiplication Algorithm of van de
Geijn and Watts [96]. In ZPL this algorithm can exploit the power of flooding
for the data communication. The result is a highly efficient program. To
simplify the presentation, assume m=n, i.e. the matrices are square.

To explain the SUMMA algorithm, recall that every item ci,j in the matrix
product result is the sum of the products of row i of A times column j of B.
The first of these terms is ai,1b1,j. The SUMMA solution computes all of these
first terms simultaneously. This can be accomplished by flooding the first
column of A and the first row of B into flood arrays, and multiplying
corresponding elements:

a11 a 11 a 11 a 11 b 11 b 12 b 13 b 14 a 11b11 a 11b12 a 11b13 a 11b14
a21 a 21 a 21 a 21 b 11 b 12 b 13 b 14 a 21b11 a 21b12 a 21b13 a 21b14
a31 a 31 a 31 a 31 x b 11 b 12 b 13 b 14 = a 31b11 a 31b12 a 31b13 a 31b14
a41 a 41 a 41 a 41 b 11 b 12 b 13 b 14 a 41b11 a 41b12 a 41b13 a 41b14

 Flood A's 1st column Flood B's 1st row Result elements accum'd into C

The second term can be computed analogously, by flooding the second
column of A and the second row of B. The algorithm continues in this
fashion, so that on the kth iteration the kth term of the dot product is
computed and accumulated into the result array, C.

Notice that although each item in the result is computed by combining an A
row times a B column, to compute all of the entries simultaneously, we flood
an A column and a B row. This may seem backwards, but as one can readily
recognize, it allows the "matching" index positions to align. The easily
specified ZPL program for the SUMMA algorithm is shown in Figure 6.5.

 1 region M = [1..n, 1..n]; -- Region for n x n dense matrix
 2 Fc = [1..n, *]; -- Flood region for left operand
 3 Fr = [*, 1..n]; -- Flood region for right operand
 4 var A,B,C : [M] double; -- Operand and result matrices
 5 Af : [Fc] double; -- Flood array for left operand
 6 Bf : [Fr] double; -- Flood array for right operand
 7 k : integer; -- Iteration index

. . .
 9 [M] C := 0.0; -- Initialize
10 for k := 1 to n do
11 [Fc] Af := >>[1..n,k] A; -- Replicate kth column of A
12 [Fr] Bf := >>[k,1..n] B; -- Replicate kth row of B
13 [M] C := C + Af*Bf;-- Compute kth term in dot prod.
14 end;

Figure 6.5. Flood-based matrix multiplication solution.

ZPL Programming Guide

87

The program begins by declaring the necessary regions, including flood
regions (Lines 2-3), and the appropriate variables. After initializing the result
array C (Line 9), an iteration proceeds to compute each term of the dot product
by flooding columns of A into Af , flooding rows of B into Bf , and multiplying
and accumulating the intermediate products (Lines 11-13).

This program is about the simplest possible solution for multiplying dense
matrices in ZPL,* even simpler than the straightforward Cannon algorithm.
This is a happy outcome, because these algorithms use techniques exploited
in the fastest parallel matrix multiplication algorithms running on present
day parallel computers. This suggests that a critical ZPL design goal -- that its
facilities should tend naturally to lead programmers to effective solutions --
has been achieved in this instance at least.

As a postscript to this exercise programmers are reminded that matrix product
is a common and expensive operation. Accordingly, vendors generally
supply a matrix product subroutine that is customized to their hardware.
Such routines will generally run faster than a program written in a high level
language, though the ZPL flooding solution has outperformed library
routines. The programs given here are convenient, and will suffice for all
but the most intensive applications of matrix product. For these extreme
cases a call to such a library routine is generally advised.

Sparse Matrix Product

The matrices that arise in many scientific computations have the property
that they are sparse, i.e. only a few of the entries are nonzero. Representing
such matrices as dense matrices with all of the zeroes given explicitly is very
wasteful of both space and time. So, these matrices are generally represented
in compact form where only the nonzero values are stored. A typical compact
form would represent each row by pairs of values, the first item of which is
the column index for the nonzero matrix entry, and the second item is its
value. Thus, if row 50 had nonzeroes in columns 49, 50, 51 and 52 then

(49, 2.0) (50, 4.0) (51, 6.0) (52, 8.0)

would be its compact representation.

As an illustration of computing with compact representations, consider a
sparse matrix multiplication computation. To simplify matters for the

* Flooding can be used to replicate the 2D arrays A and B into 3D to be multiplied together
elementwise. The result is produced with a partial sum-reduction. This 1-line matrix
multiply, though still time and space efficient, is not as space efficient as the row-column
version presented here.

ZPL Programming Guide

88

moment, only the special case of tridiagonal matrices will be considered, that
is, matrices in which the nonzeroes of row i are in columns i-1, i and i+1.
Since all of the nonzeroes are in regular positions, storing the column
numbers with the values is unnecessary. The values are stored in a linear
array, where each entry is a triple representing a row, such that the i-1st item
is stored in the first position, followed by the ith and i+1st items. Accordingly,
the array

1 2
1 2 3
 2 3 4
 3 4 5
 4 5 6
 5 6 7
 6 7

would appear as

0 1 2
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 0

In order that the diagonal (ith) element always to be in the second position, it
is necessary to begin the first row in the second position. As will be seen later
it is convenient if the first element is assigned 0. Similarly, padding the last
row with a 0 will make the algorithm work out nicely.

This approach implies the following declarations

region R = [1..n];
type cform = array [1..3] of float;
var A, B, C : [R] cform;

for the compact form data representation. Notice the region is one
dimensional.

To formulate the matrix multiplication algorithm, focus on the elements of,
say, the 4th row. Of the items in the resulting matrix, C, only three entries
will be nonzero, c4,3, c4,4 and c4,5, and of the terms in their defining equations,

. . .
c43 ≡ a 41b13+a42b23+a43b33+a44b43+a45b53 +a 46b63+a47b73

c44 ≡ a 41b14+a42b24+a43b34+a44b44+a45b54+a46b64+a47b74

c45 ≡ a 41b15+a42b25+a43b35 + a44b45+a45b55+a46b65+a47b75
. . .

ZPL Programming Guide

89

only the elements shown in bold are nonzero. This simplifies the
computation. For example, given that all three arrays are represented in the
same compact form, it is necessary only to refer to values in the rows above
and below a given row, e.g. to compute row 4, only rows 3 and 5 need be
referenced. This motivates the definition of two directions,

direction above = [-1]; below = [+1];

to allow the previous and next rows to be referenced.

The computation of the product is direct by generalizing the equations given
above. The three values for a row, C[1] , C[2] and C[3] , are computed
simultaneously by the equations

C[1] := A[1]*B[2]@above + A[2]*B[1]; -- i-1
C[2] := A[1]*B[3]@above + A[2]*B[2] + A[3]*B[1]@below; -- i
C[3] := A[2]*B[3] + A[3]*B[2]@below; -- i+1

Recalling that the indexes 1, 2 and 3 correspond to column indices i-1, i and
i+1, the value of the diagonal element C[2] is computed by multiplying the
three values stored in an A row times the three B values found by selecting
the last value from the row above , the diagonal of the present row and the
first value in the row below . The other two elements are similarly
computed.

 1 region R = [1..n]; -- Only 1D Region needed
 2 type cform = array [1..3] of float; -- Create compact form
 3 var A, B, C : [R] cform; -- Matrices are compact
 4 direction above = [-1]; below = [+1]; -- Refer as rows

...
 6 [R] begin
 7 [above of R] B[] := 0.0; -- Initialize 0th row
 8 [below of R] B[] := 0.0; -- Initialize n+1st row
 9 C[1] := A[1]*B[2]@above + A[2]*B[1];
10 C[2] := A[1]*B[3]@above + A[2]*B[2] + A[3]*B[1]@below;
11 C[3] := A[2]*B[3] + A[3]*B[2]@below;
12 end;

Figure 6.6. Tridiagonal matrix multiplication using compact form.

The three statements compute all elements of the result matrix
simultaneously, provided there is suitable initialization: First, the 0th and
n+1st rows of B must be initialized to 0.0 so that the above and below
references are defined and vanish when computing the terms for the first and
last rows, respectively. This motivates the initialization

[above of R] B[] := 0.0;
[below of R] B[] := 0.0;

ZPL Programming Guide

90

By leaving the brackets empty, the assignment is to each element of the triple.
Second, to assure that the C[1] entry for row 1 and the C[3] entry for row n
compute to zero, B[1] of row 1 and B[3] of row n must be initialized to 0.0 as
well. Since this is the normal way to represent the array, the requirement is
treated simply as a property of the input, rather than a value to be computed.
The result is shown in Figure 6.6.

Ranking

Ranking a set of items is a common operation. It is easily performed in ZPL.
For the example here, assume that the n items to be ranked come from some
small finite set of values such as the integers 1 to s. There will be duplicates,
since s << n, and the rule is that when values are the same, the one with the
lower index in the input is to have the lower rank.

Input (s=3): 3 1 1 2 1 3 Output: 5 1 2 4 3 6

3 1 1 2 1 3 1 1 1 1 1 1 0 1 1 0 1 0 0 1 2 2 3 3 0 1 2 0 3 0 5 1 2 4 3 6
3 1 1 2 1 3 2 2 2 2 2 2 0 0 0 1 0 0 3 3 3 4 4 4 0 0 0 4 0 0
3 1 1 2 1 3 3 3 3 3 3 3 1 0 0 0 0 1 5 5 5 5 5 6 5 0 0 0 0 6
Flood Input Index1 P +||P P*(+||P) Reduce Cols

Figure 6.7. Ranking n=6 items ranging over s=3 values.

The technique is to use an s × n temporary array P to represent the position of
the item. See Figure 6.7. P is set to 0's and 1's such that there is a 1 in position
i,j if item j has value i; and 0's elsewhere. These settings are computed by
flooding the input into the rows of an array and comparing that to the row
index, Index1 . By adding up these 1's (with a scan) and removing the
intermediates (by multiplying by P), the columns of P can be reduced to yield
the result. A program fragment is shown in Figure 6.8.

 1 region Io = [1, 1..n]; -- Region for the input/output
 2 R = [1..s, 1..n]; -- Basic working region
 3 F = [*, 1..n]; -- Flood region
 4 var In,Out : [Io] ubyte; -- Problem is limited to 256 < s
 5 P : [R]; -- Processing array
 6 Z : [F]; -- Flood array

. . .
 8 [F] Z := >>[Io]In; -- Replicate the input
 9 [R] P := Z = Index1; -- Mark where there are items?
10 [R] P := P * (+||P); -- Find the overall order
11 [Io] Out := +<<[R] P; -- Add up columns w/partial reduce

Figure 6.8. Ranking computation based on scan and partial reduction

ZPL Programming Guide

91

Several features of the program are significant. First, the source array (In)
and output array (Out), which are logically one dimensional arrays, are
defined to be single-row two dimensional arrays. This is because the
computation will operate in two dimensions, and it is highly efficient to work
"within the same rank," as explained in the discussion on Region
Conformance in the last chapter.

Second, the computation relies on the fact that the plus-scan wraps around
on each row as it accumulates the entries of an array.

Third, the partial reduce that adds up the columns must specify which
dimension is being reduced. This is expressed by the "difference" between the
region of the statement [Io] and the region following the operator [R] .
Specifically, the region on line 11 is [1,1..n] , while the region specified with
the reduction is [1..s,1..n] , implying that the first dimension reduces.

Finally, the computation may appear very "heavy weight," but in fact it is
likely to be quite efficient. As mentioned in the flooding definition, flood
arrays are represented with only the defining values. So, Z is not 2D despite
being used that way. Index1 is a logical array created by the compiler, and
does not occupy memory. The scan operation will be implemented by the
efficient parallel prefix technique, as will the reduction. Finally, though ZPL
relies on the native C compiler for low level optimizations, many compilers
perform "strength reduction" optimizations on operations such as the
multiply by 0-1 values here, i.e. an equivalent sequence of operations not
involving multiply may be used. And even when the compiler doesn't
perform strength reduction, it is likely that the multiply is a better choice than
an if-then-else on modern pipelined processors. Thus, this ranking
solution is likely to be reasonably efficient even ignoring the benefits of
parallel processing.

Histogramming, Revisited

In Chapter 4 a small histogramming program was presented, which printed
the ranges of the intervals and the number of items assigned to each interval.
Using the ideas from the ranking example above, it is possible to consider an
alternative implementation based on the partial reduce operation. See Figure
6.9.

This solution begins by revising the previous 1D region to a 2D, single row
region. The logic follows the earlier solution, computing bin numbers by
dividing each item by the interval size, correcting to 1-origin. The
histogramming operation comes in the final line where the BinNo array is
flooded in the first dimension, i.e. the rows are replicated, and then compared
to Index1 to create a logical array that is accumulated row-wise to form the

ZPL Programming Guide

92

result. The size of the flooded intermediate array comes from the region
specified with the partial reduction, i.e. [1..b,1..n] . The partial reduce is
performed across the second dimension, as can be seen by inspecting the
region of the partial reduction operator and the region of the context (Line
14).

Revisit the example from the Chapter 4 historgram program, in which b ≡ 3
and the input

Values ≡ 6.3 -4.2 0.0 1.9 5.4 -2.2 -4.2 -2.2

resulted in bin numbers

BinNo ≡ 3 1 2 2 3 1 1 1

Then Line 14 produces the result 4 2 2 and the intermediate values
shown in Figure 6.10.

This is effectively the same solution as presented before, except that it is
performed as a single operation rather than iteratively. And, like the ranking
solution, should be efficient for moderate values of b.

 1 region Rw = [1,1..n]; -- The index space of the data
 2 var small, big, size : float; -- Real scalars
 3 Hist : [1..b,1] integer; -- Array to hold histogram
 4 Values: [S] float; -- Data value array
 5 BinNo : [S] ubyte; -- Interval no., expect at most 255

. . .
 7 [S]begin
 8 small := min<<Values; -- Find a smallest value
 9 big := max<<Values; -- Find a largest value
10 size := (big-small)/b; -- Figure size of the intervals
11 BinNo := ceil((Values-small)/size);-- Compute position, round up
12 BinNo := BinNo + !BinNo; --Include small endpoints in first
13 -- bin yielding 1-origin indexing
14 [1..b,1] Hist := +<<[1..b,1..n](Index1 = >>[1,1..n] BinNo);
15 -- Flood BinNo down columns, compare
16 -- to create logical rows to sum
17 -- over to find histogram directly
18 end;

Figure 6.9. Revised histogram computation.

1 1 1 1 1 1 1 1 3 1 2 2 3 1 1 1 0 1 0 0 0 1 1 1 4
2 2 2 2 2 2 2 2 3 1 2 2 3 1 1 1 0 0 1 1 0 0 0 0 2
3 3 3 3 3 3 3 3 3 1 2 2 3 1 1 1 1 0 0 0 1 0 0 0 2

 (a) (b) (c) (d)

Figure 6.10. Values from Line 14 of the Histogram program of Figure 6.9
 (a) Index1, (b) >>[1,1..n] BinNo, (c) Index1 = >>[1,1..n] BinNo, (d) Hist.

ZPL Programming Guide

93

Vector Quantization Data Compression

The bits of an image are often compressed so that, for example, they can be
transmitted efficiently over a low bandwidth communication link. There are
lossless compression schemes that allow all bits of the image to be
reconstructed later, and lossy compression schemes that lose some
information in order to achieve a much greater degree of compression. Lossy
schemes are chosen when the use made of the images is not materially
affected by the lost information. Vector quantization is one such lossy
scheme.

In vector quantization a codebook is created by "training" it on a sample set of
images. This codebook is then used to compress/decompress the images. In
the ZPL program shown here, the 8-bit pixels of an image are considered to be
arranged in 2×2 groups which are matched against the 2×2 pixel entries of a
256-entry codebook and replaced by the index of that codebook entry that most
closely matches. Thus, this lossy scheme achieves a 4:1 compression ratio.
The 2×2 groups motivate the definition of a data type, block , which is a 2×2
indexed array. The images (Im) and the codebook (CB) have blocks as items.
The simple program is shown in Figure 6.11.

The program begins with the declarations, all of which are by now standard,
except for the data type declaration block . The variable Im represents an
image as block s, so that its default size in block s, 512 × 512, implies an
image of 1024 × 1024 size in pixels.

A function dist(b1, b2) is defined to take two block s as parameters and
return the floating point number that is the mean square distance between
them. Since the blocks are 2D indexed arrays, the computation simply makes
explicit reference to the items of the blocks, and returns the result. The
procedure is a scalar procedure in the sense that it takes single items of type
block as parameters, though these elements are themselves arrays, of course.
When the dist procedure is used in the body of the program, it will be called
with a scalar first argument, a block from the codebook, and an array second
argument, the image. This causes the procedure to be promoted to apply to
each position, i.e. each block of the image.

The program begins by reading in the codebook CB which, to avoid being
distracted by the details of I/O, is not shown. Then, in the processing loop
images are read in, compressed, and the compressed results are written out.
The logic of the processing loop is particularly simple. The "old" distance
array, Disto , is initialized to be the distance of every image block to the first
codebook entry. Then, for the remaining entries in CB, the "new" distance to
every image block Distn is computed, and the best so far is stored in the

ZPL Programming Guide

94

Coding array. When all codebook entries have been considered, the contents
of Coding is the compressed image, which is written out.

 1 config var n : integer = 512; -- Image size
 2 region R = [1..n, 1..n]; -- Problem domain
 3 type block = array [1..2, 1..2] of ubyte;
 4 -- The compression is based on
 5 -- 2x2 blocks of 8-bit pixels
 6 var CB: array [0..255] of block; -- Codebook, an indexed array
 7 Im: [R] block; -- Image array
 8 Disto, -- Old distance array
 9 Distn: [R] float; -- New distance array
10 Coding: [R] ubyte; -- Coding array
11 i: integer; -- Loop index
12
13 procedure dist(b1, b2: block): float;
14 -- A function to compute the mean square distance
15 -- Block b2 to be promoted
16 return ((b1[1,1] - b2[1,1])^2
17 + (b1[1,2] - b2[1,2])^2
18 + (b1[2,1] - b2[2,1])^2
19 + (b1[2,2] - b2[2,2])^2)/4.0;

. . .
21 -- Input codebook here
22 [R] repeat -- Compress all images ...
23 -- Input an image blocked into Im
24 Disto := dist(CB[0],Im); -- Init old distance array
25 Coding := 0; -- 1 is closest so far
26
27 /* Move through codebook, finding how they match up */
28 for i := 1 to 255 do
29 Distn := dist(CB[i],Im); -- Compute distance for entry
30 if Disto > Distn -- Shatter to process entries
31 then
32 Disto := Distn; -- New distance is smaller
33 Coding := i; -- ith entry is best so far
34 end;
35 end;
36 -- Output the compressed image in Coding
37 until no_more;

Figure 6.11. Lossy data compression program.

Notice that the update of the best match (Lines 30-34) is performed using
shattered control flow. That is, the condition of the if -statement

Disto > Distn

is a test over arrays, so the statement is executed independently for every
index in the region, R. For those in which the best previously computed
distance, Disto , is larger than the new distance, Distn , the new distance is
saved and its index stored in Coding . For those indices for which the
condition does not hold, there is no change.

ZPL Programming Guide

95

The Compress computation is highly efficient. Since the codebook array, CB,
is an indexed array it is replicated on each processor when the program is
executed in parallel. This means that each processor of a parallel computer
can perform its part of the compression without any interprocessor
communication. This makes the core of the program maximally concurrent.
The key issue in the program's performance concerns the details of reading in
the raw images and writing out compressed images. Parallel I/O is crucial,
but unfortunately it is a very machine specific operation. So, it is not possible
to evaluate the performance of this computation fully.

Odd/Even Transposition Sort

Ordering a set of elements is a computation with wide application, and one
that has been intensively studied. Since it is generally possible to sort much
faster when one exploits the specifics of a particular computer, vendors
typically provide a highly optimized sorting procedure customized to their
hardware. When the data set is very large, or sorting is used repeatedly, it is
advisable to invoke the library procedure, rather than a sort written in ZPL or
any high level language. Nevertheless, sorting provides a handy illustration
of several language features.

The Odd/Even Transposition Sort orders a linear array of items by comparing
each odd indexed item with the next element, and interchanging them if they
are out of order. This operation applied to all odd-even pairs is called a half
step, and clearly, since the data items do not interfere, the operations can be
performed simultaneously. The other half step is to perform the same
operation on each even-odd pair. The sort repeatedly applies the two half
steps until no interchanges take place, i.e. every element is in order with
respect to its successor.

A ZPL program for the masking version of the computation is shown in
Figure 6.12. The program begins with standard declarations. It then sets up a
constant array, Oe, which has 1 's in alternating positions (Line 12). The logic
of the program after initializations is to iterate (Lines 19-36), performing the
two half steps until there is no change, i.e. unordered (Line 34) is false. If the
array is initially sorted, the loop is never entered, due to the initial
assignment (Line 16) of unordered .

Of interest is the use of masking to restrict attention first to the out-of-order
odd-even pairs (Lines 22-25), and then the out-of-order even-odd pairs (Lines
29-32). In Line 22, Mask is true for odd indexed values that are larger than the
following element, and it is only for these values that the array operations
within the begin-end statement will have an effect. Accordingly, if Mask is
true for index i, the ith element of Temp is assigned the smaller value, and the
i+1st element of Temp is assigned the larger value of the pair. Notice that each

ZPL Programming Guide

96

index value is considered for each statement, and so the execution time is not
significantly affected by how many Mask bits are set.

 1 program OET_Sort; -- Odd/Even Transposition Sort
 2
 3 config var n : integer = 100; -- Problem size
 4 region V = [1..n]; -- Problem Space
 5 direction next = [1]; -- Reference to right neighbor
 6
 7 procedure OET_Sort(); -- Entry point
 8 var Val, Temp : [V] float; -- Value arrays
 9 Mask, Oe : [V] ubyte; -- Arrays to mark interch's
10 unordered : boolean; -- Termination condition
11 [V] begin
12 Oe := Index1%2; -- Set alternate positions
13 read(Val); -- Get input
14 [next of V] Val := max_float; -- Disable final element
15 Mask := Val > Val@next; -- nonzeroes indicate disorder
16 unordered := |<<Mask; -- Is there disorder?
17 Temp := Val; -- Initialize
18
19 while unordered do
20 /* Odd Halfstep */
21 Mask := Mask & Oe; -- Mark odd unordered items
22 [" with Mask] begin -- Wherever these occur
23 Temp := Val@next; -- Set larger
24 Temp@next := Val; -- Set smaller
25 end;
26 Val := Temp; -- Update
27 /* Even Halfstep */
28 Mask := (Val>Val@next) & !Oe;-- Consider evens
29 [" with Mask] begin -- Wherever disorder exists
30 Temp := Val@next; -- Set larger
31 Temp@next := Val; -- Set smaller
32 end;
33 Mask := Val > Val@next;--Where disorder remains
34 unordered := |<<Mask; -- Any change?
35 Val := Temp; -- Update
36 end;
37 writeln(Val); -- Print it
38 end;

Figure 6.12. Odd/even transposition sort.

To assist in understanding the execution of OET_Sort , these intermediate
values of Mask and Val for n=8

Line 21.5 Line 28.5
 Mask Val Mask Val .
1 0 1 0 0 0 0 0 3 1 4 1 5 9 2 6 0 1 0 0 0 1 0 0 1 3 1 4 5 9 2 6
0 0 0 0 1 0 1 0 1 1 3 4 5 2 9 6 0 0 0 1 0 0 0 0 1 1 3 4 2 5 6 9
0 0 1 0 0 0 0 0 1 1 2 3 4 5 6 9 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 9

ZPL Programming Guide

97

were produced by inserting write statements before the masked compound
statements, i.e. at Lines 21.5 and 28.5.

References

L. F. Cannon, 1969. "A Cellular Computer to Implement the (Kalman) Filter
Algorithm," PhD Thesis, Montana State University.

H. T. Kung and C. E. Leiserson, 1980. "Algorithms for VLSI Processor Arrays,"
In Carver Mead and Lynn Conway, Introduction to VLSI Systems,
Addison Wesley.

Ton Ahn Ngo, 1997, The Effectiveness of Two Data Parallel Languages, HPF
and ZPL, PhD Dissertation, University of Washington.

Robert van de Geijn and JerrellWatts, 1997, "SUMMA: Scalable universal
matrix multiplication algorithm," Concurrency Practice and
Experience, 9(4):255-274.

ZPL Programming Guide

98

-- Chapter 7 --

Advanced ZPL Concepts

In previous chapters fundamental ZPL concepts such as regions, directions,
translations, etc. have been introduced. In this chapter, generalizations to
those concepts are introduced that allow much more sophisticated programs.

Strided Regions and Arrays

In addition to working with dense arrays, ZPL programmers also have the
ability to compute over arrays in which elements have been uniformly
"removed." The regions and arrays are called strided, because skipping
indices at regular intervals between referencing elements is suggestive of
"walking" over the index ranges with "long strides." Strided arrays are the
way in which multigrid and wavelet computations are expressed in ZPL.

As with other features of ZPL, striding is accomplished through the use of
regions. To "stride" a region, the key word by is used with a direction, as in

region S = [0..9, 0..9] by [2, 2];

which has the effect of defining S to have only even number indices in both
dimensions. That is, beginning with a region with 100 index pairs, the
definition of S yields a region with only 25 index pairs.

S = {(0,0), (0,2), (0,4), ..., (2,0), (2,2), (2,4), ... , (8,8) }

In effect, the direction gives the stride for each dimension, i.e. the amount to
be added to an index in each dimension to find the next index.

Strided regions are usually defined from a base region. Thus,

region R = [0..n-1, 0..n-1];
S = R by [2, 2];

defines R and then defines S as a strided by [2,2] variant of R. Notice that
the index sets of R and S are related in that S contains alternate index
positions of R. Of course, it is possible to make multiple regions, as in

ZPL Programming Guide

99

region R = [0..n-1, 0..n-1];
S2 = R by [2, 2];
S4 = R by [4, 4]; -- Recommended style
S8 = R by [8, 8];

which could also be defined successively, as in

region R = [0..n-1, 0..n-1];
S2 = R by [2, 2];
S4 = S2 by [2, 2]; -- Alternate form
S8 = S4 by [2, 2];

In general, it is thought to be better programming style to define all strides
relative to the base region, i.e. the first form is preferred. Some ZPL
programmers find it convenient to use indices in the base range 0..n-1
rather than the range 1..n in order to make it easy to express which items are
present in a strided region, e.g. "indices divisible by 4".*

It is not necessary to stride in all dimensions. To declare a region with dense
indices in the first dimension, but alternate indices in the second dimension,
i.e. stride the rows, write

region Sr = R by [1, 2]; -- Stride rows by 2

Similarly, a three dimensional region with only the first dimension strided
might be declared

region S3D = [0..r, 0..s, 0..t] by [2, 1, 1];

Of course, the stride amount must be a positive integral value. Notice the
useful heuristic that the direction gives the dimensions of the bounding box
of the subarray that is "collapsed" into each strided index.

Strided regions can be used wherever dense regions can be used. As with
other region specifications it is possible to stride regions dynamically. Thus

[[0..i-1] by [2]] ...; -- Reference alternate elements up to i

defines a one dimensional dynamic strided region, where the value of i is
bound when the statement is executed.

* Some multigrid programmers think of the indices of the coarser grids as dense, i.e. as
stepping by a unit stride. ZPL does not provide the ability to remap strided indices into dense
sequences, preferring instead to preserve the correspondence between present elements of any
stride. But, if 0-origin indexing is used, then it is easy to mentally remap the indices to dense
positions, since strided region indices always have the stride as a factor, assisting mental
remapping. Thus, for example, index 12 would correspond to index 6 in a dense remapping of a
strided-by-2 dimension, while it would correspond to index 3 for a dense of remapping of a
strided-by-4 region.

ZPL Programming Guide

100

Arrays with strided indices are declared in the usual way using strided
regions. Thus, assuming the declarations given above,

var By2Pos: [S2] double; -- Strided array with even indices
 By4Pos: [S4] double; -- Strided array with indices div by 4
 By8Pos: [S8] double; -- Strided array with indices div by 8

defines arrays with the index sets indicated.

Recall that in Chapter 3, the following rule was introduced:

Any array can be used in the scope of any region specifier provided the
array is defined for all indices specified in the region.

In Chapter 3 the rule prevented the use of arrays whose index sets were
smaller than the regions in whose scope they were used. In the context of
strided arrays, the rule means that computations must be performed in the
scope of region specifiers that are aligned and have the same or larger strides.
Thus, assuming the declarations from above,

[S2] By2Pos := 0; -- Initialize strided region

is the proper way to reference a strided region, but

[R] By2Pos := 0; -- ILLEGAL

is illegal because R contains index pairs that By2Pos does not have. The rule
prohibits this kind of usage.

Of course, it is quite appropriate for an array to have more elements than are
referred to in the strided region. So, assuming the declarations

region R = [0..n-1, 0..n-1]; S2 = [R] by [2,2];
var X : [R] double; Xby2 : [S2] double;

a possible way to aggregate the elements of X into Xby2 would be expressed

[S2] Xby2 := 0.4*X + 0.25*X@east + 0.25*X@south + 0.1*X@se;

where the region is strided, as is the left-hand side array, but the array, X, is
dense. The elements of X that are referenced in the subexpression 0.4*X are
those of the region S2. The X@east expression in the scope of S2 means that
the elements of X with an odd index in the second position are to be
referenced. That is, the direction east = [0,1] is added to each of the
indices of the strided region as usual to produce a new index set with which
to reference X. Similarly for X@south and X@se. Of course, border regions

ZPL Programming Guide

101

may be required on the right and bottom to assure that all references are
defined, e.g. when n is odd.

As just discussed when the array is dense, directions define neighbors in the
usual way even if the region providing the index set happens to be strided.
When the array is strided, directions also define neighbors in the usual way,
but now there is a subtlety. What is the east neighbor of a strided-by-2
dimension? In the dense case the east neighbor can be computed by adding 1
in that dimension, i.e. by adding the stride, and in the strided-by-2 case the
east neighbor is also found by adding 2, the stride.

Consider a strided-by-2 linear array Alt ,

var Alt : [0..n-1] by [2] double;

whose values are to be linearly interpolated to fill a dense array Full . The
direction right2 = [2] is used to reference the next element in the strided
region in the statement sequence

[[0..n-1] by right2] begin
 Full := Alt; -- Set evens
 Full@right := (Alt+Alt@right2)/2.0;--Set odds
end

where right = [1] refers to the next among the dense indices, and there is
assumed to be a border element of Alt with index n.

An alternative way to have expressed the same computation would have
been to refer to the two strided subsequences of [0..n] separately, and to use
left = [-1] to reference the previous element, as in

[[0..n-1] by right2] Full := Alt; -- Set evens
[[1..n] by right2] Full := (Alt@left + Alt@right)/2.0;-- Set odds

Though Alt is not defined for any of the indices in [[1..n] by right2] ,
the fact that each instance of Alt in the second line is modified by a direction
that produces only indices of defined values fulfills the requirements of the
previously mentioned rule.

In summary, the neighboring elements of a strided array can be referred to
using @d, but it is essential that when direction d is added to the indices of the
applicable region that they refer to defined elements of the array. This will
generally mean that the neighbor referenced with direction d in a dense array
will have to be scaled by the stride to perform the same reference in the
strided array.

ZPL Programming Guide

102

Multidirections

Strided regions often present situations in which it is convenient to
"compute" directions, i.e. the specific neighbor to be referenced is a variable
rather than a constant. Much of the flexibility of fully computed directions
can be achieved by using multidirections.

A multidirection is a regular sequence of directions with a common name.
The elements of the sequence can be referenced by name and index. The
general form is to declare the multidirection as follows

direction Dname{ index set } = direction scaledby expression;

where

Dname is an identifier naming the direction
index set is a nonnegative lower and upper limit separated by ..
direction is any direction, i.e. integer d-tuple
expression is any arithmetic expression containing instances of the

symbol {} in operand positions

and all other symbols must be given as shown. For example, assuming the
1D direction right = [1] the multidirection declaration

direction stride_right {0..5} = right scaledby 2^{};

defines the sequence of six directions,

stride_right{0} ≡ [1] * 2^0 ≡ [1]
stride_right{1} ≡ [1] * 2^1 ≡ [2]
stride_right{2} ≡ [1] * 2^2 ≡ [4]
stride_right{3} ≡ [1] * 2^3 ≡ [8]
stride_right{4} ≡ [1] * 2^4 ≡ [16]
stride_right{5} ≡ [1] * 2^5 ≡ [32]

of varying distances to the right. The multiple directions are defined relative
to a base direction, in this case right , by scaling with the expression. The
brace pair {} stands for multidirection indices such that the ith index i
replaces the brace pair in the expression.

Like all directions multidirections are referenced using the standard @ symbol
with operands except that an index is also specified in braces, {} . Thus, for
example, assuming the stride_right directions declared above,

for i := 0 to 5 do

ZPL Programming Guide

103

 ... A@stride_right{i} ...
end;

has the effect of referencing items of A shifted right one position for i = 0 ,
then two positions for i = 1 , etc., up to 32 positions to the right for i = 5 .

In the multidirection declaration the lower and upper limits of the index
interval are arbitrary expressions evaluating to nonnegative integer constants
(lower ≤ upper). The base direction can be any legal direction. The scaling
expression can be any expression involving instances of a brace pair, {} in
operand positions and evaluating to an integer. For each index in the range
the expression is evaluated with that index value substituted for all
occurrences of {} , and the result is multiplied times each dimension of the
base direction to yield the direction for that index.

As a further illustration, assuming se = [1, 1] , the

direction SE{1..4} = se scaledby {};

defines the four directions

SE{1} ≡ [1,1] * 1 ≡ [1,1]
SE{2} ≡ [1,1] * 2 ≡ [2,2]
SE{3} ≡ [1,1] * 3 ≡ [3,3]
SE{4} ≡ [1,1] * 4 ≡ [4,4]

which point to the four consecutive elements below and to the right of a
given element. Another application for multidirections is restructuring a
dense array into a strided array of arrays. Given the declarations

region V = [0..3*n-1];
var D : [V] float; -- Dense array of 3n items

 S : [V by 3] array [0..2] of float;-- Sparse array of triples
direction r{0..2} = [1] scaled by {}; -- Pt to self, next, next+1

the multidirection r is composed of the three directions [0] , [1] and [2] .
Then, in the program

[V by 3] for i := 0 to 2 do
 S[i] := D@r{i}; -- Fill elements of S
end;

the strided array S is loaded from D. (See Figure 7.1.) That is, the dynamic
region, with indices {0, 3, 6, ...} references all and only the items of S, and each
element of S, a 3-element array, is loaded with the corresponding three
successive elements of D, as the figure illustrates. Such restructuring has
many applications.

ZPL Programming Guide

104

S[0] S[3] S[6]

D

First Iteration: [R] S[0] := D@r{0}; -- Same S[0] := D

Figure 7.1: Loading sparse-indexed vector of triples from
dense array using a multidirection.

Multiregions and Arrays

Hierarchically structured data and algorithms are common in computing.
For example, multigrids are formed from dense grids by striding at multiple
levels. Wavelets are another example. The number of levels is determined
by the size of the input, and therefore cannot be determined before program
execution time. Accordingly, the concept of a multiregion is essential for
defining and computing on an arbitrarily deep hierarchy.

In the same way that directions are extended to be indexable, so too, are
regions. The general syntax for a multiregion is:

region Rname {} = region by direction{} ;

where

Rname is an identifier naming the region
region is any dense region
direction is any multidirection name followed by empty braces.

and all other symbols must be given as shown. That is, multiregions are the
same as other strided regions, except that the direction is a multidirection.
For example,

direction sepow2{0..log2(n)} = [1,1] scaledby 2^{};-- By powers of 2

defines for n ≡ 16 the directions

sepow2{0} ≡ [1, 1]
sepow2{1} ≡ [2, 2]
sepow2{2} ≡ [4, 4]
sepow2{3} ≡ [8, 8]
sepow2{4} ≡ [16,16]

ZPL Programming Guide

105

The region specification

region H{} = [0..n-1, 0..n-1] by sepow{}; -- Hierarchical region

therefore, defines for n ≡ 16 a five level hierarchy

H{0} ≡ {(0,0), (0,1), (0,2), ..., (15,15) }
H{1} ≡ {(0,0), (0,2), (0,4), ..., (14,14) }
H{2} ≡ {(0,0), (0,4), (0,8), ..., (12,12) }
H{3} ≡ {(0,0), (0,8), (8,0), (8, 8) }
H{4} ≡ {(0,0) }

in which the 0th level is a 16x16 dense region, the 1st level is an 8x8 region
strided by [2,2] , the 2nd level is a 4x4 region strided by [4,4] , the 3rd is a 2x2
region strided by [8,8] , and the 4th is a 1x1 region with a single index value.
Clearly, when n ≡ 64 the R region is a seven level hierarchy, etc.

As suggested in the example, multiregions are referred to by appending a
brace pair containing the index of the level being referenced. For example,

[H{3}] X := Y; -- Update X

has the effect of updating four elements of X, assuming the declaration above.
In general, an indexed multiregion can be used wherever standard regions
can be used.

Since regions are used to declare arrays, it follows that declaring an array with
a multiregion must produce a multiarray. Multiarrays are declared using a
multiregion with empty braces with the region specifier, as in

var G{} : [H{}] double; -- Declare multiarray G

and they are referenced by appending braces with an index, as in G{1} . The
semantics simply extend the normal meaning of array. That is, the identifier,
G in this case, refers to an array with index positions corresponding to each
index in the multiregion. This can be thought of as array levels
corresponding to each level in the multiregion. Thus, using the n ≡ 16
example values from above, G{0} is a 16x16 dense array, G{1} is an 8x8
strided-by-[2,2] array, etc. All levels have the index value (0,0) defined,
though of course, level 5 has only this index position defined. See Figure 7.2

When multiarrays are used in expressions they must always have indices
specified, though the index can be a general expression that evaluates to a
nonnegative integer. Returning to an earlier example where elements of a
dense array were aggregated into a strided-by-[2, 2] array, it is now possible

ZPL Programming Guide

106

to perform the same operation across successive levels of a single hierarchical
array variable by using a loop,

for i = 1 to log2(n) do
 [H{i}] G{i} := 0.4*G{i-1} + 0.25*G{i-1}@epow2{i-1}

+ 0.25*G{i-1}@spow2{i-1} + 0.1*G{i-1}@sepow2{i-1};
end;

assuming earlier declarations and the obvious definitions for the directions.
As the loop proceeds, the strides of the region become longer and longer as
the index references higher levels. The corresponding levels of the variable
are referenced using an index in braces: On the left hand side the level's
stride matches that of the region, while the levels referenced on the right-

G{0}

G{1}

G{2}

G{3}

G{4}

Figure 7.2 Visualization of hierarchical array G.

ZPL Programming Guide

107

hand side are one level lower, i.e. shorter strides. The directions are indexed
accordingly.

Permutations, Gather and Scatter

ZPL is designed so that the operations it provides are efficiently executed in
parallel, and this fact has greatly influenced the form and type of its features.
But, there are some inherently expensive computations that are nevertheless
useful for solving problems, and they must be provided, too. Permutation --
the ability to rearrange data -- is an important example. In this section the
permutation operator is explained. Programmers should use this operation
whenever necessary, i.e. when no other way to achieve the same effect is
obvious, but a warning is in order. Permutation is the most expensive
operator in ZPL.

Consider the 1D array I ≡ 6 5 4 3 2 1 and the two 1D arrays V and W. If
ZPL allowed array subscripts, then V := W[I] might be expected to have the
effect of selecting the items of W in reverse order, and assigning them to V;
symmetrically V[I] := W might be expected to assign the elements of W to V
from last subscript to first, i.e. reversed. Thus, in both cases the contents of W
are permuted into reverse order in V. In fact, these two operations can be
expressed in ZPL using the gather and scatter forms of permutation

[1..6] V := <##[I]W; -- Gather W's items in reverse order, assign
[1..6] V := >##[I]W; -- Scatter W's items into V in reverse order

where ## is the permutation operator, I is the reordering specifier describing
how the data is to be rearranged, and gather (<) and scatter (>) specify how the
rearrangement is to be interpreted.

Consider another example, one in which gather and scatter have different
effects.* Suppose I ≡ 1 3 5 2 4 6 is an integer array, and W is the 6
element character array a b c d e f . Then

[1..6] V := <##[I]W; -- Gather - odd letters before evens

produces a c e b d f for V, since the W values will be gathered in this order
and assigned, while

[1..6] V := >##[I]W; -- Scatter - interleave 1st 1/2, last 1/2

* Gather and scatter have the same effect when the permutation is an exchange, i.e. when the
element in position i goes to position j and the element in j goes to i.

ZPL Programming Guide

108

produces a d b e c f for V, since the values of W are scattered into the
indicated index positions.

The permutation operator requires that the values of the permutation
specifier I be defined indices for W in the case of gather, or defined indices of
V in the case of scatter. Notice that I must be an integer array.

Arrays of higher dimension can be permuted by extending the concept of the
reordering specifier to a sequence of arrays, one for the subscripts of each
dimension. Thus, to permute the elements of a two dimensional array, two
rectangular arrays would be provided giving the first and second elements of
the subscripts. For example, let

1 2 3 4 1 1 1 1
Sub1 = 1 2 3 4 Sub2 = 2 2 2 2

1 2 3 4 3 3 3 3
1 2 3 4 4 4 4 4

be arrays, and A be a 4×4 array. Then

A := <##[Sub1, Sub2] A;

transposes A, since Sub1 provides the first element of the index pairs and
Sub2 provides the second element. Thus, the (4,3) position of the result
will be found in position (3,4) because the (4,3) element of Sub1 is 3 and
(4,3) element of Sub2 is 4. The preferred way of expressing the transpose, as
explained below, is to use the proper Index d values, as in

A := <##[Index2, Index1] A; -- Transpose A

This not only saves the programmer the effort of constructing the two
reordering arrays, but it is evident to the reader of the program that
transposition is being performed, i.e. the indices are being reversed.

Generally, the elements of a d-dimensional array can be permuted by
providing the order in which they should be gathered or the order in which
they should be scattered as a d length sequence of d-dimensional arrays,

[A1, A2, ..., Ad]

such that the source (gather) or destination (scatter) of element

(i1, i2, ..., id)

is given by the index

(A1(i1,i2,...,id), A2(i1,i2,...,id), ..., Ad(i1,i2,...,id)).

ZPL Programming Guide

109

That is, the jth array gives the index values for the jth dimension.

An important difference between gather and scatter is that the reordering
indices of gather can contain repetitions, while the reordering indices of
scatter should be distinct. Thus, given

[1..6] I := 1;

the gather statement

[1..6] V := <##[I] W; -- Set all of V to first element of W

is an expensive way to assign the first element of W to the elements of V, i.e.
the value for each position is selected from the first position of W. (Flooding
would have been preferred.) However, the scatter

[1..6] V := >##[I]W; -- UNPREDICTABLE scatter

is ill-defined. The statement asserts that the first item of V is to come from
positions 1 through 6 of W, but since the order of array assignment is
unspecified, it is unpredictable which value will actually be assigned. Though
there is no check for uniqueness in the reordering specifier of scatters,
nonunique reordering specifications should be avoided to assure
deterministic computation.

As previously noted, when transposing an array, it is recommended that the
reordering specifier be given by Indexd , as in

Atransp := <##[Index2, Index1]A; -- Form A^T

The use of the Indexd arrays is not only clearer, it is also more efficient (than
the user-created identifiers sub1 and sub2 from above), because the compiler
can optimize the cost of setting up the permutation. Indeed, to the extent that
programmers can realize their intended permutations in accordance with the
following suggestions in Figure 7.3, the compiler will be aided in the set-up or
the reordering.

ZPL Programming Guide

110

Guidelines for More Efficient Use of Permutations

(a) Constant reordering specifiers: Reordering specifiers constructed from
expressions involving constant operands, e.g. Index d, are preferred, as in

 [1..n] Bkwds := <##[n - Index1 + 1]Fwds; -- Reverse elements

(b) Empty entries for subarrays: If whole subarrays are to be reordered as a
unit, e.g. reordering columns, leave the "identity" dimensions blank, as in

 A := <##[,n-Index2+1] A; -- Prefer'd to <##[Index1,n-Index2+1]A

which reorders the columns last-to-first.

(c) Using Flood Arrays: When whole subarrays are to be reordered as a
unit, e.g. reordering columns, and the reordering specification cannot be
given with a constant expression, use a flood array, as in

[*,1..n] Fl := +<<[R] Counts; -- Add entries to rank items
 A := <##[,Fl] A; -- Reorder A with ranks

since this can reduce set-up.

(d) Repeated permutations: If the same permutation is to be used
multiple times, it is recommended that the reordering specifier arrays be
set up together prior to executing any of the permutations and left
unmodified.

Figure 7.3 Guidelines for Permutations.

ZPL Programming Guide

111

-- Chapter 8 --

WYSIWYG Parallel Execution

ZPL programmers write no parallel commands. When the program is
executed on a parallel computer, the concurrency comes from the fact that the
array operations can be performed in any order, including in parallel. The
compiler arranges for the parallelism. This means that ZPL is an implicitly
parallel language. It is possible to program ZPL without considering how the
program will execute in parallel. But, it is advisable to consider parallel ZPL
execution, because the characteristics that are preferred for parallel execution
also promote high performance on modern sequential computers as well
(caches, multi-issue instruction execution).

The previous chapters have concentrated on explaining the basics of ZPL's
syntax and semantics. This chapter completes the picture. It is essential to
have some idea of how a program will be executed, since presumably one
wishes to select the most efficient way to realize the computation. Since ZPL
is a machine independent language, it is not possible to describe program
execution in seconds. Machines differ in clock rates, instructions set
characteristics, etc. However, because ZPL's design is based on a hypothetical
computer that resembles commercial parallel machines, it is possible to
describe program execution in broad terms that are accurate enough to make
effective programming decisions. The result is a better performing program.
This chapter discusses ZPL program execution with respect to this
idealization.

ZPL's property allowing programmers to know approximately how well their
machine independent parallel program will perform has been dubbed "ZPL's
WYSIWYG performance model." This is perhaps one of the language's most
powerful features. It is not available with any other parallel programming
language.

Parallel Machine Model

Though ZPL was designed to be a machine independent parallel
programming language, the design decisions were based on the assumption
that the programs would be executed on an idealized parallel computer, the
CTA, see Figure 8.1. The CTA was developed to describe the fundamental
properties of real parallel computers while ignoring irrelevant detail. The
best way to decide how a ZPL program will perform, therefore, is to imagine
that it is being executed by the CTA. By basing decisions on this abstract
model, the same one used by the compiler writers, the programmer will be
making the same assumptions that are used in the compiler. Since the

ZPL Programming Guide

112

compiler makes each real computer realize the properties of the CTA, the
observed performance should approximate the assumed performance, to the
greatest extent possible.

vN

Interconnect ion Network

vN vN vN vN

Controller
Processor
Elements

Figure 8.1. The CTA idealized parallel machine.

The CTA* machine is composed of P processors, each of which can be thought
of as a standard sequential computer with the ability to execute instructions
from its local memory. Thus, to understand how ZPL executes on a
sequential computer, assume P=1 in the following.

The processors are connected together by an interconnection network. (This
is assumed not to exist when P=1.) Though marketing literature often focuses
on the topology and routing properties of a commercial computer's
communication network, these details are not the concern of the ZPL
programmer. So, they are left unspecified in the CTA machine model.
Rather, the model states that a processor can reference its local memory in
unit time, but references to the memory of another processor -- whether by
message passing or shared memory -- requires λ time units, λ >> 1. The
value of λ is different for each machine, but typical values are two or more
orders of magnitude more than a local (cache hit) memory reference, and
sometimes as high as 4 orders of magnitude. ZPL's treatment of this
performance difference between local and nonlocal memory references is
discussed below.

In addition to the processor the CTA has a controller. This sequential
machine, which has its own local memory, is attached to all processors, and
could assist in certain global operations, such as reduce, scan, broadcast, etc. It
can also serve as a repository for global data.

The CTA does not correspond to any physical computer, though some
commercial computers are very similar. However, the capabilities of the CTA
can be implemented efficiently on existing parallel computers, whether they
be "shared memory" or "message passing" computers. Thus, if a programmer

* CTA is mnemonic for the curious phrase, Candidate Type Architecture [Snyder 86].

ZPL Programming Guide

113

writes a ZPL program that would be efficient in concept on the CTA, the ZPL
compiler should be able to generate object code for any real machine that is
also efficient [Snyder 94].

For a ZPL program to run on a particular physical computer the compiler
must be retargeted to that machine. (This is not a task performed by the ZPL
programmer.) Retargeting mostly entails interfacing to existing vendor-
produced software on the target parallel computer. The base compiler
translates a ZPL program into ANSI C, which, using the retargeted libraries,
etc. can be compiled by the native C compiler for the parallel machine. Given
that the compiler has been retargeted, recompilation of the ZPL compiler's
output is all that is required for a program to run on a new computer. In this
way ZPL programs are completely portable.

Parallel Execution of ZPL

For the ZPL compiler to produce object code for a parallel computer, it must
allocate data to the computer's memory. The main concern is how to allocate
arrays. These are partitioned into sections that are allocated one section to
each processor memory.

Memory Allocation.
Scalars in ZPL are replicated across all processors, as are indexed arrays (see
next section).

Parallel arrays in ZPL are partitioned by default into blocks. This partitioning
is generally efficient for the operations available in ZPL. The exact blocked
partitioning of the default allocation depends on the dimensionality of the
array:

1-dimensional arrays: The index range including border regions is
divided into P dense subsequences, allocated one per processor.

2-dimensional arrays: The array, including adjacent border regions, is
divided into P dense 2-dimensional subarrays.

k≥3 dimensional arrays: Dimensions 1 -- k-2 are projected to 2-
dimensions and allocated as 2 dimensional arrays.

Figure 8.2 illustrates these partitioning rules.

The first thing to notice is that because P is usually smaller than the size of
interesting arrays, each processor will usually have multiple values stored in
its memory, and these values will cover a dense set of indices. Further,
values with the same index will be stored on the same processor. This allows

ZPL Programming Guide

114

typical ZPL computations, such as X := Y + Z , to be compiled so a processor
can perform the computation by referencing only local data, i.e. without
communicating with any other processor. For operations such as A@d, the
compiler will usually have to produce data movement commands to transfer
portions of the array across block boundaries, i. e. move data from processor
to processor. However, because the partitioning has the form of dense blocks,
most values will not have to move off of the processor. Further, the
interprocessor transfer will move several values at once, which is usually
more efficient than moving a single value at a time [Choi & Snyder 97].

Figure 8.2. Partitioning of 1D, 2D and 3D arrays for
 allocation to memories of 4 processors.

Processor Code.
In concept the ZPL program can be thought of as executing on the controller
processor of the CTA. In this view the scalar variables are stored in the
controller's memory, and the (parallel) arrays are stored in the memories of
the other processors. The controller stages the execution of the statements.
The processors perform those portions of each statement that apply to data
that is stored on that processor. This view is only conceptual to aid in
organizing the computation.

In actuality ZPL uses a single program, multiple data (SPMD) form of
parallelism, i.e. the compiler generates a single program that is replicated on
each processor.* Expressions involving only scalars or indexed arrays are
executed by each processor. The compiler creates code for expressions
involving regions so that each processor performs that portion of the
computation applicable to index values of data stored in its memory. When
@, wrap , reflect, flood, reduce, scan or permutation operations are required,
data transfer instructions are usually performed [Chamberlain et al. 96].

The reduce and scan operations are performed in multiple steps. In the first
step, the operation is performed on local data. Thus, in +<<A the sum of the
values stored on each processor is computed locally. In the next step these

* SPMD differs from SIMD in that the processors need not execute the same instruction
simultaneously, but rather describe their own path of execution through the common program.

ZPL Programming Guide

115

partial sums are combined. The exact details of this operation differ from
machine to machine: On some machines there is special hardware to
perform these operations, e.g. the CM-5. On other machines, this is
performed by a combining "tree" where a group of processors send partial
sums to a common processor which produces another partial sum, and passes
this new sum along to another processor to continue the summation. This
technique produces the final result in one processor. In the last step of
reduce, the result is broadcast back so that it is known to the other processors.
The scan is analogous, though somewhat more complex.

Estimating Program Performance

As with most computer programs it is not possible to know exactly how fast a
ZPL program will run without executing it on the actual machine, and the
performance will vary from machine to machine. But it is possible to make a
rough performance estimate based on which operations are expensive and
inexpensive. Here, we present the basic performance properties of ZPL.

Full concurrency. Like most languages, the execution time for array
operations is proportional to the number of scalar instructions required to
implement the array operation. Thus, the basic computation of the Cannon's
algorithm matrix multiplication program from Figure 6.3

[Res] C := C + A*B;

will require approximately mn multiply instructions, mn add instructions
together with roughly 3mn loads and mn stores to move the operand values
from the memory back and forth to the processor. There is also a small
amount of overhead required to implement the implied looping.

If the operations are performed on a parallel computer and are roughly
evenly divided among P processors according to the partitioning described in
the last section, then the programmer can expect about P-way speed up. That
is, the computation will achieve essentially full concurrency. The two
properties that ensure this desirable result for this statement are

Only element-wise array operations are used, and
All operands refer to elements of the same region.

Statements with these properties should exhibit excellent performance. As a
further assessment for such statements, the performance on a sequential
computer is approximately the same as it would be if the equivalent C
program had been written.

ZPL Programming Guide

116

Notice that when the arrays are flood arrays the situation can actually be
slightly better than described above. Specifically, in the SUMMA algorithm
matrix computation, statement 13 of Figure 6.5

[M] C := C + Af*Bf;

would normally be expected to have the same cost as the analogous Cannon's
algorithm statement from above. But because the flood arrays, Af and Bf , are
represented by their defining values, the repeated references to these values
will "hit" in the cache, giving excellent cache behavior.

"@" References.
The "@" operator when applied to an operand generally causes some data
values to be communicated between processors. The key property of this
nearest neighbor communication is that typically only a few values are
transmitted per processor. For example, when the local portion of array A
allocated to processor Pi is a 10 × 10 block, the execution of the statement A :=
A@east requires that 10 values be received from the eastern neighbor and 10
values be sent to the western neighbor assuming the 2D allocation of Figure
8.2. Though the whole array is logically shifted, only a fraction of the values
are required to change processors and incur communication costs. The
schematic in Figure 8.3 illustrates that only the items along the "edge" of a
local block allocation need to be sent for a "shift by 1." The actual amount of
data sent for any @ reference depends on the array's size, allocation and the
direction. Moreover, it often happens that a given @ reference will not induce
any communication because a previous reference has already caused the
communication to be performed, and the compiler recognizes that the values
are still cached [Choi & Snyder 97].

Thus, the nearest neighbor communication generally entails transmitting
only "surface" items of the local allocation, and so performs best on those
allocations where the surface-to-volume ratio is most favorable. Though
more expensive than statements not involving communication, statements
involving "@" operators are efficiently implemented and relatively
inexpensive [Chamberlain, Choi & Snyder 97].

Note that from the point of view of estimating execution time, the wrap and
reflect operations should also be considered to be nearest neighbor
operations.

Strided Regions
In general, operations over strided regions perform as well as the analogous
operations over non-strided regions, except they are sparser. That is, because
a strided array has fewer elements than a dense array, e.g. a 2D array strided by
two in each dimension has 1/4 as many elements as the dense array of the
same index ranges, there is proportionately less work performed. Strided

ZPL Programming Guide

117

arrays are allocated "by index," which means that element (i,j) of Astride is
stored on the same processor as element (i,j) of Adense . Thus, strided arrays
are naturally load-balanced. Strided arrays are stored densely, and so exhibit
locality beneficial to caching.

Pi's block of A Pi+1's values
needed by Pi

Pi's values
needed by Pi-1

Figure 8.3. Schematic diagram of the values transferred to processor Pi from
Pi+1 and from Pi to Pi-1 in evaluating A := A@east .

Reductions/Scans
The algorithms implementing reduce and scan begin by performing the
operation on the block of local data as an intermediate computation. For
example, the operation +<<A causes each processor to add up the local
elements of A allocated to it. The result(s) of the local computations are then
globally combined. The details of how this is done vary widely depending on
the characteristics of the available hardware. In any case the combining will
usually use a technique called the parallel prefix algorithm. This produces a
single, global result that is then broadcast back to each processor. In the case of
reduction the computation is complete, but for a scan the local values must be
updated using the returned intermediate values.

The local portion of the computation will run about as fast as the expression,
c+A . The global portion, though difficult to estimate, will generally involve
an "accumulation tree," and a "broadcast tree" composed of processors. These
trees tend to limit concurrency, since generally only processors at a given
"level" in the accumulation tree can be active simultaneously. Thus, reduce
and scan are more expensive operations than @ references. Of course, they are
also among the most powerful operations in the language, and generally
worth their cost.

When executed sequentially, reduce and scan are implemented in a direct and
efficient manner. As observed in the context of the computation in Chapter
4, on parallel machines it can be that reduce and scan are more effective than
repeated computations involving cheaper operations.

Flooding

ZPL Programming Guide

118

As mentioned frequently, flood arrays are represented using only the defining
values, i.e. by storing the lower dimensional arrays. So, for example, when a
row is replicated by flooding, only the values of that row are stored in the
flood array. If necessary, these values will be broadcast to other processors.
Though some computers have special assistance for this operation, generally
it should be seen as somewhat more expensive than using "@" operation, but
less expensive than performing a reduction or scan.

Scalar computations
Scalar quantities are replicated on each processor. Statements involving only
scalar values, such as

i := i+1;
theta := pi/4;

are repeated on each processor. There is no parallelism with this approach,
but it is not really feasible to achieve any anyway. Notice that the advantage
of replicating the computation compared to computing it on one processor
and broadcasting the value is that the replicated computation requires no
communication.

Indexed arrays are replicated on each processor like scalars. This makes
indexed arrays very efficient for representing tables and other constant data
used in computations, because one copy is cached per processor, eliminating
the need to communicate the values. See the use of the code book, CB, in the
vector quantization data compression computation of Chapter 6.

Since ZPL without parallel arrays is mostly a routine sequential language, it is
clear that it is perfectly adequate for writing programs for sequential
computers. In fact, if the program is not to be run on a parallel computer,
then it can be written entirely using indexed arrays and the usual looping.
The resulting program's performance will be about the same as a C program
for the sequential machine. There is no parallelism, but this suggests a
development approach: write a program using whatever mixture of parallel
and indexed arrays that the programmer finds convenient subject to the goal
of maximizing the use of parallel arrays. This program will run well on
sequential machines. Then, the uses of indexed arrays can be converted to
parallel arrays later when a parallel machine is to be used.

Permutations
The gather and scatter operations (##) are the most expensive operations in
ZPL, because they can potentially generate two phases of all-to-all
communication. They are nevertheless useful, and it is often the case that
there is no efficient alternative to their use. For example, it is possible to
write a transpose without using the permutation operator, but the

ZPL Programming Guide

119

communication required for transposition is inherently expensive on
virtually all computers. So, permutation is as efficient as any solution.

I/O
Input and output are expensive in ZPL, just as in all other programming
languages. One feature of I/O is that it is one of the few places where the ZPL
compiler generates a barrier synchronization.

Summary on Estimation.
Though it is not possible to precisely compute a priori the performance of a
machine independent program, estimation is possible. For example, the two
matrix multiplication programs given in the last chapter can be compared
based on the guidelines presented here. Note that for the basic computation,
both Cannon's algorithm and the SUMMA algorithm are about the same
time, with some slight advantage to SUMMA for computing with a flood
array. This is partly negated by the slightly greater time to flood as compared
with shifting the array. So, the two algorithms are essentially the same time
at their cores. However, the Cannon algorithm requires that the two arrays
first be restructured into a staggered form. This operation is not necessary in
the SUMMA code. So, even though this is only a moderately expensive
operation, it is clear that the SUMMA algorithm will be more efficient
[Chamberlain et al. 98].

Closing Remarks on Performance

Because of basic properties of the ZPL language design, the compiler is capable
of producing efficient code. Further, it can perform a variety of optimizations
to reduce both the memory requirements and execution time of the object
program. However, nothing contributes to high performance like a
thoughtfully written program. Thus, the programmer is the most effective
optimizer.

The CTA machine model, the brief descriptions of memory allocation,
program organization and communication given earlier in this chapter
describe approximately how the ZPL compiler is likely to organize an object
program. It is advisable to keep the following additional points in mind
when making performance decisions during programming.

• Maximize the use of (parallel) arrays and array-based computation.
• Use reduce and scan moderately, since they limit concurrency.
• Use permute sparingly.
• Express the program directly and succinctly, resisting the temptation to

"program for your implementation."

ZPL Programming Guide

120

The last point cannot be emphasized too much. Most optimizations rely on
the compiler being successful at analyzing a segment of the program.
Programs that are convoluted or that use structures designed to "trick" a
particular compiler into producing specific results will almost certainly
frustrate the analysis of other compilers and greatly limit the program's
portability. If the program is as clean as a classroom example, the compiler is
likely to produce textbook example optimizations.

References

B. Chamberlain, S. Choi, E Lewis, C. Lin, L. Snyder and W.Weathersby, 1996
"Factor-Join: A Unique Approach to Compiling Array Languages for
Parallel Machines." Proceedings of Languages andCompilers for
Parallel Computers, Springer-Verlag.

Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin,
Lawrence Snyder andW. Derrick Weathersby, "ZPL's WYSIWYG
Performance Model", Proceedings of the IEEE Workshop on High-
Level Parallel Programming Models and Supportive Environments
(HIPS'98), to appear, March 1998.

B. Chamberlain, S. Choi and L. Snyder, 1997 "IRONMAN: An Architecture
Independent Communication Interface for Parallel Computers,"
University of Washington TR UW-CSE-97-04-04.

Sung-Eun Choi and Lawrence Snyder, 1997 "Quantifying the Effects of
Communication Optimizations," International Conference on Parallel
Processing (to appear).

L. Snyder, 1986. "Type Architecture, Shared Memory and the Corollary of
Modest Potential," Annal Review of Computer Science, vol. I, Annual
Reviews Inc, pp. 289-318.

L. Snyder, 1994. "Foundations of Practical Parallel Programming Languages,"
In J. Ferrante and A. J. G. Hey (eds.), Portability and Performance for
Parallel Processing, John-Wiley & Sons, Ltd., pp. 1-19.

ZPL Programming Guide

121

-- Chapter 9 --

Computational Techniques

As has been observed previously, ZPL is an expressive language that
simplifies programming because it saves the programmer from specifying
many low level details like looping and indexing. Perhaps more importantly,
by leaving these low level details unspecified, the programmer allows the
compiler the freedom to organize the object code to take advantage of the
target computer's features. The result is good performance and complete
machine independence. So, there is a strong incentive to become fluent in
ZPL's high level programming style.

In the interest of presenting more examples of high level programming style,
this chapter presents a series to "typical programming situations" and their
solutions in ZPL. The computations considered are

Sequential Computation
Inconsequential Code Fragments
Sequential routines for promotion

N-Body Computations
Thinking Globally -- Median Finding
Random Number Generation

Programming situations in one area of scientific programming may never
arise in another, so the topics may not apply to all programmers.
Nevertheless, they are sufficiently generic, that studying each closely will
generally provide concepts and knowledge that can be applied often.

Sequential Computation

Achieving parallelism in scientific computations is sufficiently difficult that
this guide has missed few opportunities to comment on the parallel
implications of a ZPL concept or construct. But, not every program must run
on a parallel supercomputer, nor does every part of a supercomputer
computation have to run in parallel. In such situations, ZPL is a fine
sequential programming language, too.

"Sequential" program text in ZPL is code that will not run in parallel. As a
general rule computations not involving (parallel) arrays will be sequential.
Computations employing only scalars and/or indexed arrays are the primary
instances of sequential text. For example,

ZPL Programming Guide

122

area := pi * (diam / 2) ^ 2; -- All variables are scalar

and

for i := 1 to m do -- SEQUENTIAL matrix multiply
 for j := 1 to p do -- using indexed arrays
 for k := 1 to n do --

 C[i,j] := C[i,j] + A[i,k]*B[k,j];

are sequential ZPL text. This is evident since the computations do not use
(parallel) arrays.

Sequential and parallel computations, though compiled differently, will
perform about the same on a single processor computer. On a parallel
computer, sequential computations are replicated. That is, each processor
performs the sequential computations redundantly. Thus, sequential and
parallel code can be freely intermixed, and when it is executed on parallel
computers, there will be no overhead for the sequential computations, nor
(unfortunately) any speed-up.

Two common cases arise where ZPL programmers find themselves writing
significant amounts of sequential code: inconsequential code fragments, and
sequential routines for promotion. Each will be illustrated.

Inconsequential Code Fragments.
There are components of a computation that do not represent a significant
fraction of the overall work, but are nevertheless essential to a fully
operational program. Examples include initialization and problem set up,
assessing termination or continuation conditions at the end of loops, error
correction or recovery, etc. It is not essential that there be a fully parallel
solution for these components because they contribute so little to the overall
running time. Indeed, for many of these computations, there probably does
not exist a parallel solution, and even if there does, it may take more time to
launch it than can be recovered through speedup. These computations can
and should be performed sequentially.

As an example, consider an array A whose m rows must be rearranged before
the start of the computation, so that their 0th column is in ascending order.
This might represent a situation where the 0th column gives key properties
about where the data was collected, e.g. latitude.

Since it is assumed that the number m of rows, (but perhaps not their length
n) is a smallish number, it is decided to perform the sort sequentially. (There
are parallel sorts, but m is small enough that it is presumed that doing so is
not advantageous.) The solution is to assign the 0th column values into the
indexed array Order[1..m] , sort them sequentially, flood the order into a
parallel array and then permute the array.

ZPL Programming Guide

123

The indexed array Order is declared

var Order : array [1..m] of pairs;
temp : pairs;

where pairs is declared

type pairs = record
val : float;
tag : integer;

end;

to have a val field and a tag field. The value will contain the 0th column
information. The tag is to be initialized to an integer giving the initial order
of the data, and hence the rows. The values and tags are sequentially
initialized,

for i := 1 to m do
[i,0] Order[i].val := +<< A; -- Val selected from col 0

Order[i].tag := i; -- Tag gives initial order
 end;

Notice that the contents of the 0th column of the parallel array are extracted
and assigned to the sequential array's fields using reduction over a singleton
region. The reduce may seem peculiar, but it is (purposely) the only way to
assign a parallel array value to a sequential variable, as a reminder that a
broadcast to all processors is required. (See Chapter 8.)

With Order initialized, it is sorted sequentially

for i := 1 to m-1 do -- Sort
 for j := 2 to m do -- using a
 if Order[i].val > Order[j].val -- standard

 then -- exchange
temp := Order[i]; -- sort
Order[i] := Order[j]; -- which is
Order[j] := temp; -- sequential

 end; -- since
 end; -- Order is an
end; -- indexed array

Any sequential sort will suffice.

At this point the val fields are in sequence, and the tag field of item i tells
which original row of A is to become row i in the reordered A. To implement
this reordering, the tags are stored in a flood array

[1..m,*] Perm := Order[Index1].tag; -- Load order from indexed
 -- to parallel array

ZPL Programming Guide

124

in preparation for reordering. Notice that the indexed array is subscripted by a
parallel array, yielding a parallel result. There is no communication for this
statement since each processor has a copy of Order . The rows are then
permuted using the gather form of permutation

[1..m,0..n] A := <## [Perm,] A; -- Reorder rows

The second reordering array is elided, indicating that the entire row is be
moved as a unit. These last two statements are parallel computations, which
could be combined

[1..m,0..n] A := <## [Order[Index1].tag,] A;-- Reorder rows

saving the creation of the Perm variable.

Sequential Routines for Promotion
A common way to realize a parallel computation is by performing many
instances of a basic sequential computation on the elements of a parallel
array. In such cases the base computation will use the sequential components
of ZPL. These are then applied to the elements of a parallel array by
promotion to achieve the parallel result. This idea has been applied before in
the distance computation for Vector Quantization of Chapter 6. It is
sufficiently important, however, that it deserves another example.

This illustration will use an optimal global substring match, which is a
representative computation from the genome sequencing applications area.
The task is to locate the best match of a length m candidate sequence Can in a
length n primary sequence Prime, m << n. In concept the problem can be
solved by considering how well Can matches the first m letters of Prime, i.e.
Prime1..m, and giving it a score, and considering how well Can matches
Prime2..m+1, and Prime3..m+2, etc. throughout the whole primary sequence,
and then selecting the position with the highest score.

GGCACACTTTCAGTCAAGATATGGTAGACCCACC

CATCan:
Prime:

Match against candidate sequence

Obviously, the subroutine for this computation is to figure the score of the
Can string against a substring of the Prime string.

The "match" operation is actually a little more complicated than determining
if two letter sequences are identical. Rather, insertions and deletions of letters
are allowed, so two strings are scored by their degree of similarity. For
example, the candidate string CAT matches the primary string GCAT beginning
at the first position by assuming either that there was an insertion of G in the

ZPL Programming Guide

125

primary sequence or the deletion of a G in the candidate sequence. The
candidate matches exactly when beginning at the second letter of the primary
sequence, of course. Since this latter is a more direct match than the former,
it is scored higher. Approximate matching, therefore, can be applied to strings
of different length.

The conceptual process behind computing the approximate match between
two strings S and T is to imagine filling out a table, in which position i,j
gives the score for S[1..i] compared against T[1..j] . An indexed array, V,
serves as the table with a row for each S letter and a column for each T letter.
(A 0th position handles the case of zero letters, denoted by ∈.) See Figure 9.1

	 T letter Sequence
 G C A T	 	 C A T
	 0 -1 -2 -3 -4 0 -1 -2 -3
 C -1 -1 1 0 -1 C -1 2 1 0
 A -2 -2 0 3 2	 A -2 1 4 3
 T -3 -3 -1 2 5	 T -3 0 3 6

∈
∈

S
 L

et
te

r
S

eq
ue

nc
e ∈

∈

Figure 9.1. Matches of CAT against GCAT starting at the first and second
positions.

After initializing the corner element to zero, a table entry is computed from
the preceding entries by crediting +2 for a match or -1 for a mismatch. Thus, a
table entry i,j is the maximum (best guess) of three quantities:

  V[i-1,j]-1 Assumes insertion in S or deletion in T
V[i,j] = max  if S[i]=T[j] then V[i-1,j-1]+2 else V[i-1,j-1]-1

  V[i,j-1]-1 Assumes deletion in S, or insertion in T

Both of the insertion/deletion cases are instances of mismatches. The initial
values for the 0th row and the 0th column are simply the scores assuming
deletions in S and T (respectively) up to the given position. The result is the
lower right corner table entry, i.e. V[m,n] .

A key observation is that the whole table does not have to be kept, since by
filling it out column-wise, only the previous column or the previous entry in
the same column is ever referenced. Hence, only one column needs to be
represented, motivating the sequential procedure shown in Figure 9.2 to
compute the score.

This sequential procedure score takes the S string and one letter of the T
string as "by-reference" (var) parameters, meaning they will be referenced
externally and not actually "passed in". Additionally, the position, pos , of the
letter t from the start of string T is passed in for use in initializing the 0th

entry in the column. The column V is also referenced externally. The logic of

ZPL Programming Guide

126

the routine is simply to work down the column, using the previous entries to
create new ones.

To put the whole computation together, the sequential procedure score will
be applied at each position of the primary string, producing a parallel
computation. First, data structures for the candidate and primary strings are
declared

 1 procedure score(
 2 var S : array[0..m] of ubyte,-- Indexed array of string
 3 pos : shortint, -- Position of T considered
 4 var t : ubyte, -- Letter in T[pos]
 5 var V : array [0..m] of shortint --Index array of col below
 6 -- T[pos-1] updated to T[pos]
 7): shortint; -- Return the best score
 8 var i, -- Index
 9 best, -- Highest score in column
10 mtch, -- Temp to compute match
11 last: shortint; -- Temp to save previous entry
12 begin
13 last := V[0]; -- from overwrite
14 V[0] := - pos; -- Initialize first entry
15 best := - pos; -- Initialize maximum score
16 for i := 1 to m do -- Working down the column
17 if S[i] = t then mtch := 2 else mtch := -1 end;
18 mtch := mtch + last; -- Result of compare + diag
19 last := V[i]; -- Grab next before overwrite
20 V[i]:=max3(mtch,V[i-1]-1,V[i]-1);-- Compute scores, pick max
21 if V[i] > best then best := V[i] end;-- Save best score
22 end;
23 return best; -- Report back
24 end;

 1 procedure max3(x, y, z : shortint) : shortint;
 2 begin
 3 if x >= y & x >= z then return x; end;
 4 if y >= x & y >= z then return y; end;
 5 if z >= x & z >= y then return z; end;
 6 end;

Figure 9.2. The score procedure and the auxiliary max3 procedure.

var Can : [0..m] array of ubyte; -- Indexed array for Candidate
 Prime : [1..n] ubyte; -- Parallel array for Primary
 Vee : [1..n] array [0..m] of shortint; -- Parallel array of

-- indexed arrays representing
-- a column of each table

 Best : [1..n] shortint; -- Parallel array of scores

as well as the parallel array Vee of columns. The ith element of Vee will
represent the current (pos) column of the table for the match starting at the

ZPL Programming Guide

127

ith position of Prime , its maximum score to this point will be in the ith

element of Best . After declaring a

direction right = [1];

and initializing Best and all of the columns of Vee to their proper 0th

column values,

Best := 0;
for i := 0 to m do Vee[i] := -i; end;

the data can be read in. Once Can and Prime contain their proper letter
strings, the loop

for j := 1 to m do
[1..n-j+1] Best := max(Best, score(Can, j, Prime, Vee));
 [1..n-j] Prime := Prime@right;
 end;

produces the desired result. (The iteration would likely continue beyond m
cycles to provide for insertions in T.)

The score procedure is called with parallel arrays Prime and Vee
corresponding to scalar t and indexed array V, respectively, in the procedure
header. This creates a parallel computation in which the sequential
procedure is promoted to apply to each position. The use of "by-reference"
parameters assures that there will be but one copy of the basic data structures.
The shift of Prime brings the next letter position into consideration. Notice
that the regions limit the computation to those positions of Prime for which
the Can string does not "fall off of the end".

The relevant entries for Vee assuming Can ≡ CAT and Prime ≡ GCAT are

 0 0 0 0 -1 -1 -1 -1 -2 -2 -2 x -3 -3 x x
-1 -1 -1 -1 -1 2 -1 -1 1 1 -2 x 0 0 x x
-2 -2 -2 -2 -2 1 -2 -2 0 4 -3 x 3 3 x x
-3 -3 -3 -3 -3 0 -3 -3 -1 3 -4 x 2 6 x x
 Initial j=1 j=2 j=3

Notice that columns 1 and 2 in each snapshot correspond to the ith columns
in the tables shown in Figure 9.1.

Of course, the best score is found by

... max<< Best ...

and the positions of the best matches are given by the nonzero items in the
expression

ZPL Programming Guide

128

 ... Index1*(Best = max<<Best) ...

which could be printed out or participate in other computations.

In summary, ZPL keeps a reasonably strict separation between the parallel
and sequential features of the language so that programmers can always be
aware of how their code will be executed. However, by promoting sequential
computations to apply to the elements of parallel arrays, efficient parallel
computations are created.

N-Body Computations

Many problems involve the motion of bodies in space. If space can be
uniformly decomposed, the most straight forward ZPL representation is an
array whose elements are lists of the bodies. The array represents the
decomposition of space, and the body lists are maintained in user-managed
indexed arrays. Each cell in the decomposition is processed in parallel,
making this an instance of the promoted sequential routines discussed in the
last section. This N-body solution is most effective when certain properties
are present:
• If every cell of the decomposition contains a reasonable number of bodies

and the ratio between the number of bodies in the sparsest to densest cell
is not too extreme, e.g. 1:3, say, rather than 1:10,000, then the work will be
balanced.

• If there is a reliable (though perhaps not perfect) upper limit on the
number of bodies in a block, then the storage allocated for the lists can be
managed more easily.

Many, but not all N-body problems fulfill these conditions. Even when they
do not, ZPL can be used for a solution, though the performance might fall
below expectations.

To illustrate sample N-body computations, postulate that 2D space has been
decomposed into an n × n mesh of cells, and that the maximum number of
bodies in any cell is m. (The generalization to 3D is obvious.)

constant m: integer = 100; -- max particles per cell
n: integer = 16; -- # of cells on side of mesh

These parameters are assigned typical values, which will probably be revised
when tuning the program for performance. The region of the computation is

region R = [1..n, 1..n]; -- Problem mesh, representing
-- partitioned 2D space

The array containing the m-element lists of bodies

ZPL Programming Guide

129

var Parts: [R] array [1..m] of particle;

is declared, where a particle is represented by a record

type particle = record -- Particles are triples of
 x, -- Position x coord
 y, -- Position y coord
 v: float end; -- and value

containing three values. True N-body computations would use more
complete representations for the bodies, of course, but these suffice here.

Each cell will, generally, not have exactly 100 particles in it, so it is necessary to
keep a count of the number of particles actually present. This count is also a
(parallel) array because there is a different count for each cell. Continuing the
variable declarations,

C: [R] shortint; -- Particles per cell <= 16K

provides a short integer for the count for each cell, as illustrated in Figure 9.3.

Parts

6 3 6 2
4 2 6 6
7 5 8 4
3 6 5 5

C
Figure 9.3. Illustration of Body and C arrays for n=4, m=8.

An important programming convention will be that the particles will be kept
at the "front" of the lists, with the unused particle positions at the higher
indices. Thus, elements of Parts that are occupied have index positions
1..C .

The coordinates of each cell in space will be represented by the positions of its
lower left and upper right corners. These could be represented by records
with a pair of values for each corner's x,y coordinates, but since the
coordinates are never used as a unit, bundling them together is unnecessary.
Arrays of scalar values are, therefore, preferred.

LoX, LoY, HiX, HiY: [R] float;

Though shortint might seem to be a better choice than float when space has
been decomposed into integral sizes, it is more efficient to use float arrays to
reduce type conversions in comparisons with elements of Parts .

ZPL Programming Guide

130

To complete the declarations, array temporaries and a scalar index are
defined.

Temp: [R] particle;
T, P: [R] shortint;
 i: shortint;

Temp is an array that stores one particle per index position, T is another array
storing an index of a particle list position, P is a flag array indicating (1 or 0)
whether or not a moving particle has been found, and i is a scalar loop index.

Single Particle Pushing
To illustrate basic N-body manipulations, consider implementing the motion
of single particles moving out of cells in a single direction, say north . This
solution can be generalized to move more particles in multiple directions.
The approach is to iterate (for all cells in parallel) through the particle lists
looking for a particle whose updated position is outside the cell to the north .
Those that are found, are removed from the lists, the lists are compacted to
keep them dense, and the counts of particles are corrected. The particles are
then sent to their neighbors and incorporated into the particle lists at the
destinations. The computation has the following components:

• Initialization
• Find a departing particle
• Compact the list
• Move the particle
• Incorporate it into its new cell

These components will now be described. The overall one-direction, one-
particle code is shown in Figure 9.4.

Initialization. It is assumed the computation is underway, and that the
positions of all particles have been updated. Those whose new position is
beyond the limits of their cell are to be moved. The initialization is

T := C + 1; -- Start position of mover 1 past end
P := 0; -- Flag for found particle set at none

which indicate that no departing particle has yet been found.

Find departing particles. Shattered control flow, indicated by the use of the
array C in the for -loop statement, is used to sweep through the particle lists
of the cells looking for a north moving particle.

/* Find Departed Particle */
for i := 1 to C do -- Loop thru particles of each cell
 if Parts[i].y > HiY -- Particle headed north?

 then -- Yes
 P := 1; -- Record that one has been found
 Temp := Parts[i]; -- Grab the particle

ZPL Programming Guide

131

 T := i; -- Record where it is located
 exit; -- Interrupt loop as particle found

 end;
end;

Recall that since this is a shattered for -loop, there are n2 (parallel) iterations,
one for each cell, ranging over the intervals 1 to C, i.e. the loop for cell u,v
ranges from 1 to Cu,v. The y coordinate of the i th particle in the list is
compared with the HiY coordinate of the upper right corner of the cell. The
loop is exited for each cell when a departing particle is discovered.

Compact the lists. It is presumed that some particles are departing, i.e. T !=
C+1, though it is not necessary. The vacated space is compacted, using
another shattered for -loop.

/* If Vacated, Compact list */
for i := T+1 to C do -- Loop from point of interruption
 Parts[i-1] := Parts[i]; -- Scooch 'em up
end;
C := C - P; -- Reduce count if particle left

Having initialized T to be one position beyond the end of the list, i.e. C+1, the
compaction loop falls through in the case no north moving particle was
discovered in a give cell.

Move the particles. To move particles to the north requires that both their
motion and the effects along the borders be considered. An assignment such
as

Temp@north := Temp; -- Send particle north

would seem to be the obvious statement, but it has the effect of modifying the
north border of Temp plus all elements of the Temp array except the bottom
row, i.e. it doesn't incorporate particles from the south border. Assuming
that particles are to be lost when they move off the top edge, and that particles
are to be introduced along the south edge

[R at south] Temp@north := Temp; -- Send particles north

would have the proper affect provided the southern border of Temp had been
set up to introduce particles. The right-hand side of the statement would
refer to the southerly cells from which particles come, while the left-hand
side would simply refer to Temp, i.e. the @north and at south cancel. An
entirely equivalent construction, and probably somewhat more transparent, is

Temp:= Temp@south; -- Get particles moving north

ZPL Programming Guide

132

which focuses on where the particles are coming from rather than where they
are going to. This is the desired construction, and we apply it a second time to
record the arrival of a particle

P := P@south; -- Indicate arriving particle

Notice that even when no particles are moving, the Temp array will transmit
values. These are meaningless, which is why transmitting P, the indicator of
useful data, is also required. It is possible to set up the computation to move
actual particles only, but this is probably more expensive than treating them
uniformly.

Incorporate new point. After the particles have been moved to the neighbor,
the processing continues to include the newly arrived particle in the list.

 /* Incorporate particle */
C := C + P; -- If particle arrived, bump count
Parts[C+1-P] := Temp; -- Add to list, or no-op if none

P is 1 if a valid particle was sent, and 0 otherwise, so adding it to C changes the
count only for those cells where points just arrived. By indexing Parts as
shown, Temp is incorporated as the new last item (valid data sent and P=1), or
unknown values are stored in the first free position of the particle list
(invalid data sent and P=0).

The one-particle-per-cell solution is complete. It will sweep through the
entire particle list for each cell removed. This is perhaps too much "work"
for the result achieved. Removing more items at a time will reduce the
overall computational work, and lead to a more efficient program.

Batched Pushing Solution
Generalizing the one-particle-per-cell solution is straightforward. The
number of particles to be treated in a batch will be a parameter to the
computation, so that the program can be conveniently customized to be
optimal for the target computer. The declaration

constant b: integer = 5; -- # of particles in batch

is to be added to the variable declarations section given above.

Next, the Temp variable, which is used to hold and transmit the particles,
must be redeclared to have space enough to store the whole batch. The
previous declaration for Temp is revised as follows

Temp: [R] array [1..b] of particle;

ZPL Programming Guide

133

upgrading Temp to a (parallel) array of b-element linear arrays, each element
being a particle .

Finally, by reinterpreting the flag array P from signaling that a moving
particle has been found to counting the number of moving particles found,
the previous code is easily rewritten. See Figure 9.5. Indeed, notice that the
one-particle-per-cell program can be interpreted as the batch size of 1 case, i.e.
b=1 .

 1 [R] begin /* Initialize */
 2 T := C + 1; -- Start position of mover 1 past end
 3 P := 0; -- Flag for found particle set at none
 4
 5 /* Find Departed Particle */
 6 for i := 1 to C do -- Loop thru particles of each cell
 7 if Parts[i].y > HiY -- Particle headed N?
 8 then -- Yes
 9 P := 1; -- Record that one has been found
10 Temp := Parts[i];-- Grab the particle
11 T := i; -- Record where it is located
12 exit; -- Interrupt loop as particle found
13 end;
14 end;
15
16 /* If Vacated, Compact list */
17 for i := T+1 to C do -- Loop from point of interruption
18 Parts[i-1] := Parts[i];--Scooch 'em up
19 end;
20 C := C - P; -- Reduce count if particle left
21
22 /* Move Particle */
23 Temp := Temp@south; -- Send particle N
24 P := P@south; -- Send indicator of arrived point
25
26 /* Incorporate particle */
27 C := C + P; -- If particle arrived, bump count
28 Parts[C+1-P] := Temp; -- Add to list, or no-op if none
29 end;

Figure 9.4. One-particle-per-cell solution for

There are two noticeable changes to the program. First, as the particle list is
scanned looking for moving particles, the loop is not interrupted until a full
batch is formed. So, part of the compaction operation is incorporated into the
search loop. The loop is exited when the batch has filled. The other change
is in the code incorporating arrived particles into the list. The previous
assignment became a loop, and it was more convenient to update the count
variable after the items had been added. Notice that if no variables are sent,
control falls through the loop and updating the count is a no-op.

The application of this program is as follows. The batch size b is set to, say,
the expected number of north moving points, determined through some

ZPL Programming Guide

134

experimentation. Then, batches are moved in a loop which continues as long
as north moving particles remain in any cell, i.e. 0 != +<<P . The concept is
that for problems meeting the properties mentioned at the beginning, a small
number of iterations (2-3) should suffice to move the particles. This doubtless
leads to a more efficient solution that doing the transfer all at once, which
would require a worst-case batch size, and is far more expedient than writing
ZPL code to work out the actual number of items moving and then
transferring the exact number. The principle is that in parallel computing it
is often more effective to perform some redundant computation to reduce the
critical path.

 1 [R] begin /* Initialize */
 2 T := C + 1; -- Start interrupt position at end+1
 3 P := 0; -- Number found starts at 0
 4
 5 /* Find Departed Particles */
 6 for i := 1 to C do -- Loop thru particles of each cell
 7 if Parts[i].y > HiY -- Particle headed N?
 8 then -- Yes
 9 P := P + 1; -- Record that one has been found
10 Temp[P] := Parts[i]; -- Grab particle
11 T := i; -- Record where it is located
12 if P=b then exit; end;-- Interrupt loop since batch filled
13 else
14 Parts[i-P] := Parts[i]; --Scooch up particles
15 end;
16 end;
17
18 /* Complete Compacting list */
19 for i := T+1 to C do -- Loop from point of interruption
20 Parts[i-P] := Parts[i]; --Scooch 'em up
21 end;
22 C := C - P; -- Reduce count by number leaving
23
24 /* Move Particles */
25 Temp := Temp@south; -- Send particles N
26 P := P@south; -- Send count of arrived particles
27
28 /* Incorporate particles */
29 for i := 1 to P do
30 Parts[C+i] := Temp[i]; -- Add to list, or no-op if none
31 end;
32 C := C + P; -- If particle arrived, bump count
33 end;

Figure 9.5. Batched particle solution for pushing points north.

Thinking Globally -- Median Finding

Finding the median of a set of numbers is a simple computation when the set
has been sorted -- select the middle item. But, if the set does not need to be
sorted for other reasons, then the median can be found directly. The

ZPL Programming Guide

135

following program finds the median directly by keeping an interval lo:hi
that bounds the median, estimating the median by the midpoint of the
interval, computing which half contains the median and then collapsing the
interval by "discarding" the other half. Convergence is achieved when the
endpoints meet. Though this is a simple computation, it provides an
opportunity to illustrate thinking globally.

The solution requires a linear region,

region R = [1..n];

the array containing the data and an array for masking,

var A : [R] float;
 M : [R] ubyte;

and some scalar variables to support the computation,

var lo,
 hi,

 mid: float;
 count: integer;

Notice that the values are chosen to be of floating-point type, but other types
can be handled simply by changing declarations.

The strategy is to begin with an interval that spans the whole set of numbers,

lo := min<< A;
hi := max<< A;

and then to shrink it iteratively

[R] while hi != lo do
 mid := (hi - lo)/2; -- Figure midpoint
 M := A < (lo + mid); -- Which items are smaller
 count := +<< M; -- How many are there
 if count < ceil(n/2) -- Is median in upper half?
 then
 [" without M] lo := min<< A; -- Yes, move lo up
 else
 [" with M] hi := max<< A; -- No, move hi down
 end;
 end;

The computation proceeds as follows. If the values between lo and hi
inclusive are the same, then that value is the median value. Otherwise, the
mid point between the two endpoints is determined, and a mask, M, is
computed with a 1 set for each element less than the mid point. The total
count of these elements is then computed. If count is less than n/2, then the

ZPL Programming Guide

136

median element must be in the half larger than mid, and lo should be
adjusted up. Otherwise, hi should be adjusted down.

The adjustment masks the R region to consider the indices of only a subset of
the elements. (Recall that ditto (") is synonymous with "the current region.")
When the mask employs the without operator, the elements larger than or
equal to the mid point (corresponding to zeroes of M) are considered, and the
minimum of these elements becomes the new lo endpoint. Symmetrically,
when the mask employs the with operator, the elements smaller than the
mid point (corresponding to ones) are considered, and the maximum of these
becomes the new hi endpoint. The iteration continues until the interval
collapses.

It is instructive to consider the convergence of the algorithm. Consider first
the case when A has Index1 as its value. The snapshot of the relevant
program variables (prior to the if -statement) of each iteration is shown.
(The values do not have to be in order to produce this result, of course, but
order makes the logic somewhat easier to follow.)

Array A lo hi mid Array M count
1 2 3 4 5 6 7 8 9 1 9 4 1 1 1 1 0 0 0 0 0 4

 5 9 2 1 1 1 1 1 1 0 0 0 6
 5 6 0.5 1 1 1 1 1 0 0 0 0 5
 5 5

The three iteration convergence illustrated is not dependent on the value of
n. A moment's thought indicates that any odd length sequence of
consecutive integers converges in three steps, because the first iteration will
throw out all elements below the median, the second will purge those above
the median+1, and the last will shrink this two element interval to a single
element. (An array of identical values doesn't iterate.) In general, the
algorithm uses a Fibonacci search to push the end points toward the median.

Readers who are conversant with ZPL's WYSIWYG performance model will
notice the repeated use of reduction operations. Though efficiently
implemented, reduction is a global operation requiring communication and
it is generally a good principle to reduce its use when possible. In the median
program, as with many computations, reduction is essential.

Random Number Generation

Computers do not generate truly random numbers, of course, though
sometimes a buggy program will seem to the frustrated programmer to be
doing so. Rather, they generate pseudo-random numbers -- a finite sequence
of dependent numbers that over the sequence appears to have the statistical
properties of random quantities. The generation of pseudo-random numbers

ZPL Programming Guide

137

is a deep and interesting topic in computer science, and the reader is warned
that generating pseudo-random numbers by "random" methods doesn't work
[Knuth 69]. Consequently, since random numbers are widely used in
scientific computations, they are briefly considered here.

A reliable technique for generating high quality pseudo-random numbers on
contemporary machines having 32-bit integer arithmetic is the Learmonth-
Lewis prime-modulus multiplicative congruential generator [Learmonth &
Lewis 74],

rn = 16807rn-1 mod (231-1)

where r0, called the seed, is given initially. The sequence sweeps through the
full range of positive integers for 32-bit twos complement representation, {1,
..., 231-2}, two billion numbers in all, before repeating. (Zero could not be
generated, of course, since to do so would kill the sequence.)

The Learmonth-Lewis generator can be converted into a scalar ZPL function
directly. It is convenient to define a constant for the modulus, so that it need
not be continually recomputed,

constant llmodulus : uinteger = 2147483647;
-- Set modulus to 2^31 - 1

multiplier: uinteger = 16807; -- Set multiplier to 7^5
recipmod : double = 4.6566128752457969E-10;

-- Reciprocal of modulus

as well as the multiplier and the reciprocal of the modulus. Also, declare

var seed : uinteger;

and initialize it

seed = 377003613; -- Set seed

with some arbitrary value. This value can be changed for production runs,
say with the time of day. Specifying a fixed initial value assures that
debugging runs are repeatable.

The scalar function

procedure llrand(var rsequence: uinteger) : uinteger;
/* Learmonth-Lewis random number generator for 32-bit arithmetic */
var rhi, rmlo, fhi : uinteger;
begin

rhi := bsr(rsequence, 16);
rmlo:= (bsr(bsl(rsequence, 16), 16) * multiplier;
fhi := rhi * multiplier + bsr(rmlo, 16);
rsequence := (bsr(bsl(rmlo, 16), 16) + bsr(bsl(fhi, 17), 1))

ZPL Programming Guide

138

+ bsr(fhi, 15);
if rsequence >= llmodulus
 then rsequence -= llmodulus;
end;
return rsequence;

end;

takes rn-1 in as a var parameter, i.e. rsequence is by-reference, and produces
rn. The involved right and left shifting is designed to assure that the large,
intermediate products do not cause overflow.

This function is invoked with the call

... llrand(seed) ...

whenever a random (scalar) integer value is needed. If random floating point
numbers are desired, then changing the procedure's return type to double
and changing the next to last line to

return rsequence * recipmod;

produces uniformly distributed random floating point numbers over (0,1).

The llrand procedure can be tested by beginning with the previously
initialized seed and comparing with the following test sequence, which has
elements separated by 100,000 llrand calls:

r0 = 377,003,613
r100,000 = 648,473,574
r200,000 = 1,396,717,869
r300,000 = 2,027,350,275
r400,000 = 1,356,162,430

An important point to notice is that because seed is a scalar, ZPL will
replicate its value on every processor, as explained in Chapter 8. Accordingly,
when llrand is called, every processor will produce the same pseudo-
random scalar value. This can be used like all other scalars in ZPL.

For cases where an array, A, is to be initialized to random values, the code

/* Set A to a random initial value */
 for i := 1 to n do

 for j := 1 to m do
[i,j] A := llrand(seed); (*)
 end;

 end;

ZPL Programming Guide

139

performs the operations such that the sequence r1, r2, ... is assigned to
elements of A in row-major order.

The loops initialize the array one position at a time, and since this is a
sequence, the computation is sequential. That is, by using a single point
region within the loops, all rmn elements are swept through one at a time.
Notice that each processor will execute this loop ensuring that all processors
have the same seed value upon completion. The process is fast, and is likely
to contribute negligibly to the overall execution time of any serious
computation, so alternative initializations are not considered.

A final cautionary note about arrays of random numbers. The llrand
procedure given above is scalar, and could be promoted to compute over an
array, just like any scalar procedure. Array sequences of random numbers
could be generated by promoting llrand to apply to an array Seed, provided
it is initialized properly. The initialization (*) above is not appropriate for
this application. This is because the kth element in the sequence of Seed ij+1 is
the k+1st element of the sequence for Seed ij. That is, the elements are
correlated. Thus, the previous initialization is ideal for single uses such as
initialization, but not for array sequences of random numbers.

References

Donald E. Knuth, 1969 The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Addison-Wesley.

G. P. Learmonth and P. A. W. Lewis, 1974 "Statistical tests of some widely
used and recently proposed uniform random number generators,"
Proceedings of the 7th Conference on Computer Science and Statistical
Interface.

ZPL Programming Guide

140

-- Chapter 10 --

ZPL and Future Parallel Programming

ZPL has introduced a series of new, high level programming concepts to
simplify the task of parallel computing, and in addition, simplified known
techniques such as array manipulation. Perhaps the most significant
contribution is the WYSIWYG performance estimation capability.
Throughout the language, regions are key to making clean, easy-to-use
programming facilities. What more could be done? Plenty.

On the horizon is Advanced ZPL, a superset of ZPL -- all ZPL programs are
legal A-ZPL programs -- in which there are more sophisticated data
structuring facilities, more powerful programming facilities, e.g. pipelining,
and more tightly integrated tools. Advanced ZPL will elevate programming
to a higher level of abstraction subject to the conditions that ZPL's high
performance and portability be maintained.

ZPL Programming Guide

141

ZPL REFERENCE
Examples of the most common features of ZPL

BASE TYPES: REGION OPERATORS: CONTROL: {}=optional, {{}}=0/more
Signed Unsigned at translate [R at east] if ... then ...{else ...}end;

file of border exterior [east of R] if ... then ... {{elsif ... }}
string in border interior [east in R] {else ...} end;
boolean by stride [0..n-1 by 2] for i:=1 to n {by 2}
char with mask [R with M] do ... end;

sbyte ubyte without antimask [R without M] while ... do ... end;
shortint ushortint empty inherit dim [, 2 .. n-1] repeat ... until ... ;
integer uinteger " inherit region [" at east] begin ... end;
longint ulongint return ... ; from procedure
float • of and in compose inside-out • exit; from innermost loop
double • at composes by adding directions • continue; to next loop iter.
quad halt; terminate execution

OPERATORS
Arithmetic Relational Logical Bitwise Assignment Precedence
+ addition = equality ! not bnot(a) complement := + - ! High
- subtraction != inequality & and band(a,b) and += << || >> ##
* multiplication < less than | or bor(a,b) or -= ^
/ division > greater than bxor(a,b) exclusive or *= * / %
^ exponentiation <= less than bsl(s,amt) left shift /= + - (binary)
+ unary plus or equal to bsr(s,amt) right shift %= = != < > <= >=
- negation >= greater than &= & | Low
% modulus or equal to • Left Associative • |=

ARRAY OPERATORS (A = 2D array over [1..n,1..n])
+<<A Full reduce >##[n-Index1+1,]A Scatter Permute
[1..n,1] ...*<<[R] A Partial reduce [east of R] wrap A; Periodic border
+|| A Full scan [east of R] reflect A; Mirror Border
*||[2] A Partial scan if A<0 then ... end; Shattered i f
[R] ... >>[1..n,1] A Flood for I:= 1 to A do ... end; Shattered for
<##[Index2,Index1]A Gather Permute while A>0 do ... end; Shattered while

SAMPLE DECLARATIONS
program Sample; Program header line
config var n : integer = 100; Define, set; command line changeable
constant yr : float = 365.25; Define, set; fixed
type triple = array[1..3] of ubyte; Defined type; indexed array of bytes
var U, V : triple; Declare vars; reference as U[2]
type posish = record Define type of three values
 lat, long : float; Field name(s) and type
 height: integer; end; Field list ends with end
var Summit:array[1..50] of posish; Declare vars; ref as Summit[2].lat
region R = [1..n, 1..n]; Named region

St = [1..n, 1..n by [2,2]]; Region strided by 2 in each dimension
direction east = [0, 1]; Define direction
var A, B, C : [R] double; Declare arrays
prototype abs(x:float) : float; Procedure prototype
procedure abs(x:float) : float; Procedure declaration
 begin if x<0 then return -x else return x; end;

© 1998 University of Washington

ZPL Programming Guide

142

Fundamental Constants, Standard Functions
and Timers

ZPL provides access to a set of built-in facilities to simplify programming.
The fundamental constants and standard scientific functions come from the C
language's math.h library on the host computer.

Fundamental Constants. The following double precision floating point
constants are provided:

Name Meaning Decimal Value
m_e e 2.7182818284590452354
m_log2e log2 e 1.4426950408889634074
m_log10e log10 e 0.43429448190325182765
m_ln2 loge 2 0.69314718055994530942
m_ln10 loge 10 2.30258509299404568402
m_pi π 3.14159265358979323846
m_pi_2 π/2 1.57079632679489661923
m_pi_4 π/4 0.78539816339744830962
m_1_pi 1/ π 0.31830988618379067154
m_2_pi 2/ π 0.63661977236758134308
m_2_sqrtpi 2/ √π 1.12837916709551257390
m_sqrt2 √2 1.41421356237309504880
m_sqrt_2 1/ √2 0.70710678118654752440

Scientific Functions

The following standard scientific functions are provided in multiple forms,
one generic form and other type-specific forms. Use of the generic function
will result in the compiler generating a call to the proper type-specific library
routine matching the argument type or higher argument type when there are
two arguments.

Name Meaning
abs(x) Absolute value of x
acos(x) Arc cosine of x
asine(x) Arc sine of x
atan(x) Arc tangent of x
atan2(x,y) Arc tan of x/y
ceil(x) Least integer not less than x

ZPL Programming Guide

143

cos(x) Cosine
cosh(x) Hyperbolic cosine
cube(x) x3

exp(x) ex

floor(x) Greatest integer not greater than x
fmod(x,y) Floating point remainder of x/y
ldexp(x,y) x2y

log(x) Logarithm to base e of x
log2(x) Logarithm to base 2 of x
log10(x) Logarithm to base 10 of x
pow(x,y) xy

sin(x) Sine of x
sinh(x) Hyperbolic sine of x
sqrt(x) Squareroot of x
tan(x) Tangent of x
tanh(x) Hyperbolic tangent of x
trunc(x) Truncate x to a whole number

Type-specific standard functions can be called explicitly. To construct the
name of a type-specific standard function, append the type designation
letter(s) to the generic function name, precision first. The type designation
letters are

f = single precision floating point,
d = double precision floating point,
q = quad precision floating point,
c = complex

For example, sin(x) calls the sine function matching the type of x ; sinf(x)
is the single precision sine function, sind(x) is the double precision sine,
sinq(x) is the quad precision sine when quad precision is available, and
sinfc(x) , sindc(x) and sinqc(x) are the corresponding complex calls.
Arguments not matching the type of type-specific standard function are
converted.

Timers

Two timing functions are provided based on the native timer of the host
computer. Timing granularity varies widely, and is not always very fine.
Accordingly, timing very small sections of program can be inaccurate.

ResetTimer() Resets the timer to zero and returns a double precision
floating point number that is the number of seconds since
the last call to ResetTimer() .

ZPL Programming Guide

144

CheckTimer() Returns a double precision floating point number
that is the number of seconds since the last call to
ResetTimer() .

Check your installation's documentation for details.

ZPL Programming Guide

145

Index
0-origin 20
1-origin 34
actual parameter 73, 75
add 13
Advanced ZPL 140
aggregate 100, 105
and 13
and-equals 16
applicable region 32, 40
approximate match 125
arguments 71, 72
arithmetic operators 13, 14
array 12, 21, 22, 40, 63, 105, 119, 121, 122, 124
array coordinates 29
array keyword 61
assignment 16, 31, 33
assignment symbol 4, 16
associativity 14, 35
at 56
base direction 102, 103
base region 25, 26, 98, 99
base types 14, 64
begin 16, 17
binary files 41
binary I/O 41
binary operators 14
bitwise and 13
bitwise exclusive or 13
bitwise not 13
bitwise operators 13
bitwise or 13
boolean 12, 14
border region 100, 113
borders 6, 26, 27, 131
boundary conditions 6, 26, 28
brace pair 102, 103
brackets 20, 21, 22, 35, 72, 90
bread() 41
bwrite() 41
by 16, 17, 98
by-reference 71, 73, 75, 125, 127, 138
by-value 73
Cannon's algorithm 82, 115, 116, 119

ZPL Programming Guide

146

capitals-for-arrays policy 16
Cartesian coordinates 29
Cartesian product 19, 21
case sensitive 15
char 12, 14
character 12, 14
check-pointing 41
close() 41, 44
colon 21
command line 37
comment terminator 4
commenting 18
communication 116
compiler 113
complement 13
composition 56, 57
compound statement 17, 78
compression 93, 118
config var 37
configuration parameter 8
connected component 51
constant 37
continue 16, 17
control-flow 16, 17, 75, 81
conversion of numbers 15
correlation coefficient 43
coversion of lower type 15
CTA 111, 112, 114, 119
d-dimensional array 12
data types 12
declaration 83
degenerate range 55
dense array 116
dense indices 99
derived types 12
deterministic 109
dimension 20, 98, 108, 113
dimension specifiers 35
direction 5, 13, 24, 25, 27, 37, 56, 83, 89, 98, 99, 101, 102, 103, 104
ditto 60, 61, 73, 136
divide 13, 14
divide-equals 16
do 16, 17
dot notation 64
double 12, 14
double brackets 60

ZPL Programming Guide

147

double dots 20
double precision 12, 14
dynamic region 58, 59, 103
dynamic strided region 99
elementwise 7, 30
else 16, 17, 18
elsif 16, 17, 18
empty braces 105
end 16, 17, 18
end-of-line 4
equal 13, 14
equal precedence 14
equal sign 4
exit 16, 17
exponent 14
exponentiate 13, 14
false 14
file 12, 39, 41
file declaration 39
file descriptor 40, 41, 43
first dimension 21
first quadrant 30
float 12, 14
floating point 12
floating point arithmetic 35
flood 10, 69, 109, 114, 122
flood array 66, 110, 116, 118, 119
flood region 65
floodable dimension 65
flooding 91
for 16, 17
for-loop 47
formal parameter 71, 73
full concurrency 115
fundamental constants 142
gather 107, 108, 118
goto 17
greater than 13, 14
greater than or equal 13, 14
halt 16, 17
hierarchy 104, 105
histogram 45, 91
idealized parallel computer 111
identifier 15
identity matrix 33
if 16, 17, 18

ZPL Programming Guide

148

if-statement 47
implicitly parallel 1, 111
in 57
indenting 18
index range 25
index set 21, 27
index tuples 20
indexd 31, 32, 33, 110
indexed array 12, 61, 73, 93, 95, 114, 118, 121, 124
inheritance 60, 66
input/output 39
integer 12, 14
iteration variable 17
Jacobi program 2, 4
keywords 16
leading blanks 18
less than 13, 14
less than or equal 13, 14
letters 15
Levialdi 51
load-balance 117
locality 9
logical and 13, 14
logical array 91
logical data 12, 14
logical false 14, 45
logical operators 13, 14
logical or 13, 14
logical true 14, 45
logical vectors 42, 46, 47
longint 12, 14
lossy compression 93
lower and upper limits 19
lower limit 20
machine independence 121
machine independent 1, 111
machine specific libraries 15
main_program 37
mask 77, 95, 136
matrix multiplication 10, 81, 86, 87, 88, 115
median 134
memory 113, 115, 119
minus-equals 16
mirrored 28
mod-equals 16
modulo 13, 14

ZPL Programming Guide

149

mu 42, 43
multiarray 105
multidirection 102, 103, 104
multigrid 98
multiple region specifiers 23
multiply 13, 14
multiregion 104, 105
N-body 128, 129
named regions 22
negate 13, 14
negative offset 24, 29
not 13, 14
not first class 13, 21
numerals 15
numeric types 15
object code 15
of 57
offset 24
offset-referencing 26
offsets 24
op-scan 35
open() 40, 41, 43
optimizations 120
or 13
or-equals 16
order of accumulation 35
parallel array 13
parallel computer 118
parallel execution 111
parallel prefix 69, 91, 117
parameter 73
parentheses 14, 43
partial reduce 35, 67, 69, 70, 91, 92
partial scan 35, 69
performance 2, 9
performance estimate 115
periodic 28
permutation 107, 108, 109, 114, 118, 124
permutation specifier 108
plus-equals 16
plus-scan 35, 50, 91
portability 120, 140
positive offset 24, 29
pow 14
precedence 14
precision 12

ZPL Programming Guide

150

prefixing 22, 23, 24
procedure 61, 70, 74, 77
procedure call 74
procedure header 74
procedure promotion 75
procedure_definitions 37
program 37
program name 37
promotion 30, 70, 76, 124
prototype 74
pseudo-random number 136, 137
quad 12, 14
quadruple precision 12, 14
random floating point number 138
random number 136, 137
rank 19, 20, 22, 24, 27, 30
rank defined 72
read() 43
record 12
recursive procedures 75
reduce 8, 34, 68, 69, 90, 91, 114, 115, 117, 119, 123
reduction operators 45
reflect 28, 114, 116
region 5, 13, 19, 20, 25, 28, 37, 81, 91, 98, 105
region conformance 69, 91
region declaration 21, 22
region expressions 22, 55
region scope 23
region specifier 5, 7, 21, 22, 24, 30, 56
region types 13
relational operators 13
reordering specifier 108, 109, 110
repeat 6, 16, 17
retarget 113
return 16, 17
return type 138
row-major order 33, 34, 40, 139
sbyte 12, 14
scalar 5, 8, 16, 30, 35, 114, 118, 121, 138
scaling 102, 103
scan 34, 36, 69, 90, 91, 114, 115, 117, 119
scatter 107, 108, 109, 118
scientific functions 142
scope 78
selective execution 77
semicolon 4, 17

ZPL Programming Guide

151

sequential functions 31
sequential procedures 75
sequential thread 75
shattered control-flow 76, 77, 78
shattered for-loop 131
shift left 13
shift right 13
shortint 12, 14
shrinking operator 51
sigma 42, 43
signed types 12
single precision 12, 14
size 20
skew 84
sort 95, 122
source text 15
sparse 87
spill 28
sqrt 14, 43
squareroot 14
statement sequence 17
statement termination 4
stderr 39
stdin 39
stdout 39
stride 101, 106
strided array 100, 101, 103
strided region 98, 100, 116
string 12
style 80
subtract 13, 14
SUMMA algorithm 86, 116, 119
surface-to-volume ratio 116
tabs 18
technique 9, 80
then 16, 17, 18
timer 143
times-equals 16
to 16, 17
to_type 15
translation 26
transpose 108, 118
tridiagonal 88
true 14
type 37
type conversion 15

ZPL Programming Guide

152

type declaration 63, 93
type-specific standard function 143
ubyte 12, 14
uinteger 12, 14
ulongint 12, 14
unary operators 14
unequal 13, 14
uniform convolution 48
unpredictable results 15
unsigned types 12
upper limit 20
user defined functions 31
ushortint 12, 14
var 37, 73, 125, 138
variable declaration 5
variables 15
wavelet 98
while 16, 17
white-space 18
with 77
without 78, 136
working within a rank 70
wrap 28, 114, 116
write() 40
writeln() 40, 44
WYSIWYG 111, 136
zerr 39
zin 39, 40
zout 39, 40

