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Abstract

We study the performance of user-level thread schedulers in multiprogrammed environments. Our
goal is a user-level thread scheduler that delivers efficient performance under multiprogramming without
any need for kernel-level resource management, such as coscheduling or process control. We show that
a non-blocking implementation of the work-stealing algorithm achieves this goal. With this implemen-
tation, the execution time of a computation running with arbitrarily many processes on arbitrarily many
processors can be modeled as a simple function of work and critical-path length. This model holds even
when the processes run on a set of processors that arbitrarily grows and shrinks over time. We observe
linear speedup whenever the number of processes is small relative to the average parallelism.

1 Introduction

As small-scale multiprocessors make their way onto desktops, the high-performance parallel applications
that run on these machines will have to live alongside other applications, such as editors and web browsers.
Similarly, users expect multiprocessor compute servers to support multiprogrammed work loads that include
parallel applications. Unfortunately, unless parallel applications are coscheduled [40] or subject to process
control [44], they display poor performance in such multiprogrammed environments [10, 17, 18, 19, 26].

As an alternative to coscheduling or process control, in this paper we investigate the use of dynamic,
user-level, thread scheduling in order to achieve efficient performance under multiprogramming. We show
that a non-blocking implementation of the well-known and provably efficient “work-stealing” scheduling
algorithm [15] delivers efficient performance under multiprogramming. Moreover, we develop and evaluate
a simple performance model based on “work” and “critical-path length” that characterizes accurately the
performance of parallel applications that use this non-blocking work stealer. In fact, this performance model
is based on an analytical bound that we have proven to hold in a model where the kernel-level scheduling is
actually performed by an adversary [9]. Thus, our model is extraordinarily robust.

We shall restrict attention to shared-memory multiprocessors, and all experiments are performed on a
Sun Ultra Enterprise 5000 with 8 167-Mhz UltraSPARC processors running Solaris 2.5.1. We shall use the
word “process” to denote a kernel-scheduled entity, and we shall assume that all processes belonging to the
same executing program can share memory and synchronize through the use of synchronization variables.
Such processes are often referred to as “light-weight processes” or “kernel threads.” We shall reserve the
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word “thread” to denote a user-level task that is scheduled by a user-level library. The user-level library
schedules threads onto processes, and the kernel schedules processes onto processors.

Our goal is to develop a scheduler for a user-level threads library that performs well under multipro-
gramming, regardless of the behavior of the kernel scheduler. Specifically, our scheduler should utilize
efficiently whatever set of processors the kernel scheduler happens to give it, even if the kernel scheduler
gives it fewer processors than it has processes and even if that set of processors grows and shrinks over time.
Such a scheduler could be employed by a parallelizing compiler, or the runtime system for a multithreaded
language such as Cilk [14] or Java [8].

1.1 The problem with static partitioning

Before considering dynamic thread scheduling, we first review a well-known performance anomaly that
occurs when parallel programs use a static partitioning of the work [31, pages 284–285]. In the simplest
case when such a program executes, it creates some number

�
of processes, where typically

�
is selected

by a command-line argument, and each process performs a ��� � fraction of the total work. Let ��� denote
the work of the computation, which we define as the execution time with

��� � process. Using
�
	 �

processes, each process performs ����� � work, and if the overhead of creating and synchronizing these
processes is small compared to the � � � � work per process, then we can hope that the execution time ��

will be given by � 
 � ����� � , thereby giving a speedup of ������� 
 ��� . Of course, this aspiration assumes
that we have at least

�
processors on which to execute the program.

In a multiprogrammed environment, we might find that the actual number
���

of processors on which
our program runs is smaller than the number

�
of processes, and in this case we cannot hope to achieve a

speedup of
�

. Note that we always have
�������

, because a program cannot run on more processors than
it has processes. Thus, in a multiprogrammed environment, we can aspire more reasonable to achieve an
execution time of ��
 � � � � � � , thereby giving a speedup of � � ����
 ��� � — that is, linear speedup —
and a (processor) utilization of ������� ��� � 
�� � ���! . Unfortunately, for some problem inputs, our statically
partitioned applications do not come close to fulfilling this aspiration unless we have

�"�#���
, effectively a

non-multiprogrammed, dedicated machine.
Figure 1(a) shows the measured speedup of several statically partitioned applications for different num-

bers
�

of processes. More information about these applications is given in Table 1, and various characteris-
tics for each of these applications, including the value of ��� , are given in Table 2. The applications are run
on a dedicated machine with

��$
�&%
processors, so the actual number

� �
of processors used is given by���'�)(+*-,/.0� $21 �435�)(6*-,7.0% 1 �43

. Observe that when we have
�8�9%

, we have
���:�;�

, and all four appli-
cations come reasonably close to the ideal linear speedup. On the other hand, when we have

�8<9%
, we have���>=?�

, and performance drops off dramatically. In fact, the worst case is when we are off by only 1 — that
is, when

����@A�)���+B � . In this case, the
���

processors begin by executing
�;C � of the processes, all of

which complete in time � � � � . Then, one of the processors executes the one remaining process, which also
completes in time �D��� � . Thus, we have an execution time of � 
 ��E �F����� � � �GE ������� ���HB � � , thereby giv-
ing a speedup of �D����� 
 � � ���IB � � � EIJ)��� � E and an utilization of �D����� ��� � 
�� � � ���HB � � ��� E���� � J  K�ML
— roughly half the desired speedup and utilization.

The traditionally proposed solution to this problem is to use a number
�

of processes that is significantly
greater than the number

� $
of machine processors, so that we are guaranteed to have

�ONP���
[31, page

285]. Indeed, using extra processes can improve the load imbalance, but as we see in Figure 1(a), it does
not solve the problem. As

�
grows, the overhead of creating and synchronizing the processes grows and the

work per process �D��� � shrinks. For sufficiently large values of �Q� , this problem will not occur, because the
time slicing divides each process into smaller pieces and fixes the load imbalance. Ultimately, however, this
observation cannot console us. We want our applications to perform well for all input problems.
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(a) Static partitioning. (b) Non-blocking work stealer.
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Figure 1: Measured speedup plotted as a function of the number
�

of processes used when run on a dedicated
8-processor machine. (a) Measured speedup for statically partitioned applications. (b) Measured speedup for work-
stealing applications using the non-blocking work stealer.

1.2 Summary of results

As an alternative to static partitioning, we focus our attention on user-level thread schedulers that dynami-
cally assign the application’s work to its processes. In employing such a scheduler, an application partitions
its work into threads, where the amount of work in each thread and the number of threads is completely
independent of the number of processors or processes. Instead, the partitioning into threads is determined
by the amount of parallelism in the parallel algorithm being used. For example, in a divide-and-conquer
algorithm in which the recursive subproblems can be solved in parallel, a separate thread is created for each
recursive call. Thus, such applications may create millions of threads. The hope is that because the threads
are created and synchronized at user-level, only a small amount of work per thread is need to amortize the
cost of creating and synchronizing the myriad threads. Moreover, we hope that by employing a scheduler
that assigns threads to processes dynamically, applications will deliver linear speedup even under multipro-
gramming. If we have

� � =)�
, then some processes will get less processor time than others (or maybe no

processor time at all), but such processes will simply be assigned fewer (or no) threads to execute.
We show in this paper that this hope can be realized with a non-blocking implementation of the work-

stealing thread-scheduling algorithm. This implementation employs non-blocking synchronization [29] for
the concurrent data structures and judicious use of “yields.” The result is performance as shown in Fig-
ure 1(b). Here we have performed the same experiment as in Figure 1(a) with the same applications and a
couple more, but now the applications are recoded to use our non-blocking work stealer. We observe that
our applications now come very close to linear speedup across a very wide range of numbers

�
of processes,

including the cases when we have
��� =?�

. Moreover, as we document in Section 3, we have not sacrificed
any performance in the cases when we have

� �'�G�
.

We also show that with this non-blocking implementation of work stealing, application performance can
be bounded by the formula

� 
 ��� � � � � � � B���� � �4� � � � 1
where

� � and
� �

are small constants, and � � is the “critical-path length” of the computation, which, as
defined in Section 3, is a lower bound on the execution time for any number of processes and processors.
This bound holds even when the program runs on a set of processors that grows and shrinks over time,
in which case we define

�Q�
as the time-average actual number of processors on which the program runs.

Importantly, we find that this bound holds with the constant
� � very close to 1. Thus, we obtain linear
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speedup — that is, � 
 J ����� �D� — whenever � � � � ��� is small relative to �D��� �D� — that is, whenever�
is small relative to ������� � , a quantity that is naturally interpreted as the “average parallelism” of the

computation. We show that this bound holds across all of our work-stealing applications and across all of
the inputs to these applications.

The remainder of this paper is organized as follows. In Section 2 we consider other proposed solutions
to the problem of efficient multithreading in multiprogrammed environments. We cover the work-stealing
algorithm and the non-blocking implementation in Section 3. In Section 4, and we measure and compare
the performance of several alternative implementations. We show in Section 5 that for our non-blocking
work stealer, performance can be modeled with a simple bound based on work and critical-path length. We
do further studies based on measurements with multiprogrammed workloads in Section 6. In Section 7 we
discuss some of the limitations of our results and of our approach, and we discuss plans for future work to
address some of these limitations. In Section 8 we conclude.

2 Related Work

With its ability to utilize arbitrarily sized and time-varying processor allocations, and by doing so exclu-
sively through the use of user-level scheduling, our non-blocking work stealer is a natural complement to
various kernel-level resource-management strategies. In this section, we consider some of these kernel-
level resource-management strategies, and we compare them to our user-level thread-management strategy,
pointing out any symbiosis. In addition, we briefly discuss prior work on non-blocking synchronization and
thread scheduling, upon which our implementation has been built.

Much prior work on multiprogramming multiprocessors has focused on the management and scheduling
of kernel-level resources, specifically processes [26, 32, 35, 40, 41, 44, 47]. A number of studies have
compared various process-scheduling strategies, and all have concluded that the traditional time-sharing,
priority-based “local scheduler” found in most operating systems is inadequate [10, 17, 18, 19, 26]. In
addition, all of these studies have concluded that some form of coscheduling or space partitioning with
process control offers the best solution.

Coscheduling [40], which is a generalization of “gang scheduling,” attempts to run all of the processes of
any given parallel program concurrently as a “gang,” thereby giving each program the illusion of running on
a dedicated machine. Interestingly, it has been shown recently that coscheduling can be achieved implicitly
with little or no modification to existing kernel schedulers [18, 43]. The main advantage of coscheduling
over our approach is that coscheduling may be able to achieve “superlinear” speedup due to caching effects.
We discuss this issue in more detail in Section 7. The main drawback to coscheduling, whether explicit
or implicit, is that it cannot be applied effectively for some job mixes. Consider, for example, a parallel
program with 9 processes running concurrently with a serial program on a 9-processor machine. While the
serial program is executing on a processor, we can either leave the other 8 processors idle or run 8 of the
parallel program’s 9 processes. In the former case, we are leaving most of the processors idle. In the latter
case, we may observe performance as in Figure 1(a).

As an alternative to the above scenario, the process control approach [44] would have the parallel pro-
gram kill one of its processes. In general, with process control a parallel program creates and kills processes
dynamically so that it continuously runs with a number of processes equal to the number of processors
available to it. Process control can be used to implement resource-management policies, such as equipar-
titioning [32, 35, 44]. As with our approach, process control requires a runtime-system layer that assigns
user-level threads to processes dynamically, so that work can be reassigned when a process is created or
killed. In addition, however, process control also requires some kernel-level support, so that programs can
be informed as to how many processes they should have. Moreover, when a new program begins executing,
existing programs will be running with more processes than processors until they can react and kill some of
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their processes.
Our approach can help solve this problem, and process control can complement our approach. By using

our non-blocking implementation of work stealing, process control can safely be deferred to convenient
times. A program that is supposed to kill a process can delay this action to a convenient time and not
have to worry about the performance impact of temporarily running with more processes than processors.
Conversely, with process control, a program can avoid running with an excessive number of processes.
Our performance model shows that there is a performance penalty when operating in the regime where the
number of processes is comparable to or larger than the average parallelism. With process control and a
dynamic space-partitioning policy [35], we can avoid operating in this regime.

In general, our results indicate that local scheduling is adequate, provided that parallel applications
are coded to use threads and that the threads library is implemented with our non-blocking work stealer.
Nevertheless, as we have already indicated, some applications probably do need some type of coscheduling,
and our scheduler can benefit from dynamic space partitioning and process control. Moreover, we cannot
conclude that local scheduling is entirely adequate, because our studies were performed with Solaris 2.5.1,
which implements affinity scheduling [47]. We do, however, conjecture that affinity scheduling is of less
value for applications that use our non-blocking work stealer than for other applications that use blocking
synchronization. With no blocking, processes typically run for their full quantum, so the cost of cache
warmup can be amortized over a long run.

As another alternative to kernel-level resource management, first-class user-level threads [33] and sched-
uler activations [5] are kernel-level mechanisms that support efficient multiprogramming with user-level
threads, independent of any particular kernel-level resource-management policy. In comparison with our ex-
clusively user-level implementation of work stealing, we expect that such kernel-level support admits a sim-
pler implementation, with efficient performance under multiprogramming, through the use of preemption-
safe locking [1, 13, 37]. Nevertheless, we have shown that such kernel support is not necessary to achieve
our goals. Kernel-level support does have other benefits, however, notably the ability to make system calls
non-blocking. It is unfortunate that these kernel-level support mechanisms are not yet available in any
commercial operating system of which we are aware.

Finally, we point out that our use of work stealing and non-blocking synchronization builds upon a long
history in both areas, though they did not meet until now. The idea of work stealing goes back to 1981 [16]
and has been used in many systems and applications since [20, 21, 27, 42, 46]. The first provably efficient
work-stealing algorithm [15] and implementation [14] is fairly recent, however. The idea of non-blocking
and wait-free synchronization was developed by Herlihy [29]. There has been a long line of work attempting
to make the idea more practical via universal constructions [11, 28], useful primitives [2, 3, 39], and specific
data objects [3, 36, 45]. In fact, our non-blocking implementation of work stealing uses the bounded-tags
technique of [39]. Nevertheless, to this day, few applications or systems have been built with non-blocking
synchronization. Of notable exception is a study of non-blocking applications [37] and two non-blocking
operating-system kernels [25, 34].

3 Work stealing

The work-stealing algorithm dynamically assigns threads to processes for execution in a provably efficient
manner [14, 15]. In this section, we review the work-stealing algorithm, and we state the proven performance
bounds. In addition, we describe the non-blocking implementation of this algorithm [9]. In the next few
sections, we experiment with applications that are coded to use this non-blocking work stealer.
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3.1 The work-stealing algorithm

In the work-stealing algorithm, each process maintains its own pool of ready threads from which it obtains
work, and when a process finds that its pool is empty, it becomes a thief and steals a thread from the pool of
a victim process chosen at random. Each process’s pool is maintained as a double-ended queue, or deque,
which has a bottom and a top. To obtain work, a process pops the ready thread from the bottom of its deque
and commences executing that thread. The process continues to execute that thread until the thread either
blocks or terminates, at which point the process goes back to the bottom of its deque to pop off another
thread upon which it can work. During the course of executing a thread, if the thread creates a new thread
or unblocks a blocked thread, then the process pushes the newly ready thread onto the bottom of its deque.
Thus, so long as a process’s deque is not empty, the process manipulates its deque in a LIFO (stack-like)
manner.

When a process goes to obtain work by popping a thread off the bottom of its deque, if it finds that
its deque is empty, then the process becomes a thief. It picks a victim process at random (using a uniform
distribution) and attempts to obtain work by removing the thread at the top of the victim process’s deque.
If the victim process’s deque is empty, then the thief picks another victim process and tries again. The
thief repeatedly attempts to steal until it finds a victim whose deque is non-empty, at which point the thief
reforms and commences work on the stolen thread as described above. Since steals take place at the top of
the victim’s deque, stealing operates in a FIFO manner.

This idea of working in a LIFO manner and random stealing in a FIFO manner leads to performance
that has been shown, for the case of a dedicated, non-multiprogrammed machine, to be efficient both an-
alytically and empirically. Before stating these results, we first introduce some terminology based on the
“dag” structure of multithreaded computations, where we define a computation as the instructions that are
executed when a program is run on an input problem.

We can think of the individual instructions that are executed by the threads in a computation as forming
a directed, acyclic graph, or dag. The instructions within any one thread are linked by edges that form a
chain according to the thread’s dynamic instruction execution order. In addition, when an instruction in one
thread creates a new thread, then the dag has an edge from the “forking” instruction in the first thread to the
first instruction in the new thread. When the execution of an instruction in one thread unblocks a blocked
thread, then the dag has an edge from the “unblocking” instruction in the first thread to the next instruction
to be executed in the unblocked thread. In general, whenever threads synchronize such that an instruction
in one thread cannot be executed until after some instruction in another thread, then the dag contains an
edge from the latter instruction to the former instruction. Using this construction, we view a multithreaded
computation as a dag.

We characterize a multithreaded computation with two measures of its dag: work and critical-path
length. The work, denoted by ��� , is the sum of the execution times of all instructions in the dag. Observe
that with

� � � process, the process spends all of its time executing threads (it never has to steal), so
��� is the execution time of the computation with 1 process. The critical-path length, denoted by � � , is
the maximum sum of execution times for all of the instructions along any (directed) path in the dag. The
critical-path length is a lower bound on the execution time for any number of processes and processors. The
ratio ������� � is called the average parallelism.

Given any multithreaded computation with work �Q� and critical-path length � � , we have the following
results. The analytical result [15] states that for any number

�
of processes running on

�"� � �
dedicated

processors, the expected execution time � 
 is given by

� 
 � � �F����� �)B � � � � (1)

Note that because ��� � � and � � are both lower bounds on the achievable execution time (barring any cache
effects), this bound states that the execution time is within a constant factor of optimal. The empirical result

6



mm
�����

Multiply two dense
�����

matrices of doubles using a blocked data layout. Each block is of size�
	 � �
	
.

lu
�����

Compute LU-decomposition without pivoting of a dense
�����

matrix of doubles using a blocked
data layout. Each block is of size

�
	 � �
	
.

barnes
���������

Run Barnes-Hut
�

-body simulation [12] on
�

bodies for
�

time steps. This code is adapted from
the SPLASH-2 [48] program, but for the work-stealing version, we parallelized the tree-building
with a divide-and-conquer algorithm, so as to avoid the use of locks.

heat
�������������

Simulate heat propagation on an
�����

grid for
�

iterations using Jacobi iteration on a 5-point
stencil. This application is very similar to the SPLASH-2 Ocean program [48].

msort
�����

Merge sort
�

integers. Each recursive call is done in parallel, and in addition, the merging is
done in parallel using a simple divide-and-conquer technique.

ray
���

Raytrace scene to compute frame buffer of pixel colors. This application is adapted from the
SPLASH-2 [48] program, and we use balls4.env as the scene to be rendered.

Table 1: Applications used in our study. All applications are written in C++ and compiled with version 4.1 of the Sun
CC compiler using flags -xarch=v8plus -O5 -dalign -noex. The mm, lu, barnes, and heat applications
are all easily parallelized with a static partitioning, and our statically partitioned versions are built directly on top of
the Solaris thread library. Work-stealing versions for all of these applications are built on top of our Hood library,
which is in turn built on top of the Solaris thread library.

[14] states that this constant factor is quite small. In particular, the execution time can be bounded tightly
according to the formula

� 
 � ����� �;B�� � � �81 (2)

where
� �

is a small constant, typically between 1 and 2, that depends on various machine parameters. Thus,
we observe linear speedup — that is, � 
 J ����� � — whenever � � is small relative to ����� � — that is,
whenever

�
is small relative to the average parallelism ������� � .

In Section 5, we generalize these results to the case of a non-dedicated, multiprogrammed machine. In
other words, we consider the case when we have

� � =?�
. Moreover, we shall allow that the actual number

of processors on which the
�

processes execute can vary over time. We shall, therefore, generalize our
definition of

� �
to be the “time-averaged” actual number of processors used.

3.2 The non-blocking implementation

We now describe our non-blocking implementation of the work-stealing algorithm. This implementation has
two key features: the deques, which must support concurrent accesses, are implemented with non-blocking
synchronization, and each process, between consecutive steal attempts, performs system calls to “yield”
the processor. Before describing these implementation mechanisms in more detail, we first overview our
prototype threads library, on top of which we have coded our test applications.

The non-blocking work stealer is implemented in Hood, a C++ user-level threads library and runtime
system targeted for shared-memory multiprocessors. Hood is built on top of the Solaris thread library,
and it implements each process as a Solaris Light-Weight Process (LWP). Hood supports the abstraction of
user-level threads, and it schedules those threads onto processes using the non-blocking work stealer. Hood
has been instrumented to measure work and critical-path length. The work is measured by adding up the
elapsed time over each thread dispatch. Critical-path length is measured by timestamping [14]. Many other
statistics are also collected and made available.

To simplify the implementation, the current version of Hood supports run-to-completion threads only.
Threads cannot use synchronization variables such as locks, condition variables, and semaphores. In addi-
tion, a thread cannot create child threads and then join with them by blocking, waiting for those children
to return. Instead, the thread must be broken into two separate threads: the first thread creates the children

7



��� ��� ��������� ��� ���	�
��� ��� ���	����� �����
���

mm
� ��
���� � static

24.78
25.12 1.014 3.28 7.67 7.56

steal 25.36 1.023 0.01 2536 3.30 7.68 7.51

lu
� ��
���� � static

66.85
60.26 0.901 9.41 6.41 7.11

steal 67.74 1.013 0.05 1394 9.07 7.47 7.37

barnes
� �
	������ � ��
 � static

50.59
52.24 1.033 7.60 6.87 6.65

steal 52.04 1.029 0.51 102 7.41 7.02 6.83

heat
� ��
�� 	 ��� ��� � ��
�
 � static

60.15
59.82 0.995 8.01 7.46 7.51

steal 60.04 0.998 0.23 264 7.93 7.57 7.59

msort
� ����� �

steal 64.47 61.56 0.955 0.11 540 8.14 7.57 7.93

ray
� �

steal 75.37 77.61 1.030 0.33 235 9.91 7.83 7.61

Table 2: Measured application characteristics. For each application, the row labeled “static” (when applicable) rep-
resents the statically partitioned version of the application, and the row labeled “steal” represents the work-stealing
version of the application, coded using Hood. All times are in seconds.

� �
is the execution time of a serial imple-

mentation.
� �

is the work of the computation — that is, the execution time with one process. For the work-stealing
versions,

� �
is the critical-path length.

� �
is the execution time with 8 processes running on 8 (dedicated) processors.

and then terminates, and the second thread waits for the children to return. Note that the second thread does
not block, because it does not even begin executing until the children return. In other words, threads can
be created in a blocked state waiting for some event, but once a thread begins executing it cannot block.
While this restriction makes Hood harder to use, it dramatically simplifies its implementation and allows us
to experiment easily with modifications.

To evaluate the non-blocking work stealer empirically, we have coded several applications in C++ on
top of Hood. These applications are listed and described in Table 1. In addition, Table 2 gives a quantitative
characterization of each application for a chosen input problem.

In the non-blocking work stealer, the deques are implemented with non-blocking synchronization. That
is, instead of using mutual exclusion, we use powerful atomic instructions, notably the SPARC v9 casxa
(64-bit compare-and-swap) instruction. A complete description of this implementation can be found in [9].
This implementation is non-blocking, as opposed to wait-free [29], meaning that it is possible for a process
to starve in its attempt to perform a deque operation. Livelock, however, cannot occur because if one
process starves, then others must be making progress. It turns out that wait-freedom is not needed to prove
our analytical result [9] as stated in Section 5 — the non-blocking property is sufficient.

In addition to the non-blocking deque implementation, the non-blocking work stealer also makes judi-
cious use of “yields.” Each process makes system calls to yield the processor between consecutive steal
attempts. We use a combination of priocntl (priority control) and yield system calls. Whenever a
process becomes a thief, it calls priocntl to lower its priority. Once the thief has stolen a thread and
reformed, it calls priocntl to restore its former priority. In addition, when a thief makes an unsuccessful
steal attempt, it calls yield. In order to mitigate the high cost of these system calls, a thief delays its
call to priocntl until after it has made enough unsuccessful steal attempts to amortize the cost of the
priocntl call. Likewise, a thief calls yield only after it has made enough unsuccessful steal attempts
to amortize the cost of the yield call.

Figure 1(b) (from Section 1) shows the speedup obtained for the non-blocking work stealer. These
experiments were run on a dedicated 8-processor machine, so the number

� �
of processors used is given by���9�O(6*-,/. % 1 �43

. Here we have achieved our goal. We obtain nearly ideal linear speedup across a wide
range of numbers of processes, even when the number of processes exceeds the number of processors.

Before continuing, we point out that we are defining and measuring speedup as � � ��� 
 , as opposed to
��� ��� 
 , where ��� denotes the execution time for a (good) serial program. We use this definition in order to
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focus on the performance effects of our scheduler implementation, unencumbered by the overheads induced
by other aspects of the implementation. We shall refer to the ratio � � ��� 
 as the application speedup in
order to differentiate it from the computational speedup ������� 
 , and we note that the two are related by
��� ��� 
 � �F������� 
�� ���F��� ��� � � . The ratio ��������� measures the overhead in our parallel implementation. It is
the amount of work performed by the parallel computation divided by the amount of work performed by the
serial computation. The overhead is affected by many aspects of the implementation that have little to do
with the scheduler. The computational speedup is independent of this overhead and measures the scheduler’s
ability to extract speedup from a computation. For convenience, we use the word “speedup” alone to denote
the computational speedup.

From Table 2 we observe that the overhead � � ��� � is near ���! for all of our applications. Thus, we are
achieving efficient performance not just in a relative sense — that is, relative to ��� — but in an absolute sense
— that is, relative to � � . For the dedicated case when we have

� � �)�
, our work-stealer is performing just

as well as static partitioning, and in the non-dedicated case when we have
��� =��

, our work-stealer is far
outperforming static partitioning. Our work stealer delivers almost perfect linear speedup — computational
speedup as well as application speedup — in both cases.

Given the heavy cost of priocntl and yield system calls, it may come as a bit of a surprise that
the non-blocking work stealer produces linear application speedup. An example of the “work-first” design
principle [22], the key to this performance is the fact that these system calls occur only when a process is
stealing, and this has two important consequences. First, the cost of these system calls does not show up
as overhead �D����� � , because a 1-process execution never steals and consequently, never performs either of
these system calls. Second, we know from prior analytical and empirical work [14, 15] that the number of
steals per process grows at most linearly with the critical-path length � � and is independent of the amount
of work ��� . Thus, when

�
is small relative to the average parallelism ������� � , the execution incurs very few

steals, and the cost of these system calls is negligible compared to the work per process. Effectively, the
parallelism allows the cost of these system calls to be hidden by the amount of work per process, so linear
computational speedup is achieved. The combination of low overhead and linear computational speedup
means linear application speedup.

4 Alternative implementations of work stealing

In this section we study three alternative implementations of the work-stealing algorithm in order to gain
more understanding of the behavior of the non-blocking implementation. These alternative implementations
perform poorly and reveal why the non-blocking deques and use of yields are important in practice. The first
two implementations use locks (mutual exclusion) as opposed to non-blocking synchronization to implement
the deques. Of these two implementations, one uses spinning locks and the other uses blocking locks. The
third implementation uses non-blocking synchronization but does not perform yields. We shall refer to this
third implementation as “naive non-blocking.”

Our two implementations with locks are particularly simple. Each process’s deque has a lock associated
with it, and each deque operation is surrounded by a lock/unlock pair. Our spinning-lock implementation
uses a simple “test-and-test-and-set” lock, using a word of memory to represent the lock state and the SPARC
v9 casa (compare-and-swap) instruction to update the state atomically. Our blocking-lock implementation
uses the Solaris thread library. A lock is a mutex t, and the lock is operated upon with the mutex lock
and mutex unlock calls.

Many other and more sophisticated locking strategies are known [4, 24, 30], but we do not consider them.
One advantage of some of these strategies is that they perform well under high contention. In our case, each
process has its own deque and contention arises only due to thieves, who steal at random. Thus, contention
remains constant (and low) even as we add processes or processors. Moreover, as we shall see, the salient
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(a) Spinning lock. (b) Blocking lock.
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(c) Naive non-blocking.

1

2

3

4

5

6

7

8

4 8 12 16 20 24 28 32

sp
ee

du
p

processes

ideal
mm(1024)

lu(2048)
barnes(16K,10)

heat(4K,512,100)
msort(32M)

ray()

Figure 2: The speedup of work-stealing applications plotted as a function of the number
�

of processes when run on
a dedicated 8-processor machine, for the three alternative implementations of work stealing.

problems that we observe for our two locking implementations cannot be fixed with more sophisticated
locking strategies. In addition, we shall not consider preemption-safe locking [1, 5, 13, 33, 37], because
it requires non-traditional kernel support. In particular, it requires either that the kernel does not preempt
processes while they hold locks or that the kernel informs processes of impending preemptions.

Figure 2 shows the measured speedup ������� 
 plotted against the number
�

of processes for each of our
applications and for each of our three alternative work-stealing implementations. These experiments were
run on a dedicated 8-processor machine, so the number

���
of processors used is given by

���'�G(6*-,7.0% 1 �43
.

We observe that all three implementations produce nearly ideal linear speedup for
� �8%

— that is, when���)���
, so we have a dedicated machine. On the other hand, when we have

� <9%
, we have more processes

than processors, and we observe that the speedup falls off. This fall off is quite dramatic for the spinning-
lock and naive non-blocking implementations, especially for the heat, barnes, and lu applications. In
this regard, the blocking-lock implementation is by far the best, as it suffers only a gradual falling off.

Focusing on the scheduler implementation, we shall make quantitative comparisons of (computational)
speedup and only make qualitative comparisons of overhead. Our implementations are replete with instru-
mentation, and in order to keep the implementations simple, we have not employed many of the known
mechanisms [6, 23, 38] for keeping the overhead low. For this reason, a quantitative comparison of the
overhead for our three alternative implementations would be meaningless. We cannot, however, ignore
overhead. We shall make qualitative comparisons, and Table 2 gives the measured overheads for the case of
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(a) Spinning lock. (b) Blocking lock.
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(c) Naive non-blocking.
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Figure 3: A breakdown of the execution time of three of the work-stealing applications at
� � �

and
� � �
	

, for the
three alternative implementations of work stealing. The bars at

� � �
have all been normalized to an execution time

of
�

�


, and the bars at

� � �
	
have been scaled accordingly. The bottom (dark) section of each bar is the time spent

executing threads. The middle (medium gray) section is the time spent stealing threads. The top (light gray) section is
the time spent trying to acquire locks.

our (non-naive) non-blocking implementation. All of our applications perform a reasonable amount of work
between synchronizations, and the overhead for this implementation is very near ���! in all cases.

Returning to the measured speedups for our three alternative implementations, we first consider the
spinning-lock implementation. This implementation is often used in practice, because it has very low over-
head. Locking and unlocking takes a small handful of user-level instructions. Unfortunately, as we see
in Figure 2(a), this implementation performs poorly when the number

�
of processes exceeds the number

of processors. In Figure 3(a) we break down the execution time for three of the applications that perform
particularly poorly. We consider the cases

� � %
and

� � � �
. The bars show clearly that in going from 8

to 16 processes, the time spent trying to acquire locks goes up dramatically. If a process acquires a lock and
then gets preempted by the kernel scheduler, then when other processes go to acquire that lock, they will
simply spin until the holding process gets to run and release the lock. This type of behavior will be seen in
any implementation of spinning locks, no matter how clever it is in dealing with contention.

This problem is well known [26] and traditionally is fixed by using blocking locks, and as we see in
Figure 2(b), the blocking-lock implementation performs much better. In this case, if a process acquires a
lock and then gets preempted by the kernel scheduler, then when other processes go to acquire that lock, they
will be put to sleep by the kernel scheduler, thereby freeing up their processors so that the holding process
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can run and release the lock. Of course, the resulting frequent context switches may degrade performance,
and we do indeed see some performance degradation as the number of processes grows beyond the number
of processors. In Figure 3(b) we see that as we go from 8 to 16 processes, the amount of time spent working
goes up slightly. This extra time is due to cache misses resulting from the frequent context switches, though
this effect is mitigated by the Solaris 2.5.1 affinity scheduler. We counted (user-process to user-process)
context switches using the Solaris kernel’s TNF probes. For the lu application at

� � %
we counted � � L

context switches, and at
�
� � �

we counted
% L�� �

context switches. In contrast, with our spinning-lock
implementation, at

� ��%
we counted  context switches, and at

� � � �
we counted

� � �
context switches.

Similar numbers were counted for the other applications.
In addition to the frequent context switches, blocking locks have a very high overhead. Locking and

unlocking requires calls into the kernel that are expensive, and this overhead is only expected to get worse
for the foreseeable future [7]. This overhead will be present in any implementation of locks that admit
blocking in the kernel. A hybrid spin-then-block lock can reduce the number of context switches [18], but it
still requires kernel support for blocking. In contrast to the priocntl and yield system calls in the (non-
naive) non-blocking implementation, the use of blocking locks violates the work-first design principle [22],
and the overhead cannot be hidden. In a user-level thread scheduler, we do not want to go into the kernel
every time we schedule a thread.

The naive non-blocking implementation was supposed to fix the problems with spinning locks and block-
ing locks, but as we see in Figure 2(c), it did not. Nevertheless, the naive non-blocking implementation does
exhibit some good properties. It never wastes time spinning on a lock, and the implementation is done at
user level with low overhead. Moreover, we count very few context switches. For the lu application at�O� %

we counted � context switches, and at
� � � �

we counted ��� �
context switches. Similar numbers

were counted for the other applications. So why do we observe poor performance? In Figure 3(c) we see
that as we go from 8 to 16 processes, the amount of time spent stealing goes up dramatically. This time
increase comes from a huge increase in the number of steal attempts, and from program traces with TNF
probes, we find that these steal attempts occur in bursts.

The activity that causes these bursts is as follows. A process that is in the middle of executing a thread
gets preempted by the kernel scheduler. The other processes that are running continue to execute threads
from their deques, and when their deques become empty, they steal threads, possibly from the deque of
the preempted process. Eventually, we get to a point where every deque is empty. The only runnable
thread is the one that is being executed by the preempted process. All other threads are waiting on this
thread for some type of synchronization. Thus, the processes that are running continue to make failed steal
attempts, because there is nothing that can be stolen. These processes spin trying to steal until eventually
the preempted process gets to run and continue executing its thread, which forks or unblocks other threads.
Note that we do not see this behavior with the blocking-lock implementation, because a process never gets
to run long enough that it might get preempted in the middle of executing a thread. We see a little bit of this
behavior with the spinning-lock implementation, but in this case, processes spend far more time spinning on
locks than spinning trying to steal.

To prevent this behavior, the (non-naive) non-blocking implementation uses priocntl and yield
system calls. A process that is spinning trying to steal will be running at low priority and making repeated
calls to yield. Thus, such a process will relinquish its processor, thereby allowing the preempted process
to run. We shall consider the three alternative implementations no further.

5 Performance modeling

Our non-blocking work stealer admits a simple performance model based on work and critical-path length
that has been proven analytically, and in this section we provide empirical evidence as to the validity of this
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model. The analytical result [9] states that for any number
�

of processes, the execution time � 
 is given
by

� 
 � � �F����� ��� B � � � � ��� � 1 (3)

where � � is the work of the computation, � � is the critical-path length of the computation, and
� �

is the
time-average number of processors that actually execute the computation. This analysis treats the kernel
scheduler as an adversary with the one provision that it must obey yields.

To quantify this relationship, we replace the big-Oh notation with explicit constants. According to the
asymptotic bound, there exist constants,

� � and
� �

, such that the execution time is bounded by

� 
 ��� � ����� �D� B�� � � � � � �D� � (4)

In this section, we show that this bound holds with very small constants,
� � and

� �
. Most importantly,

we find that the constant
� � is very close to 1. Thus, we observe linear speedup — that is, ��
 J � � � � �

— whenever � � � � �D� is small relative to ��� � ��� — that is, whenever
�

is small relative to the average
parallelism � � ��� � . Note that in the case of a dedicated, non-multiprogrammed machine, we have

� � �)�
,

and the model of Inequality (4) is identical to the previous model of Inequality (2). We show that this bound
holds across all of our work-stealing applications and across all of the inputs to these applications.

Our bound, Inequality (4), has four independent variables — ��� , � � ,
�

, and
���

— and we would like
to show that this bound holds across all values of all of these variables. It turns out that we can perform a
straightforward algebraic manipulation to derive a simpler bound that aggregates some of these variables.
Recall that we define the utilization as ������� ��� � 
�� . If we plug Inequality (4) into this definition and divide
the top and bottom by ��� , then we obtain the following bound for utilization:

� ���� � 

	 �
� B���� ���F������� � � � (5)

Notice that the utilization is lower-bounded by a function of only one independent variable,
� ���F� � ��� � � , that

we call the normalized number of processes. In other words, if our model is accurate, then we should be able
to lower-bound utilization as a function of the normalized number of processes according to Inequality (5).
Observe that this model says that when the normalized number of processes is much less than ���! — that is,
when we have

� � � � ��� � — then the utilization should be near 1.0. As the normalized number of process
gets large relative to ���! , the utilization may drop off.

We now wish to validate our model by running our applications with different input problems that
generate different values of ��� and � � and with different numbers

�
of processes to see if Inequality (5)

holds. Somewhat limiting our ability to perform such an experiment, we find that for all of our applications,
the input problems that generate reasonable values of ��� tend to generate values of � � within a very narrow
range. Thus, we shall begin our modeling study with a simple synthetic benchmark that is designed to
generate arbitrary values of � � and � � .

The knary ��� 1�� 1�� � synthetic benchmark grows a tree of height � and degree
�

in which for each non-
leaf node, the first

�
children are generated serially and the remaining children are generated in parallel.

When it generates a node, the program first executes a fixed number of iterations of an empty “for” loop
before generating the children. Thus, we have �Q� ��� � �
	 � , and by varying

�
in the range from  to

�
, the

value of � � will vary in the range from
� ��� � ��� �
�����
��� � � all the way up to

� �F� � � .
Figure 4(a) shows the measured utilization plotted against the normalized number of processes for many

runs of knary with different input parameters and with different numbers
�

of processes executed on a
dedicated 8-processor machine. For any given run with

�
processes, we measure ��� , � � , and the execution

time � 
 . In addition, we know
�Q�

, because we have
���:�G(+*-,7.0� $ 1 � 3

, where
� $ ��%

is the number of
processors in the machine. We then plot a data point at �
� 1�� � � � � ���F������� � � 1 ������� ��� � 
�� � . The plotted
data points represent a range of values of

�
from 1 to 64 while the work � � and critical-path length � �
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(a) knary utilization. (b) Application utilization.
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Figure 4: Measured utilization
� � � � � � ��� � plotted as a function of the normalized number of processes

� � � � � ��� � �
when run on a dedicated 8-processor machine. (a) Many runs of the knary synthetic benchmark. The number

�
of

processes ranges from
�

to
	��

. The work
� �

ranges from
�

�
�

seconds to
����� �

seconds, and the critical-path length� �
ranges from



�
���

milliseconds to
���

seconds. Also shown are two curves defined by Inequality (5): the first with
� � � �

�



and �
� � �

�


, and the second with �

� � �
�
�

and �
� � �

�


. (b) Many runs of the work-stealing applications.

range over more than 3 orders of magnitude, with work values as small as ��� E seconds. We observe that,
as predicted by the model, we obtain utilization near ���! so long as the normalized number of processes is
small relative to ���! , and as the normalized number of processes rises above ���! , the utilization drops off.
Moreover, this behavior holds over a dramatic range of problem inputs, with one number, the normalized
number of processes, giving a lower bound on the utilization.

Also plotted in Figure 4(a) are two curves defined by the lower bound, Inequality (5). The first curve
uses constants

� � � ���! and
� ��� ���! , and the second curve uses constants

� � � ���-� and
� ��� E �! . Even

with these modest values for the constants, these curves do a good job of lower bounding the utilization.
Moreover, we observe that these lower-bound curves are quite tight in the regime where the normalized
number of processes is small relative to ���! . These lower-bound curves become less tight as the normalized
number of processes grows. As the normalized number of processes gets large relative to ���! , this spread
that we observe in the plotted data reveals the conservative nature of our model. Our analytical upper bound
of Equation (3) is proven in a setting where the kernel scheduler is assumed to be an adversary. Though
this assumption makes our results widely applicable, it also may be overly pessimistic. If Equation (3) is
conservative, then our lower bound on utilization, Inequality (5), is also conservative, which is exactly what
we observe in the plotted data.

To validate our model further, we repeat the previous experiment using our work-stealing applications.
Specifically, Figure 4(b) shows the measured utilization plotted against the normalized number of processes
for many runs of our applications with different input parameters and with different numbers

�
of processes

executed on a dedicated 8-processor machine. Again, we observe that, as predicted by the model, when the
number of processes is small relative to the average parallelism, we achieve utilization near ���! , and this
utilization drops off as the number of processes grows relative to the average parallelism.

The vast majority of the data plotted in Figure 4 are derived from runs in which the number
�

of
processes exceeds the number

� �
of processors used. Nevertheless, our implementation of work stealing

achieves high utilization provided that the number of processes is reasonably small compared with the
average parallelism. This behavior is predicted accurately by the model.
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6 Multiprogrammed workloads

In this section, we provide further validation for our model by repeating the experiments of the previous
section using multiprogrammed workloads. The experiments of the previous section were run on a dedicated
8-processor machine, so our test programs ran on a dedicated set of

��� � (6*-,/.0� $21 �43#��(6* , .�% 1 �43
processors. In these experiments, we observed the performance effects of having more processes than
processors. We now consider a more dynamic multiprogrammed setting in which our programs run on a
set of processors that grows and shrinks over time. In this setting,

� �
is the time-average actual number of

processors on which the program runs, and we now wish to show that our performance model of Inequalities
(4) and (5) continues to hold with this more general definition of

���
.

The difficulty in repeating the experiments of the previous section for the case when the number of
processors grows and shrinks is that it is hard to measure

���
. We found that using the Solaris kernel’s

TNF probes was far too intrusive. In addition, if we run our work-stealing applications concurrently with
some arbitrary other application, then that other application may affect our work-stealing applications in a
manner that has nothing to do with the focus of this paper — processor utilization. For these reasons we
chose to build a synthetic application to stand-in for “other applications.” This synthetic application should
use almost no resources besides processor resources, and it should use a time-varying amount of processor
resources in a manner that admits estimation of

� �
.

The cycler � � 1�� 1�� � synthetic application eats up a time-varying number of processor cycles in a
manner that allows us to estimate the time-average number of processor cycles that it uses over any period
of time. The cycler � � 1�� 1�� � application operates as follows. First, the main process forks � subordinate
processes which park on a condition variable, and then the main process repeats the following iteration. It
releases a number of subordinate processes chosen at random in the range from � to � , and then it waits
for those processes to repark. A subordinate process that is released chooses a number at random in the
range from � to

�
, and then it performs that number of increments to a shared counter before reparking.

Between each increment of the shared counter, the process executes a fixed number ��� of iterations of an
empty “for” loop. The shared counter is implemented with non-blocking synchronization, using the SPARC
v9 casa instruction. After each increment, the process checks to see if the counter value is a multiple of
some fixed number ��� , and if so, it writes the counter value and a (wall-clock) timestamp into a buffer that
gets flushed to a file when execution terminates. Execution terminates when the main process finds that,
after an iteration has completed, the counter is at least

�
. In summary, at each iteration, a randomly chosen

number of processes executes a randomly chosen number of counter increments, and every time the counter
reaches a multiple of ��� , a timestamp is written. The fixed numbers ��� and ��� are chosen so that a process
will increment the counter roughly every few hundred microseconds, and a process working alone will write
a timestamp roughly every few milliseconds. Thus, cycler uses almost no memory bandwidth, and the
overhead of writing timestamps is negligible.

After calibration, we can estimate the time-average number
��� � cycler � of processors being used by

cycler over any (reasonable-length) period of time. For calibration, we run cycler with � � � on
a dedicated machine with a large value of

�
and

� � � , so the program will run for 1 iteration with a
single process incrementing the counter some large number of times. By looking at the execution time 	
and the counter value 
 at the end, we can compute that cycler runs at � � 
���	 increments per second
per processor. With the calibration done, we can now run cycler using arbitrary values of � and

�

concurrently with other programs, and over any interval of time, we can estimate
� � � cycler � as follows.

For any two timestamps with times 	 � and 	 � and counts 
 � and 
 � , the time-average number of processors
used by cycler over the interval of time from 	�� to 	
� is given by

��� � cycler � � � ��
�� C 
 � � ����	�� C 	 � � � ��� .
Figure 5 shows the measured utilization for many executions of knary and our other work-stealing

applications, with each execution running concurrently with cycler. The applications were all run with
many different input values, and cycler was also run with many different input values. As in the exper-
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(a) knary utilization. (b) Application utilization.
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Figure 5: Measured utilization
� � � � � � ��� � plotted as a function of the normalized number of processes

� � � � � ��� � �
when run on an 8-processor machine simultaneously with the cycler program. The time-average number of pro-
cessors

� � � cycler � consumed by cycler ranges from



�
� �

to
�

�
�
, with instantaneous consumption ranging from


to
�
. (a) Many runs of the knary synthetic benchmark. Also shown are two curves defined by Inequality (5): the

first with � � � �
�



and � � � �
�


, and the second with � � � �

�
�

and � � � �
�


. (b) Many runs of the work-stealing

applications.

iments of the previous section, the normalized number of processes is
� ���F� � ��� � � , and the utilization is

� � ��� � � � 
 � . The difference is that now to compute
� �

, we must account for the processors being used by
cycler. Thus,

���
is given by

��� ��(6*-,/.0� 1 � $ C>��� � cycler � 3 , where
� $ ��%

. Again, we find that
one number, the normalized number of processes, predicts the utilization behavior. Moreover, it does so
even when the program runs on a set of processors that grows and shrinks over time.

7 Limitations and future work

In this section, we explore some of the limitations of our results and of our approach, and we outline our
plans to address some of these shortcomings. We first consider some of the fundamental limitations of our
approach, and then we consider some of the limitations specific to our current study.

First, we note that our approach cannot help the performance of legacy applications that use a static
partitioning of work. It appears that coscheduling, either explicit or implicit, is the only real solution for
such applications. For future parallel applications, we hope to make the use of our non-blocking work stealer
more attractive. We plan to add synchronization variables to our Hood implementation, and we plan to build
this scheduler into the runtime system for the Cilk multithreaded language [14].

In addition, we plan to port Hood to other platforms. The SPARC v9 casa and casxa instructions
are easily replaced with the load-linked and store-conditional pair found in many other processor instruction
sets. The priocntl and yield system calls are also available on operating systems other than Solaris,
though their effect on kernel scheduling may differ. Nevertheless, our use of these system calls is guided
by an algorithmic result that makes only the most conservative of assumptions about kernel scheduling.
Therefore, we conjecture that a straightforward port will work as expected.

For some programs, coscheduling will outperform our non-blocking work stealer, even if dynamic space
partitioning and process control are brought to bear. In particular, some programs require a large amount of
cache resource due to large working sets. Such programs run poorly on one processor and will benefit from
superlinear speedup once sufficiently many processors are employed so that the working sets fit within their
collective caches. Such programs must be coscheduled or run on dedicated machines. As an alternative,
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we are actively investigating the use of improved parallel algorithms for applications whose programs have
traditionally suffered from this problem. We are interested in parallel algorithms that use memory hierarchies
efficiently.

We have not directly compared our non-blocking work stealer with either coscheduling or processes
control. Instead, we have shown that for any amount of processor resource, our non-blocking work stealer
can realize the same linear speedup as if that amount of processor resource had been dedicated. Process
control can do no better, but as already mentioned, coscheduling may actually produce superlinear speedup
for some programs.

There are many other comparisons that could have been made but were not. We have not done a quan-
titative comparison of overheads in different implementations of work stealing, and there are many locking
strategies that we have not considered. Moreover, we have considered only one scheduling algorithm —
random work stealing. Of course, there may be other algorithms and other implementation techniques that
give good results, but having found a very good implementation of a very good algorithm, we have no further
plans to investigate alternative algorithms or implementations.

A more serious limitation of our current study, that we do plan to address, is that we have not considered
true multiprogrammed workloads. Instead, our study was done using a synthetic benchmark to act as the
“other applications.” While this synthetic benchmark gives us a high degree of control, it surely differs from
real applications in its processor consumption, and it may not give us a true picture of how our applica-
tions behave under multiprogramming. More importantly, our study has not considered the effect that our
applications may have on other applications, notably interactive applications. We conjecture that because
our applications lower their priority when stealing, they are actually quite benign in their impact on other
applications.

Finally, we note that our current study has taken a decidedly processor-centric view. The synthetic
application used in our study of multiprogrammed workloads was designed to consume only processor
resources. We expect that our current results on sharing processor resources can be an important complement
to future work on general resource management in multiprogrammed environments. Specifically, we expect
that the ability of applications to utilize arbitrary processor allocations efficiently could be very helpful in
designing resource-allocation policies for both processor resources and other resources.

8 Conclusion

Our non-blocking work stealer achieves performance that is efficient and admits a simple, and widely
applicable performance model based on work and critical-path length. In the case of a dedicated, non-
multiprogrammed environment, the non-blocking work stealer performs as well as statically partitioned
solutions, while far outperforming the static solutions in non-dedicated, multiprogrammed environments.
Moreover, it does so with a user-level implementation and without coscheduling or process control, and we
have demonstrated this fact using some of the very same applications that have been used in the past to argue
for coscheduling and process control.
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