Parallel & Concurrent
Programming:

OpenMP

Emery Berger

CMPSCI 691W
Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

s Last time(s):

= MPI - point-to-point & collective
= Library calls

[Today:

= OpenMP - parallel directives
= Language extensions to Fortran/C/C++

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

VIC 1TIO]]

s Take vectors a & b (100 ints)

= Distribute across all processors
= Each processor:

= Compute sum of all a[i] * b[i]

= Print overall sum

= MPI: Use MPI_Scatter, MPl_Gather or
MPI Reduce

= MPI_Scatter/Gather

(sendbuf, cnt, type, recvbuf, recvent, type, root, comm)
= MPI_Reduce

(sendbuf, recvbuf, cnt, type, op, root, comm)

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

VIF [TIO6

MPI_Init (&argc, &argv);
MPI_Comm_rank (MP1_COMM_WORLD, &rank);
MP1_Comm_size (MPI_COMM_WORLD, &size);

// Distribute a and b

MPI_Scatter (a, 100, MPI_INT, al, 100 / size, MPI_INT, O,
MPI1_COMM_WORLD) ;

MPI_Scatter (b, 100, MPI_INT, bl, 100 / size, MPI_INT, O,
MP1_COMM_WORLD);

// Multiply each chunk

for (int 1 = 0; i < 100/size; i++) {
z += a[i1] *bl[i];

}

// Reduce by summing
iIT (rank == 0) {z1 = new iInt[size]; }
MP1_Reduce (&z, &z, 1, MPI_INT, MP1_OP_PLUS, 0O, MP1_COMM_WORLD) ;

// Output result
iIT (rank == 0) {
cout << z << endl;

}

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

int z = 0;
parallel for (i = 0; i < nProcessors; i++) {

z += a[i] * b[il;
}

cout << z << endl;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

int z = 0;

#pragma omp for

for (int 1 = 0; 1 < 100; 1++) {
z += a[i1] * bl[i];

+

cout << z << endl;

= OpenMP pragma directives
= Omit = sequential program
=« More declarative style
= Add more pragmas for more efficiency

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

A

= Fork-join model
= One thread executes sequential code

= Upon reaching parallel directive:
= Start new team of work-sharing threads
= Wait until all done (usually barrier)
= Can be nested!

= Apparent global shared memory but
relaxed consistency model

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Consistency =
ordering of reads & writes

= In same thread, across threads

= Most “intuitive” consistency model =
sequential consistency (Lamport)

= Behaves like some sequential execution

= BUT: seriously limits parallelism
= Must synchronize frequently

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Jpenivi Cor =Js

= OpenMP: consistency across flushes
= Writes set of variables to memory

= If two flushes have intersecting sets,
flushes must be seen in some sequential
order by all threads

/* Announce that I am done with my work. The first flush
* ensures that my work 1s made visible before synch.
* The second flush ensures that synch i1s made visible.

*f/

#pragma omp flush (work, synch)
synch[iam] = 1;
#pragma omp flush (synch)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= #pragma omp parallel

= Executes next chunk of code across all
or some number of threads

=« num_threads(n)

= Only “master thread” continues after
parallel section completes

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

#include <omp.h>
int main /()

{

omp set dynamic(1l);

#pragma omp parallel num threads(10)

{
}

return O0;

}

/* do work here */

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

void a8 (int n, int m, float *a, float *b, float *y, float *z)
{

int i;

#pragma omp parallel

{

#ipragma omp for nowait
for (i=1; i<n; i++)
b[i]l = (a[i]l + ali-11) / 2.0;

#pragma omp for nowait
for (i=0; di<m; i++)
y[i]l = sqrt(z[il);
}
}

= Implicit barrier unless nowait
= Barrier = flush operation

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

S viemec

= Memory model:

=« Heap objects shared

= Stack objects private
= Includes loop iterators

= Unless indicated otherwise...

void al(int n, float *a, float *b)

{

int 1i;

#fpragma omp parallel for
for (i=1; i<n; i++) /* i is private by default */
bl[i] = (a[i] + al[i-11) / 2.0;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

11010

void subdomain(float *x, int istart, int ipoints)

{

int i;

for (1 = 0; 1 < ipoints; i++)
x[istart+i] = 123.456;

void sub(fleoat *x, int npoints)

{

int iam, nt, ipointse, istart;

#ipragma omp parallel default (shared) private(iam,nt,ipoints,istart)

{

iam = omp get thread num();

nt = omp get num threads();

ipoints = npoints / nt; /* size of partition */
istart = iam * ipoints; /* starting array index */
if (iam == nt-1) /* last thread may do more */

ipoints = npoints - istart;
subdomain(x, istart, ipoints);

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= shared

= private
=« Each thread gets own private copy
= Undefined value

= firstprivate
= Copies in original value

= lastprivate
= Copies out private value

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

void a30 (int n, float *a, float *b)

{

int 1i;

#pragma omp parallel
{
#pragma omp for lastprivate(i)
for (i=0; i<n-1; i++)
ali]l] = b[i]l + b[i+1l];

}

alil=b[i]; /* i == n-1 here */

}

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= Can also declare variables as always
thread-private

int counter = 0;
#pragma omp threadprivate (counter)

int increment counter()

{

counter++;
return (counter) ;

}

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= reduction

= private value per thread
= initialized "appropriately”
= uses predefined operators
= copies out to original
= reduction(+:a)
= initializesa=o0
= reduction(*:1)
= initializes a =1

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

int z = 0;

#pragma omp for reduction(+:z)

for (int 1 = 0; 1 < 100; 1++) {
z += a[1] * bl[1];

+

cout << z << endl;

s OpenMP pragma directives
» Omit = sequential program
= More declarative style
= Add more pragmas for more efficiency

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

void a3l 1(fleat *x, int *y, int n)

{
int i, b;
float a;

|
o

a=20.0;
b = 0;

#pragma omp parallel for private(i) shared(x, y, n) \
reduction(+:a) reduction(”:b)
for (i=0; i<n; i++) {

a += x[1i];
b "= yl[il;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

#include <sgtdio.h>
#include <omp.h>

int main () {

int x;
x = 2;
#pragma omp parallel num threads(2) shared(x)
{
if (omp get thread num() == 0) {
x = 5;
} else {

/* Print 1: the following read of x has a race */
printf ("1l: Thread# %d: x = %d\n", omp get thread num(),x);

}

#pragma omp barrier

if (omp get thread num() == 0) {
/* Print 2 */

printf ("2: Thread# %d: x
} else {
/* Print 3 */

print£f ("3: Thread# %d: x

}

%d\n", omp get thread num(),x);

%d\n", omp get thread num(),x);

}

return 0;

}

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

master

= Always run by master thread

critical

= Declares critical section (one thread at a time)
=« Can add names for greater concurrency
barrier

atomic

= Updated atomically (a++, a--, etc.)

ordered
= Executes loop body sequentially

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

void alé6(float *x, float *y, int *index, int n)

{

int i;

#pragma omp parallel for shared(x, y, index, n)
for (i=0; i<n; i++) {
#pragma omp atomic
X [index[i]] += workl(i);
vI[i] += work2(i);

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

void workl() {}
void work2 () {}

void alol ()

{

#fpragma omp parallel

{

#pragma omp single
printf ("Beginning workl.\n");

workl () ;

#pragma omp single
printf ("Finishing workl.\n");

#pragma omp single nowait
printf("Finished workl and beginning work2.\n");

work2 () ;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

int main()

{

int iam, neighbor;

#fpragma omp parallel private(iam,neighbor) shared{work, synch)
{
iam = omp get thread num();
synch[iam] = 0;

#pragma omp barrier
/*Do computation into my portion of work array */
work[iam] = fnl (iam);

/* Announce that I am done with my work. The first flush
ensures that my work is made visible before synch.
The second flush ensures that synch is made visible.

*/

#pragma omp flush (work, synch)
synch[iam] = 1;
#pragma omp flush (synch)

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

#pragma omp parallel for ordered schedule(dynamic)
for (i=1lb; i<ub; i+=stride)
work (1) ;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

#pragma omp threadprivate(work,size, tol)

void a32(float t, int n)

{
tol = t;
gize = n;
#pragma omp parallel copyin(tol, size)
{
build() ;
}
}

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

#include <stdio.h>
float x, v:
#pragma omp threadprivate(x, y)

void init(float a, float b) {
#pragma omp single copyprivate(a,b,x,y)

{
}

gcanf ("%$£f %f %f %f", &a, &b, &x, &y):;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= Next time:
= OpenMP

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

