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Outline

Last time(s):
MPI – point-to-point & collective

Library calls

Today:
OpenMP - parallel directives

Language extensions to Fortran/C/C++
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Motivation

Take vectors a & b (100 ints)
Distribute across all processors
Each processor:

Compute sum of all a[i] * b[i]
Print overall sum

MPI: Use MPI_Scatter, MPI_Gather or
MPI_Reduce

MPI_Scatter/Gather
(sendbuf, cnt, type, recvbuf, recvcnt, type, root, comm)
MPI_Reduce
(sendbuf, recvbuf, cnt, type, op, root, comm)
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MPI Solution
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

// Distribute a and b
MPI_Scatter (a, 100, MPI_INT, a1, 100 / size, MPI_INT, 0, 
MPI_COMM_WORLD);
MPI_Scatter (b, 100, MPI_INT, b1, 100 / size, MPI_INT, 0, 
MPI_COMM_WORLD);

// Multiply each chunk
for (int i = 0; i < 100/size; i++) {

z += a[i] *b1[i];
}

// Reduce by summing
if (rank == 0) {z1 = new int[size]; }
MPI_Reduce (&z, &z, 1, MPI_INT, MPI_OP_PLUS, 0, MPI_COMM_WORLD);

// Output result
if (rank == 0) {

cout << z << endl; 
}
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Ideal Solution

int z = 0;
parallel for (i = 0; i < nProcessors; i++) {
z += a[i] * b[i];

}
cout << z << endl;
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OpenMP Solution

int z = 0;
#pragma omp for
for (int i = 0; i < 100; i++) {
z += a[i] * b1[i];

}
cout << z << endl; 

OpenMP pragma directives
Omit = sequential program
More declarative style
Add more pragmas for more efficiency
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OpenMP Concepts

Fork-join model
One thread executes sequential code
Upon reaching parallel directive:

Start new team of work-sharing threads
Wait until all done (usually barrier)
Can be nested!

Apparent global shared memory but 
relaxed consistency model
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Consistency

Consistency =
ordering of reads & writes

In same thread, across threads

Most “intuitive” consistency model = 
sequential consistency (Lamport)

Behaves like some sequential execution
BUT: seriously limits parallelism

Must synchronize frequently
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OpenMP Consistency

OpenMP: consistency across flushes
Writes set of variables to memory
If two flushes have intersecting sets, 
flushes must be seen in some sequential 
order by all threads
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Parallel Execution

#pragma omp parallel
Executes next chunk of code across all 
or some number of threads

num_threads(n)

Only “master thread” continues after 
parallel section completes
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Dynamic Threads
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Parallel + nowait

Implicit barrier unless nowait
Barrier = flush operation
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Parallel + Memory

Memory model:
Heap objects shared
Stack objects private

Includes loop iterators

unless indicated otherwise...
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Parallel Example
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Data-Sharing Attributes

shared
private

Each thread gets own private copy
Undefined value

firstprivate
Copies in original value

lastprivate
Copies out private value
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Lastprivate Example
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Threadprivate Example

Can also declare variables as always
thread-private
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Reduce

reduction
private value per thread
initialized “appropriately”

uses predefined operators

copies out to original
reduction(+:a)

initializes a = 0
reduction(*:1)

initializes a = 1
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OpenMP Solution

int z = 0;
#pragma omp for reduction(+:z)
for (int i = 0; i < 100; i++) {
z += a[i] * b1[i];

}
cout << z << endl; 

OpenMP pragma directives
Omit = sequential program
More declarative style
Add more pragmas for more efficiency
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All Together
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But Still Races...
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Master & Synchronization

master
Always run by master thread

critical
Declares critical section (one thread at a time)
Can add names for greater concurrency

barrier
atomic

Updated atomically (a++, a--, etc.)
ordered

Executes loop body sequentially
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Atomic Example
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The End
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Single Example
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Ordered For
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Copyin Example
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Copyprivate Example



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science 30



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science 31

The End

Next time:
OpenMP


