
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Parallel & Concurrent
Programming:

OpenMP
Emery Berger
CMPSCI 691W
Spring 2006

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 2

Outline

Last time(s):
MPI – point-to-point & collective

Library calls

Today:
OpenMP - parallel directives

Language extensions to Fortran/C/C++

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 3

Motivation

Take vectors a & b (100 ints)
Distribute across all processors
Each processor:

Compute sum of all a[i] * b[i]
Print overall sum

MPI: Use MPI_Scatter, MPI_Gather or
MPI_Reduce

MPI_Scatter/Gather
(sendbuf, cnt, type, recvbuf, recvcnt, type, root, comm)
MPI_Reduce
(sendbuf, recvbuf, cnt, type, op, root, comm)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 4

MPI Solution
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

// Distribute a and b
MPI_Scatter (a, 100, MPI_INT, a1, 100 / size, MPI_INT, 0,
MPI_COMM_WORLD);
MPI_Scatter (b, 100, MPI_INT, b1, 100 / size, MPI_INT, 0,
MPI_COMM_WORLD);

// Multiply each chunk
for (int i = 0; i < 100/size; i++) {

z += a[i] *b1[i];
}

// Reduce by summing
if (rank == 0) {z1 = new int[size]; }
MPI_Reduce (&z, &z, 1, MPI_INT, MPI_OP_PLUS, 0, MPI_COMM_WORLD);

// Output result
if (rank == 0) {

cout << z << endl;
}

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 5

Ideal Solution

int z = 0;
parallel for (i = 0; i < nProcessors; i++) {
z += a[i] * b[i];

}
cout << z << endl;

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 6

OpenMP Solution

int z = 0;
#pragma omp for
for (int i = 0; i < 100; i++) {
z += a[i] * b1[i];

}
cout << z << endl;

OpenMP pragma directives
Omit = sequential program
More declarative style
Add more pragmas for more efficiency

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 7

OpenMP Concepts

Fork-join model
One thread executes sequential code
Upon reaching parallel directive:

Start new team of work-sharing threads
Wait until all done (usually barrier)
Can be nested!

Apparent global shared memory but
relaxed consistency model

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 8

Consistency

Consistency =
ordering of reads & writes

In same thread, across threads

Most “intuitive” consistency model =
sequential consistency (Lamport)

Behaves like some sequential execution
BUT: seriously limits parallelism

Must synchronize frequently

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 9

OpenMP Consistency

OpenMP: consistency across flushes
Writes set of variables to memory
If two flushes have intersecting sets,
flushes must be seen in some sequential
order by all threads

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 10

Parallel Execution

#pragma omp parallel
Executes next chunk of code across all
or some number of threads

num_threads(n)

Only “master thread” continues after
parallel section completes

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 11

Dynamic Threads

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 12

Parallel + nowait

Implicit barrier unless nowait
Barrier = flush operation

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 13

Parallel + Memory

Memory model:
Heap objects shared
Stack objects private

Includes loop iterators

unless indicated otherwise...

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 14

Parallel Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 15

Data-Sharing Attributes

shared
private

Each thread gets own private copy
Undefined value

firstprivate
Copies in original value

lastprivate
Copies out private value

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 16

Lastprivate Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 17

Threadprivate Example

Can also declare variables as always
thread-private

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 18

Reduce

reduction
private value per thread
initialized “appropriately”

uses predefined operators

copies out to original
reduction(+:a)

initializes a = 0
reduction(*:1)

initializes a = 1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 19

OpenMP Solution

int z = 0;
#pragma omp for reduction(+:z)
for (int i = 0; i < 100; i++) {
z += a[i] * b1[i];

}
cout << z << endl;

OpenMP pragma directives
Omit = sequential program
More declarative style
Add more pragmas for more efficiency

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 20

All Together

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 21

But Still Races...

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 22

Master & Synchronization

master
Always run by master thread

critical
Declares critical section (one thread at a time)
Can add names for greater concurrency

barrier
atomic

Updated atomically (a++, a--, etc.)
ordered

Executes loop body sequentially

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 23

Atomic Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 24

The End

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 25

Single Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 26

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 27

Ordered For

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 28

Copyin Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 29

Copyprivate Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 30

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 31

The End

Next time:
OpenMP

