Parallel & Concurrent Programming:

Multiprocessors

Emery Berger

CMPSCI 691W

Spring 2006
Outline

- Last time:
 - Parallel language taxonomy
 - Cilk parallel programming language
 - “Work-first” principle
- Today:
 - Multiprogrammed multiprocessors
 - “Hood” library
Static Partitioning

- Program partitions work T_1 evenly among P (light-weight) processes
 - a.k.a. kernel threads
- Each process performs T_1/P work

- At runtime, P processors execute P processes in parallel
 - Time = T_1/P
 - linear speedup
Multiprogramming

- If another program is running concurrently, P processes may execute on \(P_A < P \) processors

- Desired execution time = \(T_1/P_A \)
 - Linear speedup
 - Statically partitioned program may fall far short:
 - In this example, execution = \(T_1/2 \), but \(P_A = 3 \)
Static Partitioning

![Graph showing the speedup of different processes with increasing number of processes. The graph includes lines for ideal, mm(1024), lu(2048), barnes(16K,10), and heat(4K,512,100).]
Program partitions work into (user-level) threads to expose all parallelism. Computation may create millions of threads, all dynamically scheduled through two levels.

Each computation has a (user-level) thread scheduler that maps its threads to its processes.

Kernel maps all processes to all processors.

Define processor average \(P_A \) of computation as time-average number of processors on which computation executes, as determined by the kernel.

Goal: execution time \(T \approx T_1/P_A \), irrespective of kernel scheduling.
Dag Model

Multithreaded computation modeled as **dag** (directed acyclic graph)

- Each node represents one executed instruction and takes one time unit to execute.
 - Assume single source node and out-degree at most 2
 - Work T_1 = number of nodes.
 Critical-path length T_∞ = length of a longest (directed) path

- Node is **ready** if all of its ancestors have been executed. Only ready nodes can be executed.
Theory and Practice

Hood uses a **non-blocking work stealer** whose execution time T satisfies the following bounds:

\[T_\infty = \text{critical-path length, theoretical minimum execution time with infinitely many processors} \]

Theory: $E[T] = O(T_1/P_A + T_\infty P/P_A)$.

- Kernel assumed to be adversary
- Bound optimal to within constant factor
- For any $\epsilon > 0$, we have $T = O(T_1/P_A + (T_\infty + \lg(1/\epsilon))P/P_A)$ with probability at least $1-\epsilon$

Practice: $T \approx T_1/P_A + T_\infty P/P_A$.

- We have $T \approx T_1/P_A$ whenever P is small relative to average parallelism, T_1/T_∞.
Work Stealing

Each process maintains “pool” of ready threads organized as a **deque** (double-ended queue) with a top and a bottom.

Process obtains work by popping the bottom-most thread from its deque and executing that thread.

- If the thread blocks or terminates, then the process pops another thread.
- If the thread creates or enables another thread, then the process pushes one thread on the bottom of its deque and continues executing the other.

If a process finds that its deque is empty, then it becomes a **thief** and steals the top-most thread from the deque of a randomly chosen **victim** process.
Non-Blocking Stealer

Implementation of work stealing with following features:

1. deques implemented with non-blocking synchronization

 • Instead of locks, atomic load-test-store machine instructions are used. Examples: load-linked/store-condition and compare-and-swap.

 • There exists constant $c \approx 10$ such that if process performs a deque operation, then after executing c instructions, some process has succeeded in performing deque operation

2. Each process, between consecutive steal attempts, performs a yield system call
Why Yield?

Processes spin making steal attempts, but all deques empty.
Performance w/o Yield

![Graph showing speedup vs. processes for various benchmarks. The graph includes lines for: ideal, mm(1024), lu(2048), barnes(16K,10), heat(4K,512,100), msort(32M), and ray(). Each line represents the speedup of the respective benchmark as the number of processes increases.]
Lower Bounds

At each time step $i = 1, 2, \ldots, T$, the kernel chooses to schedule any subset of the P processes, and those scheduled processes execute one instruction. Let p_i denote the number of processes scheduled at step i.

Processor average defined by $P_A = \frac{1}{T} \sum_{i=1}^{T} p_i$

Execution time given by $T = \frac{1}{P_A} \sum_{i=1}^{T} p_i$

- $T \geq T_1 / P_A$, because $\sum_{i=1}^{T} p_i \geq T_1$.
- $T \geq T_\infty P / P_A$, because kernel can force $\sum_{i=1}^{T} p_i \geq T_\infty P$.

There must be at least T_∞ steps i with $p_i \neq 0$, and for each such step, the kernel can schedule $p_i = P$ processes.
Greedy Schedules

A schedule is **greedy** if at each step i, the number of nodes executed is equal to the minimum of p_i and the number of ready nodes.

Theorem: Any greedy schedule has length at most $T_1/P_A + T_\infty P/P_A$.

Proof: We prove that $\sum_{i=1}^{T} p_i \leq T_1 + T_\infty P$. At each step each scheduled process pays one token.

- If the process executes a node, then it places a token in the **work bucket**. Execution ends with T_1 tokens in the work bucket.

- Otherwise, the process places a token in the **idle bucket**. There are at most T_∞ steps at which a process places a token in the idle bucket, and at each such step at most P tokens are placed in the idle bucket.
Analysis

Theorem: The non-blocking work stealer runs in expected time $O(T_1/P_A + T_\infty P/P_A)$.

Proof sketch: Let S denote the number of steal attempts. We prove that $\sum_{i=1}^{T} p_i = O(T_1 + S)$ and $E[S] = O(T_\infty P)$. At each step each scheduled process pays one token.

- If the process is “working,” then it places a token in the work bucket. Execution ends with $O(T_1)$ tokens in the work bucket.

- Otherwise, the process places a token in the steal bucket. Execution ends with $O(S)$ tokens in the steal bucket.
Enabling Tree

- An edge \((u,v)\) is an **enabling edge** if the execution of \(u\) made \(v\) ready. Node \(u\) is the **designated parent** of \(v\).

- The enabling edges form an **enabling tree**.
Structural Lemma

For any deque, at all times during the execution of the work-stealing algorithm, the designated parents of the nodes in the deque lie on a root-to-leaf path in the enabling tree.

Consider any process at any time during the execution.

- \(v_0 \) is the ready node of the thread that is being executed.
- \(v_1, v_2, \ldots, v_k \) are the ready nodes of the threads in the process’s deque ordered from bottom to top.
- For \(i = 0, 1, \ldots, k \), node \(u_i \) is the designated parent of \(v_i \).

Then for \(i = 1, 2, \ldots, k \), node \(u_i \) is an ancestor of \(u_{i-1} \) in the enabling tree.
Steal Attempts

We use a potential function to bound the number of steal attempts. At each step i, each ready node u has potential $\phi_i(u) = 3^{T_\infty - d(u)}$, where $d(u)$ is the depth of u in the enabling tree.

The potential Φ_i at step i is the sum of all ready node potentials.

- *The deques are top-heavy:* the top-most node contributes a constant fraction.

- With constant probability, P steal attempts cause the potential to decrease by a constant fraction.

- The initial potential is $\Phi_0 = 3^{T_\infty}$, and it never increases.

- The expected number of steal attempts until the potential decreases to 0 is $O(T_\infty P)$. \[\square\]
Performance Model

Execution time: \(T \leq c_1 T_1 / P_A + c_2 T_\infty P / P_A \).

Utilization:

\[
\frac{T_1}{P_AT} \geq \frac{T_1}{c_1 T_1 + c_2 T_\infty P} \geq \frac{1}{c_1 + c_2 P / (T_1 / T_\infty)}
\]

The ratio \(P/(T_1/T_\infty) \) is the normalized number of processes.

For all multithreaded applications and all input problems, the utilization can be lower bounded as a function of one number, the normalized number of processes.

We test this claim with a synthetic application, knary, that produces a wide range of work and critical-path lengths for different inputs.
Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so $P_A = \min\{8, P\}$.

Knary Utilization

![Graph showing Knary Utilization]

- **knary**
- **model**($c_1=1$, $c_2=1$)
- **model**($c_1=1.1$, $c_2=2$)
Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

No other program is running, so \(P_A = \min\{8, P\}. \)
Hood Performance

![Graph showing speedup versus processes for different benchmarks](image)

- **ideal**
- **mm(1024)**
- **lu(2048)**
- **barnes(16K,10)**
- **heat(4K,512,100)**
- **msort(32M)**
- **ray()**
To test the model when the number of processors varies over time, we run the test applications concurrently with a synthetic application, \textit{cycler}.

Repeatedly, \textit{cycler} creates a random number of processes, each of which runs for a random amount of time.

- Each process repeatedly increments a shared counter.
- At regular intervals, the counter value and a timestamp are written to a buffer.

For any time interval, we can look at the counter values at the start and end to determine the processor average $P_A(\textit{cycler})$ for \textit{cycler} over that interval.
Knary Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so $P_A = \min\{8 - P_A(\text{cycler}), P\}$.
Application Utilization

Utilization measured on 8-processor Sun Ultra Enterprise 5000.

Cycler is also running, so $P_A = \min\{8 - P_A(\text{cycler}), P\}$.

![Graph showing normalized processes and utilization](image-url)

- mm(1024)
- lu(2048)
- barnes(16K,10)
- heat(4K,512,100)
- msort(32M)
- ray()
- model($c_1=1, c_2=1$)
- model($c_1=1.1, c_2=2$)
Summary

- Non-blocking work stealer provides predictable, good performance on commodity OS
- Related work (OS side):
 - coscheduling
 - process control
Coscheduling

Coscheduling (gang scheduling) – all computation’s processes scheduled to run in parallel

😊 For some computation mixes, coscheduling not effective. Example: Computation with 4 processes and computation with 1 process on a 4-processor machine

😊 Resource-intensive may require coscheduling for high performance. Example: Data-parallel programs with large working sets
Process Control

With **process control**, each computation creates and kills processes dynamically: always runs with number of processes equal to number of processors assigned to it.

Process control & non-blocking work stealer complement each other

- With work stealing, new process can be created at any time, and process can be killed when its deque is empty.
- With non-blocking work stealer, little penalty for operating with more processes than processors.
- Process control can help keep P close to P_A.
The End

- Next week: Spring Break
- Week after that: travel
 - Plenty of time to work on homework (due 29th) and...
 - Project report: describe your proposed work and implementation plan, including division of responsibilities if appropriate, and timeline with milestones.