Parallel & Concurrent
Programming:

Dynamic Race
Detection

Emery Berger

CMPSCI 691W
Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

- '

= Last time:

= Performance + ease of programming
= Capriccio, Flux

= Today:
= Race detection

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Problem with Race

= Many programs contain races
= Inadvertent programming errors
= Failure to observe locking discipline

= Race conditions - insidious bugs
= Non-deterministic, timing dependent
= Cause data corruption, crashes
= Difficult to detect, reproduce, eliminate

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= A data race happens when two
threads access a variable
simultaneously, and one access is a
write

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= A data race happens when two
threads access a variable
simultaneously, and one access is a
write

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= A data race happens when two
threads access a variable
simultaneously, and one access is a
write

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Problem with data races:
non-determinism

=« Depends on interleaving of threads

= Usual way to avoid data races:
mutual exclusion

= Ensures serialized access

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Using mutual exclusion:

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Data race types:
= Read-write conflict
= Write-write conflict

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Tools to detect data races:
= Static (not today)

= Dynamic
= Happens-before [Lamport]
= Locksets [Savage et al.]

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= happens-before
(a b)_ Thread 1 Thread 2

= @ immediately
precedes b in same
thread
« E.g.:a;b
= a releases a lock,
b acquires it

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

. ‘
4 P A A

= Two accesses to shared object without
being ordered by happens-before:
possible data race

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Happens-before — numerous
drawbacks
= Must track per-thread info about

concurrent accesses to every shared
location

= Depends on scheduler interleaving:
can miss races (false negative)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Missed race condition by luck

Thread 1 Thread 2

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Eraser

= Another approach: track locksets

= Discover which locks are held for every
shared object

= If at any time no locks are held while
accessing shared object: data race

= Finds more races than happens-before

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

aln

x Each shared variable v

= C(v) — candidate locks —
initially set of all locks

= Every access to v
= C(v) = C(v) N locks currently held
= lock refinement

= If C(v) = {}, data race warning

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Program locks_held Cv)

{} {mul,ma2}
lock (mul);
{mul}
v 1= v+1l;
{mul}
unlock (mul) ;
{1}
lock{mu2) ;
{mu2}
v o= v+1l;
{}
unlock (muz2) ;
{}

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Lockset Limitation

= Too strict for common synch
operations

= Initialization
= Usually no lock held

= Read-shared data

= Some written during initialization, but only
read from then on

= Safe without locks
= Reader-writer locks

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= How do you know when data is
completely initialized?
= Assume initialized when accessed by
other thread than creator

= Read-sharing
= Assume safe until first written

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Initially Virgin
s Exclusive wr
= Initialization

s Shared

= C(v) updated but Hiread
NO race reports

s Shared-Modified
= As in original
algorithm

rd/wr, first
thread

WI, NEW
thread

Shared-
Modified

WI

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Track locks held only when writing,
separately from usual lock checking

Let locks held(t) be the set of locks held in any mode by thread ¢.
Let write_locks_held(t) be the set of locks held in write mode by thread ¢.
For each v, initialize C(v) to the set of all locks.
On each read of v by thread ¢,
set C(v) := C(v) N locks_held(t);
if C(v) := { }, then issue a warning.
On each write of v by thread ¢,
set C(v) := C(v) N write_locks_held(t);
if C(v) = { }, then issue a warning.

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Implementation

= Eraser implemented using ATOM
= Binary rewriting tool (Alpha only)
= Now would be in Pin

= Locks represented by /ockset index into
table

= Locksets = sorted vectors

s Shadow word (lockset index + state) for
every word in DS & heap

= Instruments every direct memory access
= 10-30x performance hit

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

s Race-freedom neither sufficient nor
necessary!

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Next time:
= Atomicity

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

