Parallel & Concurrent
Programming'

and Bevon (J

Emery Berger

CMPSCI 691W BH
Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

- '

= Last time:

= Server architectures
= Focus: web servers
= Performance & ease of programming

= Result — event-driven + helpers seems
“better”
= Today:

= Can we have our cake and eat it, too?

= Where “cake” = performance + ease of
programming

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Recap:

= MT/MP
= Context switch overhead
= Race conditions, etc.
= SPED
= High throughput, but complex
= Blocking I/0
= AMPED

= Better than SPED, but still hard to
program

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Events too hard:
Can we fix threads instead?

s More natural abstraction, but:

= Scalability limit

= Stack size problem:
2 MB per stack = 1000 thread limit

= No admissions control (a la SEDA)
= Still stuck with potential races...

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= “Scalable Threads for Internet
Services” [von Behren et al. SOSP 2003]
= Compiler-supported approach

= User-level only
=« “For now”

= Introduces linked stacks & resource-
aware scheduler

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

21.4={0

= Uses control-flow graph & compiler-
inserted “checkpoints” (?) to
dynamically allocate stack chunks

= Point stack i c,
pointer to C

new chunk /
before .w//s -k \‘.’/—nz

function call

= Function _
exit: chunk = Library code?

on free list = Programmer-supplied annotations...

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Capriccio identifies stages by computing
blocking graphs
=« Edge between consecutive blocking points
= Built at runtime (nodes = call chains)
= Tracks runtime, resource usage

s Schedules nodes to maximize utilization

= Throttle back: schedule nodes that release
resources

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= Separate run queues for each node

=« Determine priority based on predicted resource
needs of node, overall utilization

= Performs stride scheduling
[Waldspurger & Weihl g5]

= Assigns tickets to nodes

= Stride inversely proportional to #tickets
= wait time until next time scheduled

= Tracks CPU, memory consumption, # file
descriptors

= Result: doesn’t quite work

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Throughput (requests/sec)

0 1 PR |

1 10

?‘\.I‘N‘?H—-M"ET'!I ,
100 1000 10000
Nurrber of producers/consumers

100000

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

10000

3 | | b =
1000 £
) =
0 [
= I
B2 100
= :
o [
= R
P_
10 3
- Capriccio ——
[LinuxThreads —-w—
NPTL — -
'1 L1l L1 vl L1 1l L1 11l
0.0001 0.001 0.01 0.1 1
Cache miss rate

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

350

."" -
300 4 moaTRos
i e
: x
B-g_ .
250 4 a.‘l'r ? l-_h-.-"'.-‘-'k-l--.-l
w
S
= 200 -
=
bl h
£ 150 -
= —+—Apache
o —-a- Apache with Capriccio
100 - --&--Haboob
—*— Knot
50
ﬂ T T T 1
1 10 100 1000 10000 100000

Mumber of Clients

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

D
21N OT AICl]

s Events hard, threads still suck

= Must commit up front
= Difficult to change
= New, better architecture = rewrite code

s Difficult:

= To program & understand
= Interleave server logic with runtime

« Identify bottlenecks
= Predict performance before deployment

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

). ¢ D

Ease-of-use

= Declarative, implicitly parallel
Reuse

= Use unmodified code

Runtime Independence

= Not tied to any model
= Thread-based, thread pool, event-driven

Correctness
= No deadlock!

Performance Prediction
Bottleneck Analysis

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= To date, we have built four servers in
Flux:

= Web server

= BitTorrent “peer”

= Image scaling server
= Game server (“tag”)

= Very concise language

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

11010

Page (int socket) => ();
ReadRequest (int socket)

=> (int socket, bool close, char* request);
Reply (int socket, bool close, int length, char¥*
content, char* output) => ();
ReadWrite (int socket, bool close, char* file)

=> (int socket, bool close, int length, char¥*
content, char* output);
Listen () => (int socket);

source Listen => Page;

Page = ReadRequest —> ReadWrite -> Reply;
handle error ReadWrite => FourOhFor;
handle error ReadRequest => BadRequest;

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= Concrete Nodes
= Correspond to C/C++ implementations
= Type signatures: outputs follow inputs

u ReadRequeSt ReadRequest (int socket)

= Parses client input -> (int socket, char* data);

m Compress Compress (int socket, charx raw, int size)
. - int socket, chars jpeg, int size);
= Compresses images - v 4B !

m Write Write (int socket, charx data, int size)
-> (int socket)

= Outputs
compressed image
to client

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Source nodes

= Concrete nodes that only produce
output

=« Execute inside infinite loop

source Listen => Image;

m Listen

= Transfers control to Image whenever
receives connection

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Abstract Nodes
= Captures flow across nodes

Image =
ReadRequeat -> CheckCache -> Handler
-> Write -»> Complete;

= Image

= Checks cache for requested
image, handles result, writes
output, and completes

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Error Paths

= If error occurs in node,
transfer to error handler

= Ex: file not found = 404 error

handle error ReadInFromDisk -= FourOhFour;

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Predicate Types
= “semantic types” in draft

= Boolean function applied to node’s
output

= EX: hit means TestInCache returned true
when applied to argument

typedef hit TeatInCache;

Handler:[, , hit] = ;

Handler:[, , 1 =
FeadInFromDiak -»> Compress
-» StorelInCache;

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Concurrency constraints

= Labels indicate which nodes cannot
execute simultaneously

= Readers/Writers: readers append “?"
= Default — writers (“1")

= Session constraints
= Only applied to particular “sessions”

conastraint CheckCache: {cache};
conatraint StoreInCache:{cache};
constraint Complete:{cache};

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

] Safety
=« Compiler enforces canonical lock order
= Reentrant
= No multiple locking bugs

=« Data flows acyclic
= No deadlock!

= Note: loops inside implementations &
implicitly from client

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Efficiency

= EXposing constraints lets compiler
generate code specialized for different
runtimes

= Multithreaded — generate locks
= SPED - no locks required

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

0J1410

= Automatically
generates
graphical
representation .-

= BitTorrent
example

= Arcs denote
flow

= Annotations
denote types

** cancel *.*

% interested. . *

MessageDone ba

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

700
600 - —,
- = SEDA
500 - == Capriccio =
E == Event (Flux)
= 400 == Pue Threaded (Flux) _
E —s=Thread Pool (Flux)
E 300 o 3
200
=
100
!_ n L ¥
0 . . -
100 150 200
Simultaneous Clients

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

b ——— "
J00
% 600 -
= 500
B 400
g 300 t
§ == RO
= 200 == Pure Threaded (Flux) ——
=ir= Thread Pool (Flux)
10} #=Event (Flux) —
D 1 1 1 1
0 50 L 150 200
Simultaneous Clients

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Jriricl / h

s Generates discrete event simulator
= Uses parameters from uniprocessor run

180

= == -Predicted, 16 CPUs
160 + —t+—Actual, 16 CPUs
= {F -Predicted, 8 CPUs

140 1 —O— Actual, B CPUs ——— ez B +
£ =Predicted, 4 CPUs :
w 120 L O Actual, 4 CPUs gg/—-r’/
- = <= -Predicted, z CPUs A
2 —C— Actual, 2 CPUs /
© 190 T 2 -predicted, 1 CPU iy
% —#— Actual, 1 CPU /
2 8o ?
E
S s

o 50 100 150 200 250
Simultaneous Clients

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

