Parallel & Concurrent Programming: Server Architectures

Emery Berger CMPSCI 691W - Spring 2006

Outline

- Last time:
 - Lock "improvements"
 - Non-blocking operations
 - java.nio library
- Today:
 - Server architectures
 - Focus: web servers
 - Performance & ease of programming

Web Servers

- Client (IE, Mozilla) requests http://foo.com/bar.html
- In response, web server
 - Accepts network connection
 - Persistent in http/1.1
 - Reads request (bar.html)
 - Reads requested file or execute CGI
 - Sends header and file / output

Example: Single-Thread

- Single-threaded server:
 - One process handles all web connections, step by step
- Advantages:
 - Easy! 1 thread = no race conditions, etc.
- Disadvantages:
 - Only one client at a time
 - Unacceptably simple

Web Server Goals

- Performance goals:
 - Support as many simultaneous clients as possible
 - High concurrency
 - Low memory consumption per client
 - Provide high throughput, low response time (latency)
- Software engineering goals:
 - Simple to understand, extend, employ desired optimizations & features, and debug

Optimizations & Features

- Optimizations: caching
 - Pathname translations
 - Results of script executions
 - Turns dynamic pages into static pages
 - File reads
 - Avoids disk I/O, expensive systems calls: stat()
- Features: logging, statistics gathering, access control...
- Lots of centralized data structures

Server Architectures

MP/MT

Multiprocess/multithreaded (Apache)

SPED

Single-process event-driven (thttpd, Zeus)

AMPED

asymmetric multiprocess event-driven (Flash)

Multiprocess Architecture

Advantages:

- Takes advantage of multiple processors
- Debugging, etc.?

Disadvantages:

- IPC (maintain caches, logs)
- Memory cost, limited # clients, context switches

Multithreaded

Advantages

- Takes advantage of multiple processors
- Extensibility

Disadvantages

- Synch, races
- Memory cost (kernel vs. user-level)
- Startup cost? Context switches?
- Blocking I/O

Blockina I/O

- Can specify "non-blocking" for some I/O calls, but:
 - Non-blocking supported for network
 I/O, but generally not disk operations
- POSIX standard AIO: Asynchronous I/O
 - Supports only reads & writes, not open() or stat()
- → Must work around blocking I/O

SPED

- Single-process event-driven
 - Uses select() to check for ready file descriptors
 - Processes ready items, moves to next "stage"
 - One finite state machine per client

SPED Example (thttpd)

- Loop until shut down:
 - Accept new connections
 - For each ready file descriptor, switch (status):
 - READ_MODE handle read
 - SEND_MODE handle send
 - WRITE_MODE handle write

SPED Pros & Cons

Advantages:

- No context switches, synchronization, IPC, etc.
- Low memory overhead

Disadvantages:

- Multiple processors?
- Blocking I/O?
- Programming complexity...

AMPED

- Asymmetric MultiProcess Event-Driven
 - Like SPED, but with helper processes for blocking I/O
 - e.g., one or two per disk, more for multi-arm disks

AMPED Pros & Cons

Advantages:

- Same as event-driven, but no blocking
 - No context switches, synchronization, IPC, etc.
 - Low memory overhead

Disadvantages:

Multiple processors?

Throughput versus "Size"

- 96MB = available RAM for buffer cache
 - In RAM: SPED wins
 - On disk: blocking I/O dominates

Throughput vs. # Clients

- WAN conditions
 - Why does MP do so badly?
- Note: all experiments on uniprocessor

Problems with Events

- Do not take advantage of multiple processors
- Long-running handler = high latency
- Events obscure control flow
 - No state across request handlers
 - Break code into "call" event and "return" event
 - continuation-passing style
 - Hard to write, understand & debug

Problems with Threads

- Synchronization overhead & complexity, deadlock
- Race conditions difficult to debug
 - Timing dependencies result in Heisenbugs
- Priority inversion

SEDA

- Hybrid approach: mixes thread pools with events
- Staged Event-Driven Architecture
 - Event-driven stages separated by queues
 - Thread pools per stage
 - Provides load conditioning: degrades service gracefully
 - Admission control
 - Load shedding

Bursty Load

- Web server logs for USGS site after 1999 earthquake
- 3 orders of magnitude increase
 - a.k.a. "Slashdotting"

Effect of Load

- Simulated on thread-pool server
 - What happened?

Effect of Load

Event-driven server (all in RAM)

SEDA approach

- Events organized into stages
 - Connect output of one stage to input of next

SEDA stages

- Each stage: thread pool processes batches of events
 - Amortizes ops, locality
- Can perform admissions control on own queue
 - Shed load, etc.
- Controller:
 - Adjusts resource allocations & scheduling
 - E.g., reduces # threads in pool when thruput degrades

Load & Response Time

- 64 clients
- Nearly identical response time curve

Load & Response Time

- 1024 clients
- Note the heavy tail (minutes!)

The End

- But isn't it still painful to write eventdriven code?
- Next time: alternatives
 - Capriccio, Flux

