Parallel & Concurrent Programming:

Advanced
Synchronization

Emery Berger
CMPSCI 691W - Spring 2006

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

' ' ' 4 '

= Synchronization serves two purposes:

=« Ensure safety for shared updates
= Avoid race conditions

= Coordinate actions of threads
= Parallel computation
=« Event notification

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

nch. Operation

= Safety:
= Locks
= Coordination:
= Semaphores
= Condition variables

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

3f€

= Multiple threads/processes — access
shared resource simultaneously

= Safe only if:

= All accesses have no effect on resource,
e.g., reading a variable, or

= All accesses idempotent
« E.g.,,a = abs(x),a = highbit (a)

= Only one access at a time:
mutual exclusion

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= “The too much milk problem”

time | You Your Roommate

3:00 | Arrive home

3:05 | Look in fridge, no milk

3:10 | Leave for grocery

3:15 Arrive home

3:20 | Arrive at grocery Look in fridge, no milk
3:25 | Buy milk Leave for grocery

3:35 | Arrive home, put milk in fridge

3:45) Buy Milk

3:50 \ Arrive home, put up milk
3:50 Oh no!

S——

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

thread A

thread B

if (no milk && no note)

if (no milk && no note)

leave note

leave note

remove note

s Does ti

remove note

too much milk

UNIVERSITY OF MASSACHUSETTS, AMI ¢RST « Department of Computer Science

VIUTUCc ISIO

= Prevent more than one thread from
accessing critical section

= Serializes access to section

= Lock, update, unlock:

lock (&1);
update data; /* critical section */
unlock (&l1);

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

thread A

lock (&1)

if (no milk)
buy milk

unlock (&1)

thread B

lock (&1)

if (no milk)
buy milk

unlock (&1)

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

ATON)peratior

= But: locks are also variables, updated
concurrently by multiple threads

= Lock the lock?
= Answer: use hardware-level atomic
operations
= Test-and-set
=« Compare-and-swap

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

int testAndset (inté& v) {
int old = v;
v =1,
return old;

}

pseudo-code: red = atomic

= What's the effect of
testAndset (value)
when:

= value = 0?
("unlocked”)

= value =1?
("locked")

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

1/ |
P

= Blocking Locks
= Spin locks
= Hybrids

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Suspend thread immediately
= Lets scheduler execute another thread

= Minimizes time spent waiting
= But: always causes context switch

void blockinglock (Locké& 1) {
while (testAndSet(l.v) == 1) {
sched_yield();
}
}

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Instead of blocking, loop until lock

released
void spinlock (Locké& 1)
while (testAndSet(l.v) == 1) {
}

void spinlock2 (Locké& 1)
while (testAndSet (1.v)
while (1.v == 1)

N o~

1) {

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

‘
[4
P 4

= Spin-then-yield:
= Spin for some time, then yield

= Fixed spin time
= Exponential backoff

= Queuing locks, etc.:

= Ensure fairness and scalability
= Major research issue in 90’s

= Not used (yet) in real systems

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

A
(4
4

s Locks can enforce mutual exclusion,
but notorious source of errors

= Failure to unlock
= Double locking
= Deadlock

= Priority inversion
= NOt an “error” per se

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

pthread mutex_ t 1;
void square (void) {
pthread mutex lock (&l1);
// acquires lock
// do stuff
if (x == 0) {
return;
} else {
X =x * x;
}
pthread_mutex_ unlock (&l1);
}

= What happens when we call

square () twice when x

0?

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Scoped Locks:
acquired on entry, released on exit

= C++: Resource Acquisition is Initialization

class Guard {
public:
Guard (pthread mutex té& 1)
: _lock (1)
{ pthread mutex_lock (&_1lock);}

~Guard (void) {
pthread mutex_unlock (&_1lock);

}

private:
pthread_mutex_t _ lock;

};

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Prevents failure to unlock

pthread mutex_ t 1;
void square (void) {
Guard lockIt (&1);
// acquires lock
// do stuff
if (x == 0) {

} else {
X =x * x;
}

// releases lock

return; // releases lock

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

' 4

= Another common mistake

pthread mutex lock (&l);

// do stuff

// now unlock (or not...)
pthread mutex_lock (&l);

= Now what?

= Can find with static checkers —
numerous instances in Linux kernel

= Better: avoid problem

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Solution: recursive locks

= If unlocked:
= threadID = pthread self ()

mcount =1
= Same thread locks = increment count
=« Otherwise, block

= Unlock = decrement count
= Really unlock when count ==

= Default in Java, optional in POSIX

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

00'0"
4« N N B B/ 4

= Cycle in locking graph = deadlock

= Standard solution:
canonical order for locks
= Acquire in increasing order
= Release in decreasing order

s Ensures deadlock-freedom, but not
always easy to do

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Increasing Concurren

= One object, shared among threads

-

s Each thread is either a reader or a
writer

= Readers — only read data, never modify
= Writers — read & modify data

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

thread A thread B thread C
lock (&1) lock (&1) lock (&1)
Read data Modify data Read data
unlock (&1) unlock (&1) unlock (&1)
thread D thread E thread F
lock (&1) lock (&1) lock (&1)
Read data Read data Modify data
unlock (&1) unlock (&1) unlock (&1)

= Drawbacks of this solution?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

A

= Single lock: safe, but limits
concurrency

= Only one thread at a time, but...

= Insight: Safe to have
simultaneous readers

= Must guarantee mutual exclusion
for writers

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

thread A

rlock (&xrw)
Read data
unlock (&xrw)

thread B

wlock (&rw)
Modify data
unlock (&xrw)

thread C

rlock (&xrw)
Read data
unlock (&xrw)

thread D

rlock (&xrw)
Read data
unlock (&xrw)

thread E

rlock (&xrw)
Read data
unlock (&rw)

thread F

wlock (&rw)
Modify data
unlock (&rw)

= Maximizes concurrency

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

/Y

= When readers and writers both
gqueued up, who gets lock?
= Favor readers

= Improves concurrency
= Can starve writers

= Favor writers

= Alternate
= Avoids starvation

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

nch. Operation

= Safety:
s Locks
= Coordination:
= Semaphores
= Condition variables

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= What's a “semaphore” anyway?

A visual
signaling
apparatus with
flags, lights, or
mechanically
moving arms,
as one used on
a railroad.

= Reqgulates traffic at critical section

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

amaphores in

= Computer science: Dijkstra (1965)

A non-negative
integer counter
with atomic
increment &
decrement.
Blocks rather
than going
negative.

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= P(sem), a.k.a. wait = = V(sem), a.k.a. signal

decrement counter = Increment counter

= If sem = o, block until = Wake 1 waiting process
greater than zero = V = “verhogen”

= P="prolagen” (“increase”)

(proberen te verlagen,
“try to decrease”)

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= More flexible than locks

= By initializing semaphore to o,

threads can wait for an event to occur

thread A

// wait for thread B

sem.wait () ;
// do stuff ..

thread B

// do stuff, then
// wake up A

sem.signal () ;

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

= Controlling resources:
= E.g., allow threads to use at most 5 files

simultaneously
= Initialize to 5

thread A

sem.wait () ;

// use a file

sem.signal () ;

thread B

sem.wait () ;
// use a file

sem.signal () ;

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

= Suppose we have a thread-safe queue

= insert (item), remove ()

= Options for remove when queue empty:
= Return special error value (e.g., NULL)
= Throw an exception
= Wait for something to appear in the queue

s Wait = sleep ()

= But sleep when holding lock...
= Goes to sleep
= Never wakes up!

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

ondition Variable

= Wait for 1 event, atomically grab lock

= wait (Lock& 1)

= If queue is empty, wait
Atomically releases lock, goes to sleep
Reacquires lock when awakened

= notify ()

= Insert item In queue
Wakes up one waiting thread, if any

» notifyAll ()
« Wakes up all waiting threads

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Ve X M E

= Advanced Thread Programming

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

