
Flux: A Language for Programming High-Performance Servers

Brendan Burns Kevin Grimaldi Alexander Kostadinov Emery D. Berger Mark D. Corner
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{bburns,kgrimald,akostadi,emery,mcorner}@cs.umass.edu

Abstract

Programming high-performance server applications is
challenging. It is both complicated and error-prone to
write the concurrent code required to deliver high perfor-
mance and scalability. Server performance bottlenecks
are difficult to identify and correct. Finally, it is difficult
to predict server performance prior to deployment.

This paper presents Flux, a language that dramatically
simplifies the construction of scalable high-performance
server applications. Flux lets programmers compose off-
the-shelf, sequential C or C++ functions into concurrent
servers. Flux programs are type-checked and guaran-
teed to be deadlock-free. We have built a number of
servers in Flux, including a web server with PHP sup-
port, an image-rendering server, a BitTorrent peer, and
a game server. These Flux servers match or exceed
the performance of their counterparts written entirely
in C. By tracking hot paths through a running server,
Flux simplifies the identification of performance bottle-
necks. The Flux compiler also automatically generates
discrete event simulators that accurately predict actual
server performance under load and with different hard-
ware resources. Flux is both easy to use and unusually
compact, allowing entire servers to be specified in tens
of lines of code.

1 Introduction
Server applications need to provide high performance
while handling large numbers of simultaneous requests.
Programming servers remains a daunting task. Concur-
rency is required for high performance but introduces er-
rors like race conditions and deadlock that are difficult to
debug. The mingling of server logic with low-level sys-
tems programming complicates development and makes
it difficult to understand and debug server applications.
Consequently, the resulting implementations are often
either lacking in performance, buggy or both. At the
same time, the interleaving of multiple threads of server
logic makes it difficult to identify performance bottle-
necks or predict server performance prior to deployment.

This paper introduces Flux, a domain-specific lan-
guage that addresses these problems 1. A Flux program

describes two things: (1) the flow of data from client re-
quests through nodes, typically off-the-shelf C or C++
functions, and (2) mutual exclusion requirements for
these nodes, expressed as high-level concurrency con-
straints. Flux requires no other typical programming
language constructs like variables or loops – a Flux pro-
gram executes inside an implicit infinite loop. The Flux
compiler combines the C/C++ components into a high
performance server using just the flow connectivity and
concurrency constraints.

Flux captures a programming pattern common to
server applications: concurrent executions, each based
on a client request from the network and a subsequent
response. This focus enables numerous advantages over
conventional server programming:

• Ease of use. Flux is a declarative, implicitly-
parallel language that eliminates the error-prone
management of concurrency via threads or locks.
A typical Flux server consists of just tens of lines
of code.

• Reuse. By design, Flux directly supports the in-
corporation of unmodified existing code. There is
no “Flux API” that a component must adhere to;
as long as components follow the standard UNIX
conventions, they can be incorporated unchanged.
As an example, we were able to add PHP support
to our web server just by implementing a required
PHP interface layer.

• Runtime independence. Because Flux is not tied
to any particular runtime model, it is possible to
deploy Flux programs on a wide variety of run-
time systems. Section 3 describes three runtimes
we have implemented: thread-based, thread pool,
and event-driven.

• Correctness. Flux programs are type-checked to
ensure their compositions make sense. The concur-
rency constraints eliminate deadlock by enforcing
a canonical ordering for lock acquisitions.

• Performance prediction. The Flux compiler op-
tionally outputs a discrete event simulator. As we
show in Section 5, this simulator accurately pre-
dicts actual server performance.

• Bottleneck analysis. Flux servers include light-
weight instrumentation that identifies the most-
frequently executed or most expensive paths in a
running Flux application.

Our experience with Flux has been positive. We have
implemented a wide range of server applications in Flux:
a web server with PHP support, a BitTorrent peer, an im-
age server, and a multi-player online game server. The
longest of these consists of fewer than 100 lines of code,
with the majority of the code devoted to type signatures.
In every case, the performance of these Flux servers
matches or exceeds that of their hand-written counter-
parts.

The remainder of this paper is organized as follows.
Section 2 presents the semantics and syntax of the Flux
language. Section 3 describes the Flux compiler and
runtime systems. Section 4 presents our experimen-
tal methodology and compares the performance of Flux
servers to their hand-written counterparts. Section 5
demonstrates the use of path profiling and discrete-event
simulation. Section 6 reports our experience using Flux
to build several servers. Section 7 presents related work,
and Section 8 concludes with a discussion of planned
future work.

2 Language Description
To introduce Flux, we develop a sample application that
exercises most of Flux’s features. This sample appli-
cation is an image server that receives HTTP requests
for images that are stored in the PPM format and com-
presses them into JPEGs. Recently-requested images are
stored in a cache managed with a least-frequently used
(LFU) replacement policy.

This section describes the entire Flux language, in-
cluding the concrete nodes that implement the server
logic, abstract nodes that represent a flow through mul-
tiple nodes, semantic types that implement conditional
data flow, error handlers that deal with exceptional
conditions, and the concurrency constraints that con-
trol simultaneous access to shared state.

2.1 Concrete Nodes
The first step in designing a Flux program is describing
the concrete nodes that correspond to C and C++ imple-
mentations.

Flux requires type signatures for each node. In the
current syntax, the name of the node is followed by the
input arguments in parentheses, followed by an arrow
and the output arguments.

Below are the signatures for three of the concrete
nodes in the image server: ReadRequest parses client
input, Compress compresses images, and Write out-
puts the compressed image to the client.

ReadRequest (int socket)
-> (int socket, char* data);

Compress (int socket, char* raw, int size)
-> (int socket, char* jpeg, int size);

Write (int socket, char* data, int size)
-> (int socket)

While most concrete nodes both receive input data
and produce output, source nodes only produce output to
initiate a data flow. The statement below indicates that
Listen is a source node, which Flux executes inside an
infinite loop. Whenever Listen receives a connection,
it transfers control to the Image node.

source Listen => Image;

2.2 Abstract Nodes
In Flux, concrete nodes can be composed to form ab-
stract nodes. These abstract nodes represent a flow of
data from concrete nodes to concrete nodes or other ab-
stract nodes. Arrows connect nodes, and Flux checks
to ensure that these connections make sense. The out-
put type of the node on the left side of the arrow must
match the input type of the node on the right side. For
example, the abstract node Image in the image server
corresponds to a flow from client input that checks the
cache for the requested image, handles the result, writes
the output, and completes.

Image =
ReadRequest -> CheckCache -> Handler

-> Write -> Complete;

2.3 Semantic Types
A client request for an image may result in either a cache
hit or a cache miss. These need to be handled differently.
Instead of exposing control flow directly, Flux lets pro-
grammers use the semantic type of a node’s output to di-
rect the flow of data to the appropriate subsequent node.
A semantic type is a Boolean function supplied by the
Flux programmer that is applied to the node’s output.

Using semantic types, a Flux programmer can express
multiple possible paths for data through the server. Se-
mantic type dispatch is processed in order of the tests in
the Flux program. The typedef statement binds the
type hit to the Boolean function TestInCache. The
node Handler below checks to see if its first argument
is of type hit; in other words, it applies the function
TestInCache to the third argument. The underscores
are wildcards that match any type. Handler does noth-
ing for a hit, but if there is a miss in the cache, the image

server fetches the PPM file, compresses it, and stores it
in the cache.

typedef hit TestInCache;

Handler:[_, _, hit] = ;
Handler:[_, _, _] =

ReadInFromDisk -> Compress
-> StoreInCache;

2.4 Error Handling
Any server must handle error conditions. Flux expects
nodes to follow the standard UNIX convention of return-
ing error codes. Whenever a node returns a non-zero
value, Flux checks to see if an error handler has been
declared for the node. If no error handler exists, the cur-
rent data flow is simply terminated.

In the image server, if the function to read an image
from disk discovers that the image does not exist, it sig-
nals an error. We handle this error by directing the flow
to a node FourOhFour that outputs a 404 page to the
client:

handle error ReadInFromDisk -> FourOhFour;

2.5 Concurrency Constraints
All flows through the image server access a single shared
image cache. Access to this shared resource must be
controlled to ensure that two different data flows do not
interfere with each other’s operation.

The Flux programmer specifies such concurrency
constraints in Flux rather than inside the component im-
plementation. The programmer specifies concurrency
constraints by using arbitrary symbolic names. These
concurrency constraints can be thought of as locks, al-
though this is not necessarily how they are implemented.
A node only runs when it has “acquired” all of the con-
straints. This acquisition follows a two-phase locking
protocol: the node acquires (“locks”) all of the con-
straints in order, executes the node, and then releases
them in reverse order.

The image server maintains cache consistency by en-
suring that only one node can modify the cache at a time.

constraint CheckCache:{cache};
constraint StoreInCache:{cache};
constraint Complete:{cache};

Readers/Writers
Concurrency constraints can be specified as either read-
ers or writers. Using these constraints allows multiple
readers to execute a node at the same time, support-
ing greater efficiency when most nodes read shared data
rather than update it. Reader constraints have a question

mark appended to them (“?”). Although constraints are
considered writers by default, a programmer can append
an exclamation point (“!”) for added documentation.

Scoped Constraints
While flows generally represent independent clients, in
some server applications, multiple flows may constitute
a single session. For example, a file transfer to one client
may take the form of multiple simultaneous flows. In
this case, the state of the session (such as the status of
transferred chunks) only needs to be protected from con-
current access in that session.

In addition to program-wide constraints that apply
across the entire server (the default), Flux supports per-
session constraints that apply only to particular ses-
sions. Using session-scoped concurrency constraints in-
creases efficiency by eliminating contention across ses-
sions. Sessions are implemented as hash functions on
the output of each source node. The Flux programmer
implements this session id function that takes the source
node’s output as its parameter and returns a unique ses-
sion identifier, and then adds (session) to a con-
straint name to indicate that it applies only per-session.

Discussion
Specifying concurrency constraints in Flux rather than
placing locking operations inside implementation code
has a number of advantages, beyond the fact that it al-
lows the use of libraries whose source code is unavail-
able.

Safety: Declaring concurrency constraints in Flux
allows Flux to prevent deadlock. The Flux compiler
enforces a canonical order for lock acquisition (corre-
sponding to concurrency constraints). Since data flows
are acyclic, deadlock is thus impossible. Concurrency
constraints in Flux are also reentrant, preventing dead-
lock that could occur due to multiple locking. Flux pro-
grams that only use Flux level concurrency constraints
are thus guaranteed to not deadlock.

Efficiency: Exposing concurrency constraints also
enables the Flux compiler to generate more efficient
code. In particular, it provides implementations of the
concurrency constraints tailored to particular runtimes.
For example, a multithreaded runtime require locks,
while a single-threaded event-driven runtime does not.
The Flux compiler thus generates locks or other mutual
exclusion operations only when needed.

Granularity selection: Finally, concurrency con-
straints let programmers easily find the appropriate gran-
ularity of locking. Grain selection is often difficult: too
coarse a grain results in contention, while too fine a grain
can impose excessive locking overhead. As we describe
in Section 5.1, Flux can generate a discrete event sim-
ulator for the Flux program. This simulator can let a

developer identify the appropriate granularity of locking
before actual server deployment.

3 Compiler and Runtime Systems
A Flux program is transformed into a working server by
a multi-stage process. The compiler first reads in the
Flux source and constructs a representation of the pro-
gram graph. It then processes the internal representation
to type-check the program. Once the code has been veri-
fied, the runtime code generator processes the graph and
outputs C code that implements the server’s data flow for
a specific runtime. Finally, this code is linked with the
implementation of the server logic into an operational
server. We first describe the compilation process in de-
tail. We then describe the three runtime systems that
Flux currently supports.

3.1 The Flux Compiler
The Flux compiler is a three-pass compiler implemented
in Java, and uses the JLex lexer [5] in conjunction with
the CUP LALR parser generator [3].

The first pass parses the Flux program text and builds
a graph-based internal representation. During this pass,
the compiler links nodes referenced in the program’s
data flows. All of the conditional flows are merged, with
an edge corresponding to each conditional flow.

The second pass decorates edges with types, connects
error handlers to their respective nodes, and verifies that
the program is correct. First, each node mentioned in
a data flow is looked up in the table of function defini-
tions. From these definitions, each node is labelled with
its input and output types. Each semantic type used by
a conditional node is looked up in the type definitions.
Finally, the error handlers and concurrency constraints
are attached to each node. If any of the referenced nodes
or semantic types are undefined, the compiler signals an
error and exits. Otherwise, the program graph is com-
pletely instantiated. The final step of program graph
construction checks that the output types of each node
match the inputs of the nodes that they are connected
to. If all type tests pass, then the compiler has a valid
program graph.

The third pass generates the intermediate code that
implements the data flow of the server. Flux supports
generating code for arbitrary runtime systems. The com-
piler defines an object-oriented interface for code gener-
ation. New runtimes can easily be plugged into the Flux
compiler by implementing this code generator interface.

The current Flux compiler supports several different
runtimes, described below. In addition to the runtime-
specific intermediate code, the Flux compiler generates
a Makefile and stubs for all of the functions that pro-
vide the server logic. These stubs ensure that the pro-
grammer uses the appropriate signatures for these meth-

ods. When appropriate, the code generator outputs locks
corresponding to the concurrency constraints, but in a
canonical order (alphabetically by name) that eliminates
deadlock.

3.2 Runtime Systems
The current Flux compiler supports three different run-
time systems: one thread per connection, a thread-pool
system, and an event-driven runtime.

In the thread-based runtimes, each request handled by
the server is dispatched to a thread function that handles
all possible paths through the server’s data flows. In the
one-to-one thread server, a thread is created for every
different data flow. In the thread-pool runtime, a fixed
number of threads are allocated to service data flows. If
all threads are occupied when a new data flow is created,
the data flow is queued and handled in first-in first-out
order.

The event-driven runtime operates differently. In this
runtime, every input to a functional node is seen as an
event. Each event is placed into a queue and handled in
turn by a single thread. Additionally, each source node
(a node with no input) is repeatedly placed on the queue
to originate each new data flow. The transformation of
input to output by a node generates a new event corre-
sponding to the output data being propagated to the sub-
sequent node.

The implementation of the event-based runtime is
complicated by the fact that node implementations may
perform blocking function calls. If blocking function
calls like read and write were allowed to run unmod-
ified, the operation of the entire server would block until
the function returned.

Instead, the event-based runtime intercepts all calls to
blocking functions using a handler that is pre-loaded via
the LD PRELOAD environment variable. This handler
captures the state of the node at the blocking call and
moves onto the next event in the queue. The formerly-
blocking call is then executed asynchronously. When
the event-based runtime receives a signal that the call
has completed, the event is reactivated and re-queued
for completion. Because the mainstream Linux kernel
does not currently support callback-driven asynchronous
I/O, the current Flux event-based runtime uses a separate
thread to simulate callbacks for asynchronous I/O using
the select function. A programmer is thus free to use
synchronous I/O primitives without interfering with the
operation of the event-based runtime.

Each of these runtimes was implemented in the C us-
ing POSIX threads and locks. Flux can also generate
code for different programming languages. We have
also implemented a prototype that targets Java, using
both SEDA [16] and a custom runtime implementation,
though we do not evaluate the Java systems here.

In addition to these runtimes, we have implemented
a code generator that transforms a Flux program graph
into code for the discrete event simulator CSIM [13].
This simulator can predict the performance of the server
under varying conditions, even prior to the actual im-
plementation of the core server logic. This process is
described in greater detail in Section 5.1.

4 Experimental Evaluation
To demonstrate its effectiveness for building high-
performance server applications, we have implemented
a number of servers in Flux. We summarize these in Ta-
ble 1. We chose these servers specifically to span the
space of possible server applications. Most server appli-
cations can be broadly classified into one of the follow-
ing categories: request-response client/server, “heart-
beat” client/server and peer-to-peer. What differenti-
ates these categories is their pattern of interactions. We
implemented a server in Flux for each of these cate-
gories and compared their performance under varying
load with existing hand-tuned server applications writ-
ten in conventional programming languages.

4.1 Methodology
We evaluate all server applications by measuring their
throughput and latency in response to realistic work-
loads.

All testing was performed with a server and client ma-
chine, both running Linux version 2.4.20. The server
machine was a Pentium 4 (2.4Ghz, 1GB RAM), con-
nected via gigabit Ethernet on a dedicated switched
network to the client machine, a Xeon-based machine
(2.4Ghz, 1GB RAM). All server and client applications
were compiled using GCC version 3.2.2. During testing,
both machines were running in multi-user mode with
only standard services running. All results are for a run
of two minutes, ignoring the first twenty seconds to al-
low the cache to warm up.

4.2 Request-Response: Web Server
Request-response based client/server applications are
among the most common examples of network servers.
This style of server includes most major Internet proto-
cols including FTP, SMTP, POP, IMAP and HTTP. As
an example of this application class, we implemented a
web server in Flux. The Flux web server implements
the HTTP/1.1 protocol and can serve both static and dy-
namic PHP web pages.

We implemented a benchmark to load test the Flux
webserver that is similar to SPECweb99 [14]. The
benchmark simulates a number of clients requesting files
from the server. Each simulated client sends five re-
quests over a single HTTP/1.1 TCP connection using
keep-alives. When one file is retrieved, the next file is

immediately requested. After the five files are retrieved,
the client disconnects and reconnects over a new TCP
connection. The files requested by each simulated client
follow the static portion of the SPECweb benchmark and
each file is selected using the Zipf distribution.

We compare the performance of the Flux webserver
against the latest versions of the knot webserver distrib-
uted with Capriccio [15] and the Haboob webserver dis-
tributed with the SEDA runtime system [16]. Figure 1
presents the throughput and latency for a range of si-
multaneous clients. These graphs represent the average
of five different runs for each number of clients.

The results show that the Flux web server provides
comparable performance to the fastest webserver (knot),
regardless of whether the event-based or thread-based
runtime is used. All three of these servers (knot, flux-
threadpool and flux-event-based) significantly outper-
form Haboob, the event-based server distributed with
SEDA. As expected, the naı̈ve one-thread, one-client
server generated by Flux has significantly worse perfor-
mance due to the overhead of creating and destroying
threads.

The results for the event-based server highlight one
drawback of running on a system without true asyn-
chronous I/O. With small numbers of clients, the event-
based server suffers from increased latency that initially
decreases and then follows the behavior of the other
servers. This hiccup is an artifact of the interaction
between the webserver’s implementation and the event-
driven runtime, which must simulate asynchronous I/O.
The first node in the webserver uses the select func-
tion with a timeout to wait for network activity. In the
absence of other network activity, this node will block
for a relatively long period of time. Because the event-
based runtime only reactivates nodes that make blocking
I/O calls after the completion of the currently-operating
node, in the absence of other network activity, the call
to select imposes a minimum latency on all block-
ing I/O. As the number of clients increases, there is suf-
ficient network activity that select never reaches its
timeout and frozen nodes are reactivated at the appropri-
ate time. In the absence of true asynchronous I/O, the
only solution to this problem would be to decrease the
timeout call to select, which would increase the CPU
usage of an otherwise idle server.

4.3 Peer-to-Peer: BitTorrent
Peer-to-peer applications act as both a server and a
client. Unlike a request-response server, they both re-
ceive and initiate requests.

We implemented a BitTorrent server in Flux as a rep-
resentative peer-to-peer application. BitTorrent uses a
scatter-gather protocol for file sharing. BitTorrent peers
exchange pieces of a shared file until all participants

Server Style Description Lines of Flux code
Web server request-response a basic HTTP/1.1 server with PHP 36
Image server request-response image compression server 23
BitTorrent peer-to-peer a file-sharing server 84
Game server heartbeat multiplayer game of “Tag” 54

client-server

Table 1: Servers implemented in Flux, described in Section 4.

have a complete copy. Network load is balanced by ran-
domly requesting different pieces of the file from differ-
ent peers.

To facilitate benchmarking, we changed the behavior
of both of the BitTorrent peers we test here (the Flux ver-
sion and CTorrent). First, all client peers are unchoked
by default. Choking is an internal BitTorrent state that
blocks certain clients from downloading data. This pro-
tocol restriction prevents real-world servers from being
overwhelmed by too many client requests. We also allow
an unlimited number of unchoked client peers to operate
simultaneously, while the real BitTorrent server only un-
chokes clients who upload content.

We are unaware of any existing BitTorrent bench-
marks, so we developed our own. Our BitTorrent bench-
mark mimics the traffic encountered by a busy BitTor-
rent peer. It simulates a series of clients continuously
sending requests for randomly distributed pieces of a
54MB test file to a BitTorrent peer with a complete copy
of the file. When a peer finishes downloading a piece
of the file, it immediately requests another random piece
of the file from those still missing. Once a client has
obtained the entire file, it disconnects. This benchmark
does not simulate the “scatter-gather” nature of the Bit-
Torrent protocol – all requests go to a single peer. Us-
ing single peers has the effect of maximizing load, since
obtaining data from a different source would lessen the
load on the peer being tested.

Figure 2 compares the latency, throughput (comple-
tions per second) and network throughput to CTorrent,
an implementation of the BitTorrent protocol written in
C. Because BitTorrent is network-bound, there is little
difference between the various server implementations.
Nonetheless, prior to saturating the network, all of the
Flux servers perform slightly worse than the CTorrent
server. We are investigating the cause of this small per-
formance gap.

4.4 Heartbeat Client-Server: Game
Server

Unlike request-response client/server applications and
most peer-to-peer applications, certain server applica-
tions are subject to real-time deadlines. An example of
such a server is an online multi-player game. In these
applications, the server maintains the shared state of the

game and distributes this state to all of the players at
“heartbeat” intervals. There are two important condi-
tions that must be met by this communication: the state
possessed by all clients must be the same at each instant
in time, and the inter-arrival time between states can not
be too great. If either of these conditions is violated,
the game will be unplayable or susceptible to cheating.
These requirements place an important real-time con-
straint on the server’s performance.

We have implemented an online multi-player game of
Tag in Flux. The Flux game server enforces the rules
of tag. Players can not move beyond the boundaries of
the game world. When a player is tagged by the player
who is “it”, that player becomes the new “it” and is tele-
ported to a new random location on the board. All com-
munication between clients and server occurs over UDP
at 10Hz, a rate comparable to other real-world online
games. While simple, this game has all of the impor-
tant characteristics of servers for first person shooter or
real-time strategy games.

Benchmarking the gameserver is significantly differ-
ent than load-testing either the webserver or BitTorrent
peer. Throughput is not a consideration since only small
pieces of data are transmitted. The primary concern is
the latency of the server as the number of clients in-
creases. The server must receive every player’s move,
compute the new game state, and broadcast it within a
fixed window of time.

To load-test the game server, we measured the effect
of increasing the number of players. The performance
of the gameserver is largely based upon the length of
time it takes the server to update the game state given the
moves received from all of the players, and this compu-
tation time is identical across the servers. The latency of
the gameserver is largely a product of the rate of game
turns, which stays constant at 10Hz. We found no ap-
preciable differences between the traditional implemen-
tation of the gameserver and the various Flux versions.
These results show that Flux is capable of producing a
server with sufficient performance for multi-player on-
line gaming.

5 Performance
In addition to its programming language support for
writing server applications, Flux provides support for

�
�����
�����
�����
�����
	 ���

 ���
� ���

� 	 � ����� � 	 � �����
�� ����� ����������������� � �������

 !
"#
$%!
&$'(
)*+
,- .�/1032465�798 : ;�;�: <

/1=�>�?9@�A BDC E�F�GH E 8 >JI1K 8 > 5�L > L A B�C E�F9GIMK 8 > 5�L H <9< C�A BDC E�F9G

N
O�N
P�N
Q�N
R�N
S N
T N
U N
V9N
W�N
O�N�N

N S N O�N�N O S N P�N�NX6Y Z�[�\]�^�_�`�a�[�bdce\ Y `�_�]�b

f gh ij
kl
m n
op

q�rMsutv6w�x9y z {�{�z |r�}9~��9��� ��� ���9�� �9y ~��1�9y ~�w��9~���� �D� ������1�9y ~�w�� � |9|���� �D� ���9�

�
� ���
�������
� � ���
�������
� � ���
�������
� � ���
�������
� � ���
� �����

� � � ����� � � � �������� ����� �������������� �� � �������

¡ ¢
£¤¥ ¦
§¨ ¢©
ª«
ª ¬�­M®u¯°6±�²9³ ´ µ�µ�´ ¶

­�·9¸�¹9º�» ¼�½ ¾�¿9ÀÁ
¾
³
¸�Â1Ã

³
¸
±�Ä
¸
Ä
» ¼D½ ¾�¿�ÀÂ1Ã

³
¸
±�Ä Á ¶9¶

½�» ¼D½ ¾�¿9À

Figure 1: Comparison of Flux web servers with other
high-performance implementations (see Section 4.2).

Å
Æ�Å�Å
Ç�Å�Å
È�Å�Å
É�Å�Å
Ê Å�Å
Ë Å�Å
Ì Å�Å
Í9Å�Å

Å Ê Å Æ�Å�Å Æ Ê Å Ç�Å�ÅÎ�Ï Ð�Ñ�Ò Ó�Ô�Õ�Ö�×�Ñ�Ø�Ù�Ò Ï Ö�Õ�Ó�Ø

ÚÛ Ü
ÝÞß
Û à
Þáâ
ãäå
æç

èJé êìë ë í�î9éï�ð ë í�ñMò�ë í�ó�ô9í�ô�õ ö�÷ ð�ø9ùñMò�ë í�ó�ô ï ê9ê9÷�õ ö�÷ ð�ø9ùú1û í�î9é�õ öD÷ ð�ø�ù

ü
ý
þ�ü
þ ý
ÿ�ü
ÿ ý
��ü
� ý

ü ý ü þ�ü�ü þ ý ü ÿ�ü�ü��� ����� 	�

�����
������� � ����	��

� �� �
���
� �
�

!#" $&% % '�()"*�+ % '#,.-)% '0/�1)'2143 576 +989:,.-)% '0/�1 * 9)6;3 576 +989:<
= '�(9";3 576 +98):

>

?2>@>;>

A@>@>;>

B9>@>;>

C;>@>;>

D >@>;>

E >@>;>

> D > ?�>;> ? D > A@>@>F�G HJI�K L�M
N�O�P
I�QSRTK G O�N�L�Q

U V
WXY Z
[\ V
]^_
^

`#a b&c c d�e)af;g c d#h.i)c d0j�k)d2k4l m�n g@o)phqi9c d0j�k f b)b)n;l m7n g@o)pr.s d�e)a�l m7n g9o9p

Figure 2: Comparison of Flux BitTorrent servers with
CTorrent (see Section 4.3).

�

� �

���

� �

� �

� ���

� � �

� ���

� � �

� � �

� �	� � ��� � �	� � ��� �
�	�
�
� ����� � �
���
��������� � �
��� �

� �
��
 !
"# �
$%
& %

' ()
*�+ , -) *
.	/ 0213' 4�5
6
, - 7 8	9 .	/ 021�' 4�5
' ()
*�+ , -) *
.	:;13' 4�5
6
, - 7 8	9 .	:<13'
4�5
' ()
*�+ , -) *
.
=<13' 4�5
6
, - 7 8	9 .
=21�' 4�5
' ()
*�+ , -) *
.	>�13' 4�5
6
, - 7 8	9 .	>?13' 4�5
' ()
*�+ , -) *
.	/�13' 4
6
, - 7 8	9 .	/�1�' 4

Figure 3: Predicted performance of the image server (de-
rived from a single-processor run) versus observed per-
formance for varying numbers of processors and load.

predicting and measuring the performance of server ap-
plications. The Flux system can generate discrete-event
simulators that predict server performance for synthetic
workloads and on different hardware and perform. It
can also perform path profiling to identify server per-
formance bottlenecks on a deployed system.

5.1 Performance Prediction

Predicting the performance of a server prior to deploy-
ment is important but often difficult. For example, per-
formance bottlenecks due to contention may not appear
during testing because the load placed on the system is
insufficient. In addition, system testing on a small-scale
system may not reveal problems that arise when the sys-
tem is deployed on an enterprise-scale multiprocessor.

In addition to generating executable server code, the
Flux code generator can transform a Flux program di-
rectly into a discrete-event simulator that models the per-
formance of the server. We use CSIM as the implemen-
tation language for the simulator [13].

In the simulator, each node acquires a shared CPU
resource for the period of time observed in the real
world. Increasing the number of nodes that can simulta-
neously acquire the CPU resource simulates the addition
of processors to the system. Each concurrency constraint
becomes a shared resource. Every node using a particu-
lar concurrency constraint acquires that resource for the
duration of the node’s execution. The simulator conser-
vatively treats session-level constraints as globals, and
reader constraints as writers.

It is important to note that this simulation does not
model disk or network resources. While this is a realis-
tic assumption for CPU-bound servers (such as dynamic
web-servers), other servers may require more complete
modeling.

The simulator can either use observed parameters
from a running system on a uniprocessor (per-node ex-
ecution times, source node inter-arrival times, and ob-
served branching probabilities), or the Flux programmer
can supply estimates for these parameters. The latter ap-
proach allows server performance to be estimated prior
to any actual implementation of the server logic.

To demonstrate that the generated simulations accu-
rately predict actual performance, we tested the image
server described in Section 2. To simulate load on the
machine, we made requests at increasingly small interar-
rival times. The images requested were selected using a
uniform random distribution. The image server is CPU-
bound, with each image taking a half second to compress
on average.

We first measured the performance of this server on
a 16-processor SunFire 6800, but with only a single
CPU enabled. We then used the observed node runtime
and branching probabilities to parameterize the gener-
ated CSIM simulator. We compare the predicted and ac-
tual performance of the server by making more proces-
sors available to the system. As Figure 3 shows, the
predicted results (dotted lines) and actual results (solid
lines) match closely, demonstrating the effectiveness of
the simulator at predicting performance.

5.2 Path Profiling
The Flux compiler optionally instruments generated
servers to simplify the identification of performance bot-
tlenecks. This profiling information takes the form of
“hot paths”, the most frequent or most time-consuming
paths in the server. Flux identifies these hot paths us-
ing the Ball-Larus path profiling algorithm [4]. Because
Flux graphs are acyclic, the Ball-Larus algorithm iden-
tifies each unique path through the server’s data-flow
graph.

The overhead of path profiling is low enough that
hot path information can be maintained by a production
server. Profiling adds just one arithmetic operation and
two high-resolution timer calls to each node. A perfor-
mance analyst can obtain path profiles from a running
Flux server by connecting to a dedicated socket.

To demonstrate the use of path profiling, we compiled
a version of the BitTorrent peer with profiling enabled.
For the experiments, we used a patched version of Linux
that supports per-thread time gathering. The BitTorrent
peer was load-tested with the same tester as in the per-
formance experiments. For profiling, we used loads of
25, 50, and 100 clients. All profiling information was
automatically generated from a running Flux server.

In BitTorrent, the most time-consuming path identi-
fied by Flux was, unsurprisingly, the file transfer path
(Listen → GetClients → SelectSockets →

CheckSockets → Message → ReadMessage →

HandleMessage → Request → MessageDone,
0.295 ms). However, the second most expensive path
was the path that finds no outstanding chunk requests
(Listen → GetClients → SelectSockets →

CheckSockets → ERROR, 0.016ms). While this path
is relatively cheap compared to the file transfer path, it
also turns out to be the most frequently executed path
(780,510 times, compared to 313,994 for the file transfer
path). Since this path accounts for 13% of BitTorrent’s
execution time, it is a reasonable candidate for optimiza-
tion efforts.

Hot paths not only aid understanding of server per-
formance characteristics but also identify places where
optimization would be most effective. Because profiling
information can be obtained from an operating server
and is linked directly to paths in the program graph, a
performance analyst can easily understand the perfor-
mance characteristics of deployed servers.

6 Developer Experience
In this section, we examine the experience of program-
mers implementing Flux applications. In particular, we
focus on the implementation of the Flux BitTorrent peer.

The Flux BitTorrent peer was implemented by two un-
dergraduate students in less than one week. The students
began with no knowledge of the technical details of the
BitTorrent protocol or the Flux language. The design of
the Flux program for the BitTorrent peer was entirely
their original work. The implementation of the func-
tional nodes in BitTorrent is loosely derived from the
CTorrent source code. The program graph for the Bit-
Torrent server is shown in Figure 4 at the end of this
document.

The students had a generally positive reaction to pro-
gramming in Flux. Primarily, they felt that organizing
the application into a Flux program graph prior to im-
plementation helped modularize their application design
and debug server data flow prior to programming. They
also found that the exposure of concurrency constraints
at the Flux language level allowed for easy identification
of the appropriate locations for mutual exclusion. Flux’s
immunity to deadlock and the simplicity of the concur-
rency constraints increased their confidence in the cor-
rectness of the resulting server.

Though this is only anecdotal evidence, this ex-
perience suggests that programmers can quickly gain
enough expertise in Flux to build reasonably complex
server applications.

7 Related Work
In this section, we discuss the most closely related work
to Flux.

Several previous domain-specific languages allow the
integration of off-the-shelf code into data flow graphs,

though for different domains. The Click modular router
is a domain-specific language for building network
routers out of existing C components [11]. The Flux
OSKit (no relation) is a domain-specific language for
building operating systems, with rich support for inte-
grating code implementing COM interfaces [8]. In ad-
dition to its linguistic and tool support for programming
server applications, Flux ensures deadlock-freedom by
enforcing a canonical lock ordering; this is not possible
in Click and OSKit because they permit cyclic program
graphs.

Flux is an example of a coordination language [9] that
combines existing code into a larger program in a data
flow setting. There have been numerous data flow lan-
guages proposed in the literature; Johnston et al.’s recent
survey includes over one hundred references [10]. Most
dataflow languages focus on extracting parallelism from
individual programs, while Flux describes parallelism
across multiple clients or event streams. Most of these
languages also operate at the level of fundamental oper-
ations rather than functional granularity, although some
medium-grained dataflow languages exist (e.g., CODE
2 [7]).

In recent years, there have been a number of pa-
pers proposing a wide variety of runtime systems, in-
cluding SEDA [16], Hood [6, 1], Capriccio [15], liba-
sync/mp [17], Fibers [2], and cohort scheduling [12].
Users of these runtimes are forced to implement a server
using a particular API. Once implemented, the server
logic is generally inextricably linked to the runtime. By
contrast, Flux programs are independent of any par-
ticular choice of runtime system, so advanced runtime
systems can be integrated straightforwardly into Flux’s
code generation pass.

8 Future Work

We plan to build on this work in several directions. First,
we are actively porting Flux to other architectures, espe-
cially multicore systems. We are also planning to extend
Flux to operate on clusters. Because concurrency con-
straints identify nodes that share state, we plan to use
these constraints to guide the placement of nodes across
a cluster to minimize communication.

To gain more experience with Flux, we are adding
further functionality to the web server. In particular,
we plan to build an Apache compatibility layer so we
can easily incorporate Apache modules. We also plan to
enhance the simulator framework to support per-session
constraints and to distinguish between reader and writer
constraints.

We plan to release the entire Flux system by publica-
tion time, via the Flux-based BitTorrent and web servers
described in this paper.

9 Acknowledgments
The authors would like to thank Gene Novark for help-
ing to design of the discrete event simulation generator,
and Vitaliy Lvin for assisting in experimental setup and
data gathering.

Notes

1. The name Flux comes from the Latin fluxus, past par-
ticiple of fluere = “flow”.

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe.

The data locality of work stealing. In SPAA ’00:
Proceedings of the twelfth annual ACM symposium
on Parallel algorithms and architectures, pages 1–
12, New York, NY, USA, 2000. ACM Press.

[2] A. Adya, J. Howell, M. Theimer, W. J. Bolosky,
and J. R. Douceur. Cooperative task management
without manual stack management. In Proceedings
of the General Track: 2002 USENIX Annual Tech-
nical Conference, pages 289–302, Berkeley, CA,
USA, 2002. USENIX Association.

[3] A. W. Appel, F. Flannery, and S. E. Hud-
son. CUP parser generator for Java.
http://www.cs.princeton.edu/
∼appel/modern/java/CUP/.

[4] T. Ball and J. R. Larus. Optimally profiling and
tracing programs. ACM Transactions on Program-
ming Languages and Systems, 16(4):1319–1360,
July 1994.

[5] E. Berk and C. S. Ananian. Jlex: A lex-
ical analyzer generator for Java. http:
//www.cs.princeton.edu/∼appel/
modern/java/JLex/.

[6] R. D. Blumofe and D. Papadopoulos. The per-
formance of work stealing in multiprogrammed
environments (extended abstract). In SIGMET-
RICS ’98/PERFORMANCE ’98: Proceedings of
the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of com-
puter systems, pages 266–267, New York, NY,
USA, 1998. ACM Press.

[7] J. C. Browne, E. D. Berger, and A. Dube. Com-
positional development of performance models
in POEMS. The International Journal of High
Performance Computing Applications, 14(4):283–
291, Winter 2000.

[8] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin,
and O. Shivers. The Flux OSKit: A substrate for

OS and language research. In 16th ACM Sym-
posium on Operating System Principles, October
1997.

[9] D. Gelernter and N. Carriero. Coordination lan-
guages and their significance. Commun. ACM,
35(2):96, 1992.

[10] W. M. Johnston, J. R. P. Hanna, and R. J. Mil-
lar. Advances in dataflow programming languages.
ACM Comput. Surv., 36(1):1–34, 2004.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(3):263–
297, August 2000.

[12] J. R. Larus and M. Parkes. Using cohort-
scheduling to enhance server performance. In Pro-
ceedings of the General Track: 2002 USENIX An-
nual Technical Conference, pages 103–114, Berke-
ley, CA, USA, 2002. USENIX Association.

[13] M. Software. The CSIM simulator. http://
www.mesquite.com.

[14] Standard Performance Evaluation Corporation.
SPECweb99. http://www.spec.org/osg/web99/.

[15] R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: scalable threads for in-
ternet services. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 268–281, New York, NY, USA,
2003. ACM Press.

[16] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable inter-
net services. In SOSP ’01: Proceedings of the
eighteenth ACM symposium on Operating systems
principles, pages 230–243, New York, NY, USA,
2001. ACM Press.

[17] N. Zeldovich, A. Yip, F. Dabek, R. Morris,
D. Mazières, and F. Kaashoek. Multiprocessor sup-
port for event-driven programs. In Proceedings
of the 2003 USENIX Annual Technical Conference
(USENIX ’03), San Antonio, Texas, June 2003.

TrackerTimer

CheckinWithTracker

SendRequestToTracker

GetTrackerResponse

Connect

SetupConnection

Handshake

SendBitfield

Bitfield

MessageDone

Message

ReadMessage

CompletePiece

VerifyPiece

,,piececomplete

SendRequest

Have

Piece

SendKeepAlives

Choke

Interested

SendHave

SendUninterested

Cancel

UpdateChokeList

PickChoked

Request

Unchoke

SendChokeUnchokeHandleMessage

,,bitfield,*,*

,,have,*,*

,,piece,*,*

,,choke,*,*

,,interested,*,*

,,cancel,*,*

,,request,*,*

,,unchoke,*,*

Uninterested

,,uninterested,*,*

ChokeTimerListen KeepAliveTimer

Figure 4: The Flux program graph for the example BitTorrent server.

