
INTRODUCTION AND OVERVIEW OF THE MULTICS SYSTEM

F. J. Corbat6
Massachusetts Institute oj Technology

Cambridge, Massachusetts
and

V. A. Vyssotsky
Bell Telephone Laboratories, Inc.

Murray Hill, New Jersey

Multics (Multiplexed Information and Comput
ing Service) is a comprehensive, general-purpose
programming system which is being developed as
a research project. The initial Multics system will
be implemented on the GE 645 computer. One
of the overall design goals is to create a com
puting system which is capable of nieeting almost
all of the present and near-future requirements of
a large computer utility. Such systems must run
continuously and reliably 7 days a week, 24 hours a
day in a way similar to telephone or power systems,
and must be capable of meeting wide service de
mands: from multiple man-machine interaction to
the sequential processing of absentee-user jobs;
from the use of the system with dedicated languages
and subsystems to the programming of the system
itself; and from centralized bulk card, tape, and
printer facilities to remotely located terminals. Such
information processing and communication systems

*Work reported herein was supported (in part) by Project
MAC, an M.LT. research program sponsored by the Ad
vanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Number Nonr-
4102(01).

185

are believed to be essential for the future growth of
computer use in business, in industry, in govern
ment and in scientific laboratories as well as stimu
lating applications which would be otherwise un
done.

Because the system must ultimately be compre
hensive and able to adapt to unknown future re
quirements, its framework must be general, and ca
pable of evolving with time. As brought out in the
compapion papers,1-5 this need for an evolutionary
framework influences and contributes to much of
the system "design and is a major reason why most
of the programming of the system will be done in
the PL/I language.6 Because the PL/I language is
largely machine-independent. (e.g. data descrip
tions refer to logical items, not physical words), the
system should also be. Specifically, it is hoped that
future hardware improvements will not make sys
tem and user programs obsolete and that implemen
tation of the entire system on other suitable com
puters will require only a moderate amount of addi
tional programming.

The present paper attempts to give a detailed dis-

From the collection of the Computer History Museum (www.computerhistory.org)

186 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

cussion of the design objectives as they relate to the
major areas of the system. Some of the highlights of
the subsequent papers are: a virtual memory system
for each' user involving two-dimensional address
ing with segmentation and paging; the dynamic
linking of program segment cross-references at
execution time to minimize system overhead; the
routine use' of sharable, recursive, pure procedure
programming within the system as the normal mode
of operation; the pooled use of multipte processors,
memory modules, and input-output controllers;
and multiprogramming of all resources and of mul
tiple users. Automatic management of the complex
of secondary storage media along with backup, re
trieval, and maintenance procedures for the stored
information will be' provided by a file system .. Fur
ther, it is expected that most of the software of the
system will be almost identical in form to user pro
grams. The system will incorporate automatic
page-turning for both user and system programs
alike.

INTRODUCTION

As computers have matured during the last two
decades from curiosities to calculating machines to
information processors, access to them by users has
not improved and in the case of most large ma
chines has retrogressed. Principally for economic
reasons, batch processing of computer jobs has been
developed and is currently practiced by most large
computer installations, and the concomitant isola
tion of the user from elementary cause-and-ef
fect retationships has been either reluctantly en
dured or rationalized. For several years a solution
has been proposed to the access problem.7

-9 This
solution, usually called time-sharing, is basically
the rapid time-division mUltiplexing of a central
processor unit among the jobs of several users, each
of which is on-line at a typewriter-like console.
The rapid switching of the processor unit among
user programs is, of course, nothing but a particutar
form of multiprogramming.

It is now abundantly clear that it is possible to
create a general-purpose time-shared multiaccess sys
tem on many contemporary computers (especially
after minor but basic modifications are made). Al
ready two major and extensive systems have been
created, one on the IBM 709410,11 and one on the
0-32 computer.12 In addition, there have been nu
merous smaller scale systems, the most notable being

on the DEC PDP-I, 13,14 the IBM 7094/5 the OE-
235/6 the DEC PDP_6,17 and the SDS 930,18 as well
as somewhat more limited versions of time-sharing on
the RW-400,19,20 and the CDC 021,21 the Johnniac,22
and the IBM 7040.23 As time goes on, surveys of
implemented systems are being made23,24 and "score
cards" are being kept. 25

The impetus for time-sharing first arose from
professional programmers because of their con
stant frustration in debugging programs at batch
processing installations. Thus, the original goal was
to time-share computers to allow simultaneous
access by several persons while giving to each of
them the illusion of having the whole machine at
his disposal. However, at Project MAC it has
turned out that simultaneous access to the machine,
while obviously necessary to the objective, has not
been the major ensuing benefit. 26 Rather, it is the
avail'ability at one's fingertips of facilities for edit
ing, compiling, debugging, and running in one con
tinuous interactive session that has had the greatest
effect on programming. Professional programmers
are encouraged to be more imaginative in their
work and to investigate new programming tech
niques and new problem approaches because of the
much smaller penalty for failure. But, the most sig
nificant effect that the MAC system has had on the
MIT community is seen in the achievements of per
sons for whom computers are tools for other objec
tives. The availability of the MAC system has not
only changed the way problems are attacked, but
also important research has been done that would
not have been undertaken otherwise. As a conse
quence the objective of the current and future de
velopment of time-sharing should extend way be
yond the improvement of computational facilities
with respect to traditionat computer applications.
Rather, it is the on-line use of computers for new
purposes and in new fields which should provide
the challenge and the motivation to the system de
signer. In other words, the major goal is to provide
suitable tools for what is currently being called ma
chine-aided cognition.

More specifically, the importance of a multiple
access system operated as a computer utility is that
it allows a vast enlargement of the scope of comput
er-based activities, which should in turn stimulate
a corresponding enrichment of many areas of our
society. Over two years of experience indicates that
continuous operation in a utility-like manner,

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION AND OVERVIEW OF THE MUL TICS SYSTEM 187

with flexible remote access, encourages users to
view the system as a thinking tool in their daily in
tellectual work. Mechanistically, the qualitative
change from the past results from the drastic im
provement in access time and convenience. Subjec
tively, the change lies in the user's ability to control
and affect interactively the course of a process
whether it involves numerical computation or ma
nipulation of symbols. Thus, parameter studies are
more intelligently guided; new problem-oriented
languages and subsystems are developed to exploit
the interactive capability; many complex analytical
problems, as in magnetohydrodynamics, which have
been too cumbersome to be tackted in the past are
now being successfully pursued; even more, new,
imaginative approaches to basic research have been
developed as in the decoding of protein structures.
These are examples taken from an academic envi
ronment; the effect of a multIple-access system on
business and industrial organizations can be expect
ed to be equally dramatic but experience in this
area is still very limited. It is with such new appli
cations in mind that the Multics system has been
developed. Not that the traditional uses of comput
ers are being disregarded. Rather, these needs are
viewed as a subset of the broader more demanding
requirements of the former.

To meet the above objectives, issues such as re
sponse time, convenience of manipulating data and
program files, ease of controUing processes during
execution and above all, protection of private files
and isolation of independent processes become of
critical importance. These issues demand departures
from traditional computer systems. While these de
partures are deemed to be desirable with respect to
traditional computer applications, they are essential
for rapid man-machine interaction.

SYSTEM REQUIREMENTS

In the early days of computer design, there was
the concept of a single program on which a single
processor computed for long periods of time with
almost no interaction with the outside world. Today
such a view is considered incomptete; for the effec
tive boundaries of an information processing system
extend beyond the processor, beyond the card read
er and printer and even beyond the typing of input
and the reading of output. In fact they encompass
as well what several hundred persons are trying to
accomplish. To better understand the effect of this

broadened design scope, it is helpful to examine
several phenomena characteristic of large service
oriented computer installations.

First, there are incentives for any organization to
have the biggest possible computer system that it
can afford. It is usually only on the biggest comput
ers that there are the elaborate programming sys
tems, compilers and features which make a comput
er "powerful." This comes about partly because it is
more difficult to prepare system programs for
smaller computers when limited by speed or memo
ry size and partly because the larger systems involve
more persons as manufacturers, managers, and users
and hence permit more attention to be given to the
system programs. Moreover, by combining re
sources in a single computer system, rather than in
several, bulk economies and therefore lower com
puting costs can be achieved. Finally, as a practical
matter, considerations of floor space, management
efficiency and operating personnel provide a strong
incentive for centralizing computer facilities in a
single targe installation.

Second, the capacity of a contemporary computer
installation, regardless of the sector of applications
it serves, must be capable of growing to meet a con
tinuously increasing demand. A doubling of de
mand every two years fs not uncommon.27 Multi
ple-access computers promise to accelerate this
growth further since they allow a man-machine
interaction rate which is faster by at least two or
ders of magnitude. Present indications are that mul
tiple-access systems for only a few hundred simul
taneous users can generate a demand for computa
tion exceeding the capacity of the fastest existing
singte-processor system. Since the speed of light,
the physical sizes of computer components, and the
speeds of memories are intrinsic limitations on the
speed of any single processor, it is clear that sys
tems with mUltiple processors and mUltiple memory
units are needed to provide greater capacity. This is
not to say that fast processor units are undesirable,
but that extreme system complexity to enhance this
single parameter among many appears neither wise
nor economic.

Third, computers are no longer a luxury used
when and if available, but primary working tools in
business, government, and research laboratories.
The more reliable computers become, the more
their availability is depended upon. A system struc
ture including pools of functionally identical units _

From the collection of the Computer History Museum (www.computerhistory.org)

188 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

(processors, memory modules, input/output con
trollers, etc.) can provide continuous service with
out significant interruption for equipment mainte
nance, as well as provide growth capability through
the addition of appropriate units.

Fourth, user programs, especially in a time
sharing system, interact frequently with secondary
storage devices and terminals. This communication
traffic produces a need for multiprogramming to
avoid wasting main processor time while an in
put/ output request is being completed. It is impor
tant to note that an individual user is ordinarily in
capable of doing an adequate job of multiprogram
ming since his program lacks proper balance, and
he probably lacks the necessary dynamic informa
tion, ingenuity or patience.

Finally, as noted earlier, the value of a time
sharing system lies not only in providing, in effect,
a private computer to a number of people simulta
neously, but, above all, in the services that the sys
tem places at the fingertips of the users. Moreover,
the effectiveness of a system increases as user-de
veloped facilities are shared by other users. This
increased effectiveness because of sharing is due not
only to the reduced demands for core and secondary
memory but also to the cross-fertilization of user
ideas. Thus a major goal of the present effort is to
provide multiple access to a growing and potentially
vast structure of shared data and shared program
procedures. In fact, the achievement of multiple ac
cess to the computer processors should be viewed as
but a necessary subgoal of this broader objective.
Thus the primary and secondary memories where
programs reside play a central role in the hardware
organization and the presence of independent com
munication paths between memories, processors and
terminals is of critical importance.

From the above it can be seen that the system
requirements of a computer installation are not for
a single program' on a single computer, but rather
for a large system of many components serving a
community of users. Moreover, each user of the sys
tem asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into se
quences of processor and input/output tasks. It is
out of this seemingly chaotic, random environment
that one arrives at a utility-like view. For instead
of chaos, one can average over the different user
requests to achieve high utilization of all resources.
The task of multiprogramming required to do this

need only be organized once in a central supervisor
program. Each user thus enjoys the benefit of effi
ciency without having to average the demands of his
own particular program.

With the above view of computer use, where
tasks start and stop every few milliseconds and
where the memory requirements of tasks grow and
shrink, it is apparent that one of the major jobs of
the supervisor program (i.e., "monitor," "execu
tive," etc.) is the allocation and scheduling of com
puter resources. The general strategy is clear. Each
user's job is subdivided into tasks, usually as the
job proceeds, each of which is placed in an appro
priate queue (i.e., for a processor or an input/output
controller). Processors or input/ output controllers
are in turn assigned new tasks as they either com
plete or are removed from old tasks. All processors
are treated equivalently in an anonymous pool and
are assigned to tasks as needed; in particular, the
supervisor does not have a special processor. Fur
ther, processors can be added or deleted without
significant change in either the user or system pro
grams. Similarly, input/output controllers are di
rected from queues independently of any particular
processor. Again, as with the processors, one can
add or delete input! output capacity according to
system load without significant reprogramming
required.

THE MULTICS SYSTEM

The overall design goal of the Multics system is
to create a computing system which is capable of
comprehensively meeting almost all of the present
and near-future requirements of a large computer
service installation. It is not expected that the ini
tial system, although useful, will reach the objec
tive; rather the system will evolve with time in a
general framework which permits continual growth
to meet unknown future requirements. The use of
the PL/I language will allow major system software
changes to be developed on a schedule separate
from that of hardware changes. Since most organi
zations can no longer afford to overlap old and new
equipment during changes, and since software de
velopment is at best difficult to schedule, this rela
tive machine-independence should be a major as
set.

It . is expected that the Multics system will be
published when it is operating substantially and will
therefore be available for implementation on any

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION AND OVERVIEW OF THE MUL TICS SYSTEM 189

equipment with suitable characteristics. Such publi
cation is desirable for two reasons: First, the sys
tem should withstand public scrutiny and criticism
volunteered by interested readers; second, in an age
of increasing complexity, it is an obligation to pres
ent and future system designers to make the inner
operating system as lucid as possible so as to reveal
the basic system issues.

The accompanying papers describe in some detail
how the Multics system will meet its objectives.
However, it is useful, in establishing an overview, to
touch on the highlights and especially on the design
motivation.

DESIGN FEATURES OF THE HARDWARE

The Multics system objectives required equip
ment features that were not present in any existing
computer. Consequently it was necessary to develop
for the Multics system the GE 645 computer. The
GE 635 computer was selected for modification to
the GE 645 inasmuch as it already satisfied many
of the crucial requirements. In particular, it was de
signed to have multiprocessors, multiple memory
modules, and multiple input/ output controllers.
Thus, the requirements of modular construction for
reliability and for ease of growth were amply met.
The communication pattern is particularly straight
forward since there are no physical paths between
the processors and the input/ output equipment;
rather all communication is done by means of
"mailboxes" in the memory modules and by corre
sponding interrupts. Furthermore, major modules of
the system communicate on an asynchronous basis;
thus, any single module can be upgraded without
any changes to the other modules. This latter prop
erty is useful in that one of the ways in which sys
tem capacity (and cost) may be regulated is by
changing either the speed or number of memory
modules. Of course further adjustment of system
capacity is possible by varying the number of proc
essor units or the configuration of drum and disk
equipment. In any case, one obtains the important
simplification that a single supervisor program can
operate without substantial change on any config
uration of equipment.

Figure 1 illustrates the equipment configuration
of a typical Multics system. All central processors
(CPU) and Generalized Input/Output ControUers
(GIOC) have communication paths with each of
the memory modules. When necessary for mainte-

SYSTEM
CONSOLE
PRINTER
READER
PUNCH

TO REMOTE
TERMINALS

TO MAGNETIC TAPES

SYSTEM
CONSOLE
PRINTER
READER
PUNCH

TO REMOTE
TERMINALS

Figure 1. Example of Multics system configuration.

nance or test purposes, the system can be parti
tioned into two independent systems (although each
of the drum, disk and tapes must belong to one of
the two systems) . The remote terminals can dial
either of the two GIOC through the private branch
exchange, which is not shown in the figure.

The most novel feature in the GE 645 is in the
instruction addressing. A two-dimensional addressing
system has been incorporated which allows each user
to write programs as though there is a virtual memory
system of large size. This system is organized into
program segments (i.e., regions) each of which con
tains an ordered sequence of words· with a conven
tionallinear address. These segments, which can vary
in length during execution, are paged at the discre
tion of the supervisor p'rogram with either 64- or
1,024-word pages. This dual page size allows the
supervisor program to use more effective strategies
in the handling of multiple users. Paging, first intro
duced on the Atlas computer,28 allows flexible dy
namic memory allocation techniques as well as the
sensible implementation of a one-level store system.
To the user in the Multics system, page addressing
is invisible; rather, it is the segments which are ex
plicitly known to him and to which he is able to refer
symbolically in his programs. These notions were
first suggested by Holt,29 further developed by Den-

From the collection of the Computer History Museum (www.computerhistory.org)

190 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

nis,3o,31 Dennis and Glaser,32 Forgie,33 and oth
ers.34,35 The value of segmentation and paging has
since been widely discussed during the past year and
has gained broader acceptance.36-39 The explicit hard
ware implementation details of segmentation and pag
ing for the Multics system are discussed in the com
panion paper by Glaser, Couleur and Oliver.l

Because two-dimensional addressing is rather
new, it is useful to clarify the reasons for it.

The major reasons for segments are:

1. The user is able to program in a two-di
mensional virtual memory system. Thus,
any single segment can grow (or shrink)
during execution (e.g., in the GE 645,
each user may have up to a quarter million
segments, each including up to a quarter
million words).

2. The user can, by merely specifying a start
ing point in a segment, operate a program
implicitly without prior planning of the
segments needed or of the storage require
ments. For example, if an error diagnostic
segment is unexpectedly called for, it is
brought in automatically by the supervisor;
it is never brought in unless needed. Simi
larly, elaborate computations which branch
into many different segments in a data
dependent way use segments only as needed.

3. The largest amount of code which must be
bound together as a solid block is a single
segment. Since binding pieces of code to
gether (sometimes called "loading") is a
process similar to assembling or compiling,
the advantage of being able to prepare an
arbitrarily large program as a series of lim
ited-overhead segment bindings is signif
icant. The saving in overhead is compara
ble to that in FORTRAN when one uses
multiple subprograms instead of a single
large combined block of statements. If the
combined block is used, not only does the
compilation process become particularly
cumbersome but the eradicati'on of pro
gramming errors in all the different sec
tions requires more compilations.

4. Program segments appear to be the only
reasonable way to permit pure procedures
and data bases to be shared among several
users simultaneously. Pure procedure pro
grams, by definition, do not modify them-

selves. Therefore a supervisor program can
minimize the core memory requirements of
a collection of user programs by supplying
only one copy of a jointly used pure proce
dure. Nearly all of the Multics system as
well as most of the user programs will be
written in this form. One consequence is
that there will be no clearcut demarcation
between user programs and system pro
grams; instead the demarcation will depend .
largely on the responsibility for mainte
nance.

Pages are a separate feature from segments and
have further and distinct advantages.

1. The use of paged memory allows flexible
techniques for dynamic storage manage
ment without the overhead of moving pro
grams back and forth in the primary mem
ory. This reduced overhead is important in
responsive time-shared sys.tems where there
is heavy traffic between primary and sec
ondary memories.

2. The mechanism of paging, when properly
implemented, al'lows the operation of in
completely loaded programs; the supervisor
need only retain in main memory the more
active pages, thus making more effective
use of high-speed storage. Whenever a
reference to a missing page occurs, the su
pervisor must interrupt the program, fetch
the missing page, and reinitiate the pro
gram without loss of information.

A critical feature in the segment and paging
hardware is the descriptor bit mechanism which
controls the access of processors to the memory.
These bits essentially allow hardware "fire-walls"
to be established within the programming system
which assist the isolation of hardware or software
difficulties. Besides controlling the usual properties
such as read-only, data-only, etc., one descriptor
bit allows a segment to be declared "execute
only." The presence of this bit allows procedures. to
be transferred to and executed blJt never read by
user programs. This feature will be of interest to
commercial service bureaus, and in application
areas where privacy of program procedure is essen
tial (e.g., a class-room grading program). Anoth
er property of the descriptors is that they allow
most of the supervisor modules to be written with

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION AND OVERVIEW OF THE MUL TICS SYSTEM 191

the same descriptors as user programs; most system
programs thereby do not have access to privil'eged
instructions, the inadvertent use of which can cause
drastic machine misbehavior. This feature is espe
cially pertinent when it is recognized that time
sharing systems are real-time systems with beha
vior which it is difficult to duplicate or repeat.
Consequently, all possible compartments and pro
tection mechanisms that one can have are of value.

For effective operation of the Multics system, a
drum with a high transfer rate is needed. The drum
provided with the GE 645 meets the requirement
and allows convenient and efficient management of
a high rate of input/output requests. In particular,
requests are organized by the supervisor program
into queues in core memory and are fetched from
these queues by the drum controller asynchronously
of the processors. Because of the queues and be
cause drum record sizes are commensurate with
core memory page sizes, it is straightforward to
program for continuous input/ output transmission
without latency delays.

Disk input/ output requests are also organized
into queues and are fetched from core memory by
the generalized input/output controller. This con
troller is discussed in more detail in the paper by
Ossanna et al. 4 Again, because the supervisor is
contending with a statistical mix of user and super
visor requests for information to and from disk, it
is expected that latency delays between requests will
be negligible. Because the transmission capacity to
the disk is large, system performance is expected to
be unhampered by input/output bottlenecks.

Since the Multics system will be used as an infor
mation processor in a wide range of applications, it
is important that a readable character set be used.
The standard character set will be the recently pro
posed ASCII code which has 128 codes and in
cludes upper and· lower case letters. 40 This set,
which contains 95 printing graphics, can be reason
ably represented on contemporary input/ output
consoles. Line printers capable of printing the 95
graphics will be standard equipment.

DESIGN FEATURES OF THE SOFTWARE

An important aspect of the software is the sub
routine and linkage conventions which are associat
ed with the use of the segment and paging hard
ware. The following features are incorporated.

1. Any segment has to know another segment
only by symbolic name. intersegment bind
ing occurs dynamically as needed during
program execution. Intersegment binding is
automatic (i.e., not explicitly programmed
by the user) and the mechanism operates
at high efficiency after the first binding
occurs.

2. Similarly, a segment is able to reference
symbolically a location within another seg
ment. This reference binds dynamically and
automatically; after binding occurs the first
time, program execution is at full speed.

3. It is straightforward for procedures to be
pure procedures, capable of being shared
by several users.

4. Similarly, it is straightforward to write re
cursive procedures (i.e., subroutines capable
of calling on themselves either directly or
indirectly by a circular chain of calls) .

5. The general conventions are such that the
call, save, and return macros used to link
one independently compiled procedure to
another do not depend on whether or not
the two procedures are in the same seg
ment.

6. Each user is provided with a private soft
ware "stack" for temporary storage within
each subroutine. Of course, any user can
choose to ignore this storage mechanism,
but it is available and does. not have to be
added as an afterthought by a subsystem
qesigner.

In addition, there is basically only one kind of
calling sequence, thus avoiding much confusion.
System programming is done with the same facili
ties, tools, etc., available to the ordinary user, and
system programs do not have to be written with
special forethought. It is anticipated that the system
will be open-ended and will be largely created by
the users themselves; many of the useful languages
and subsystems will undoubtedly be contributed
without solicitation. For this reason supervisor and
user programs are constructed with similar form,
and processes such as paging do not distinguish be
tween user and supervisor programs. (Of course, a
few key pieces of the supervisor are locked in core
memory.) Thus there is no intrinsic limit on the
size of the supervisor program nor on the complexi
ty or the features which it may have. The avoidance

From the collection of the Computer History Museum (www.computerhistory.org)

192 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

of a size limitation will be of major value as the
system services grow.

It is important to recognize that the average user
of the system will see no part of the segmentation
and paging complexity described in the paper by
Glaser et al. Instead he win see a virtual machine
with many system characteristics which are conven
ient to him for writing either single programs or
whole subsystems. As a subsystem writer he must
be able to make the computer appear to have any
particular form ranging from an airline reservations
system, to an inventory control system, from a man
agement gaming machine, to even a "FORTRAN
machine" if so desired. There are· no particular re
strictions on the kinds of new systems or languages
which can be imbedded.

Further features which should ultimately appear
in the system are:

1. the ability to have one process spawn other
processes which run asynchronously on
several processors (thus improving the
real-time response of the overall process);

2. the ability for data bases to be shared
among simultaneously operating programs.

In addition the system will include all the major
features of the present Project MAC system such
as interconsole messages and macro-commands.
The latter allow users to concatenate sequences of
console-issued commands as short programs there
by forming more elaborate commands which can be
used with a single name and parameter call.

Another feature of the system is that it will include
batch processing facilities· as a subset. In particular,
users will start. processes which may have n terminals
attached, with n = 1 for individual man-machine inter
action, and n = 0 for running an absentee-user pro
gram, the latter case corresponding to batch process
ing. A user will be able to transform conveniently
a process back and forth between the zero and one
terminal states. In addition, for the purposes of teach
ing machines and gaming experiments, it will be pos
sible to attach to a process an arbitrary number of
additional terminals.

The supervisor will, of course, do scheduling and
charging for the use of resources. Scheduling poli
cies will be similar but more general than those cur
rently in the MAC system; for batch processing,
jobs should be scheduled so that a user will be able
to obtain a quotation of maximum completion time.

The time accounting done by the system will be ac
curate to a few microseconds. In particular, the sys
tem will "fight back" by charging for exactly what
equipment is used (or others are prevented from
using). In this way, orderly system expansion will
be possible since the particular equipment charges
which are collected will always allow further acqui
sition of equipment. In addition the system will in
corporate hierarchal control of resource allocations
and accounting authorizations. A project manager
will be able to give computing budgets to group
leaders who in turn will be able to delegate flexibly
and straightforwardly sub-budgets to team leaders,
etc. An important aspect of this resource allocation
and budgeting is the ability of any member of the
hierarchy to reallocate flexibly those resources over
which he has control. With control of the resource
allocation and administrative accounting decentral
ized, the operation of systems which serve hundreds
of persons becomes manageable.

In a similar way, system programming is decen
tralized. For example, the maintenance of the sys
tem might not be entirely under the control of a
single group; instead particular translators might be
delegated to independent subgroups of system pro
grammers. This isolation and distribution of
responsibility is considered mandatory for the
growth of large, effective systems. Hierarchal and
decentralized accounting and system programming
is made possible by a highly organized file system
which controls the access rights to the secondary
memory of the system and thus to the file copies of
the vital procedures and data of the system.

DESIGN CONSIDERATIONS IN THE
FILE SYSTEM

The file system is a key part of a time-sharing or
multiplexed. system. It is a memory system which
gives the users and the supervisor alike the illusion
of maintaining a private set of segments or files of
information for an indefinite period of time. This
retention is handled by automatic mechanisms op
erated by the supervisor and is independent of the
complex of secondary storage devices of different
capacity and access. A scheme, such as is described
in the paper by Daley and Neumann, 3 where all files
of information are referred to by symbolic name
and not by address, allows changes in the secondary
storage complex for reasons either of reliability or
capacity. In particular, the user is never responsible

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION AND OVERVIEW OF THE MUL TICS SYSTEM 193

for having to organize the movement of information
within the secondary storage complex. Instead the
file system has a strategy for arranging for high
speed access to recently used material.

Of considerable concern is the issue of privacy.
Experience has shown that privacy and security are
sensitive issues in a multi-user system where termi
nals are anonymously remote. For this reason, each
user's fil'es can be arranged to be completely private
to him. In addition, a user may arrange to allow
others to access his files selectively on a linking ba
sis. The linking mechanism permits control over the
degree of access one allows (e.g., a user may wish a
file to be read but not written). The file system al
lows files to be simultaneously read but automati
cally interlocks file writing.

The file system is designed with the presumption
that there will be mishaps, so that an automatic file
backup mechanism is provided. The backup proce
dures must be prepared for contingencies ranging
from a dropped bit on a magnetic tape to a fire in
the computer room.

Specifically, the following contingencies are pro
vided for:

1. A user may discover that he has acciden
tally deleted a recent file and may wish to
recover it.

2. Ther~ may be a specific system mishap
which causes a particular file to be no
longer readable for some "inexplicable"
reason.

3. There may be a total mishap. For example,
the disk-memory read heads may irrever
sibly score the magnetic surfaces so that all
disk-stored information is destroyed.

The general backup mechanism is provided by
the system rather than the individual user, for the
more reliable the system becomes, the more the user
is unable to justify the overhead (or bother) of
trying to arrange for the unlikely contingency of a
mishap. Thus an individual user needs insurance,
and, in fact, this is what is provided.

DESIGN CONSIDERATIONS IN THE
COMMUNICATION AND INPUT/OUTPUT
EQUIPMENT

A design feature of the system is that users can
view most input/output devices uniformly. Thus a
program can read from either a terminal or a disk

file, or output can be sent either to a file or to a
punch, a typewriter, or a printer. In particular, the
user of the system does not have to rewrite his pro
gram to change these assignments from day to day
or from use to use. The. symmetric use of equip
ment is, of course, highly desirable and makes for
greater simplicity and flexibility.

A typical configuration of the Multics system
will contain batch processing input/output devices
such as card readers, punches and printers and these
normally will be centrally located at the main com
puting installation. For remote users there will be
terminals such as the Model 37 Teletype which uses
the revised ASCII code with upper and lower case
letters. The Model 37 Teletype also can operate on
the TWX network of the Bell System. It will there
fore be possible for many of the 60,000 TWX sub
scribers to be, if authorized, users of a Multics in
stallation. An additional standard terminal for the
Multics system will be a modified version of the
IBM 1052 console. This unit (and all other termi
nal devices which do not have the ASCII character
set) will have software escape conventions, defined
to allow unambiguous input or output of the com
plete ASCII character set. The escape conventions
are general and allow even primitive devices (in a
graphic sense) to communicate with the system.
The IBM 1052 terminals, which basically use the
Selectric typewriter mechanism, are operated with a
special typeball, prepared for Project MAC as a
compromise subset of the ASCII graphics.

For those users who wish to have remotely locat
ed satellite substations capable of punching and
reading cards and line printing, there are a variety
of options available. Because the design of the Gen
eral Input/Output Controller is relatively flexible, it
is possible to use the GE 115, the Univac 1004, or
virtually any other similar subcomputer as a termi
nal, provided one is prepared to implement the
necessary interface program modules within a Mul
tics system. At present none of these terminals are
completely satisfactory since the full 128-code re
vised ASCII character set is not standard and exces
sive use of the software escape mechanism is re
quired for printing.

In general, the area of remote terminal equip
ment is considered to be in an early state of devel
opment. Equipment innovations are expected, as it
becomes evident that systems are capable of sup
porting their use. Terminals with graphical in-

From the collection of the Computer History Museum (www.computerhistory.org)

194 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

put/ output are highly desirable although at present
costly. The initial approach of the Multics system
will be such that there will be no standard graphical
input/ output terminal although several special proj
ects are being attempted. The system viewpoint ini
tial'ly will be that all graphical input/output will be
with small, dedicated computers capable of han
dling the immediate interrupts. These small com
puters may multiplex a few terminals and in turn
appear to be not too demanding to the main system.
Thus the main system interrupt load will not be
come excessive. In a similar way the need for
real-time instrumentation such as in monitoring
experimental apparatus is expected to be handled
initially on a nonstandard basis. The philosophy is
the same as with graphical input/output, namely, to
employ small, dedicated computers for handling the
real-time interrupts so as to draw upon the main
system for major processing of information in a
more leisurely way.

GENERAL CONSIDERATIONS

It is expected that the ultimate limitation on the
exploitation of the Multics system will be the
knowledge which the user has of it. As a conse
quence, documentation of what the system contains
is considered to be one of the most important as
pects of the system. For this purpose a technique
has been developed wherein the main system ref
erence manual is to be maintained on-line in a
fashion similar to what is currently being done at
Project MAC. This allows any user of the system to
obtain a current table of contents with changes list
ed in reverse chronological order. Thereby he can
keep abreast of all system changes. Because the
manual text is on-line, one is able to obtain im
mediate access to the latest changes at any hour or
at any terminal. The on-line storage of the text
also lets the system documentation group, by using
appropriate editing programs, make global revisions
whenever necessary. Of course, the distribution of
manual revisions will still be handled in the ordi
nary way in that revised manual sections will be
available at document rooms. Furthermore, it
should be clear that there is no substitute for a good
editor maintaining discipline over the documenta
tion and for intelligent selectivity in the reference
material. A documentation technique such as the
one given here is believed to be an absolute necessi
ty when users of the system no longer visit a com-

putation center in the course of their daily activi
ties. The user who is 200 miles away from the com
puter installation should have nearly the saine
knowledge about the system as the one who is 20
feet away.

Another area of consideration is that of compati
bility with batch processing. In the Multics system
for the GE 645, it will be possible to use simulta
neously, but independently, the GECOS batch
processing system; user jobs operating under GE
COS should behave exactly as they do on the GE
625 or GE 635 computers. Effort will be made to
allow the GECOS user tq change conven.iently to
the Multics frame of operation but there will be no
particular attempt made for compatibility between
the two systems of basically different design. A user
of the GECOS system may continue to use the GE
COS system until he is prepared to make a change
to the Multics system at his own place, time, and
choosing. This, of course, relieves a manager in
stalling a Multics system of the transient effect of
several hundred persons changing their computing
habits in one day and thus allows distribution of
the normal dissatisfaction that arises under such
circumstances.

One of the inevitable questions asked of a multi
ple-access system is what capacity it will have for
simultaneous on-line users. The answer, of course,
is highly dependent upon what the users are doing.
Clearly, if they are requesting virtually nothing, one
can have a nearly infinite number of terminals.
Conversely, if one person wishes, for a single prob
lem, system resources which equal the entire com
puting system, it is conceivable, if the scheduling
policy allows it, that there can be only one terminal
attached to the system. If one assumes that the ser
vice requirements are similar to those which have
been experienced at Project MAC, then on the basis
of simple scaling of processor and memory speed it
is expected that the system will be able to serve
simultaneously a few hundred users. But it is hazard
ous to predict any firm numbers; rather the per
tinent parameters in a system of this type will al
ways be the cost-performance figures. Perform
ance, of course, is somewhat subjective, but the is
sues are not those of memory speed, processor
speed or input/ output speed. Instead the user
should judge a system by the quality and variety of
services, the response times, the reliability, the
overall ease of understanding the system, and the

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION AND OVERVIEW OF THE MUL TICS SYSTEM 195

performance with respect to the interface of the sys
tem which he uses. For example, pertinent ques
tions for a PL/I user to ask are how costly, on the
average, the translator is per statement, how easy it
is to debug the language, and how efficiently the
object code produced by the translator runs. Here,
the object code referred to is that for an entire prob
lem and not just for isolated "kernels"; the efficiency
refers to the total resource drain required to execute
the problem and thereby includes the input/output
demands as well.

CONCLUSIONS

The present plans for the Multics system are not
unattainable. However, it is presumptuous to think
that the initial system can successfully meet all the
requirements that have been set. The system will
evolve under the influence of the users and their
activities for a long time and in directions which
are hard to predict at this time. Experience indi
cates that the availability of on-line terminals
drastically changes user habits and these changes in
turn suggest changes and additions to the system
itself.

It is expected that most of the system additions
will come from the users themselves and the system
will eventually become the repository of the proce
dure and data knowledge of the community. The
Multics system win undoubtedly also open up large
classes of new uses not only in science and engi
neering but also in other areas such as business and
education. Just as introduction of higher-level
programming languages, such as FORTRAN, in
creased by an order of magnitude the number of
persons using computers, multiple-access systems
operated as a utility will substantially extend the
exploitation of information processing systems to
the point of having significant social consequences.
Such social issues are explored in a companion pa
per by David and Fano.5

REFERENCES

1. E. L. Glaser, J. F. Couleur and G. A. Oliver,
"System Design for a Computer for Time-Sharing
Application," this volume.

2. V. A. Vyssotsky, F. J. Corbat6 and R. M.
Graham, "Structure of the Multics Supervisor," this
volume.

3. R. C. Daley and P. G. Neumann, "A Gen-

eral Purpose Fil'e System for Secondary Storage,"
this volume.

4. J. F. Ossanna, L. E. Mikus and S. D. Dun
ten, "Communications and Input/Output Switching
in a Multiplex Computing System," this volume.

5. E. E. David, Jr., and R. M. Fano, "Some
Thoughts About the Social Implications of Accessi
ble Computing," this volume.

6. "IBM Operating System/360, PL/I: Lan
guage Specifications," File No. S360-29, Form
C28-6571-1, LB.M. Corp.

7. C. Strachey, "Time Sharing in Large Fast
Computers," Proceedings of the International COl,

ference on Information Processing, UNESCO, June
1959, paper B. 2. 19.

8. J. C. R. Licklider, "Man-Computer Sym
biosis," IRE Transactions on Human Factors in
Electronics, vol. HFE-1, no. 1, pp. 4-11 (Mar.
1960).

9. J. McCarthy, "Time-Sharing Computer
Systems," Management and the Computer of the
Future (M. Greenberger, ed.), M.LT. Press, Cam
bridge, Mass, 1962, pp. 221-236.

10. F. J. Corbat6, M. M. Daggett and R. C. Dal
ey, "An Experimental Time-Sharing System," Pro
ceedings of the Spring Joint Computer Conference,
21, Spartan Books, Baltimore, 1962, pp. 335-344.

11. F. J. Corbat6 et aI, The Compatible Time
Sharing System: A Programmer's Guide, 1st ed.,
M.LT. Press, Cambridge, Mass., 1963.

12. J. Schwartz, A General Purpose Time
Sharing System, Proceedings of the Spring Joint
Computer Conference, 25, Spartan Books, Wash
ington, D.C., 1964, pp. 397-411.

13. J. B. Dennis, "A Multiuser Computation Fa
cility for Education and Research," Comm. ACM,
vol. 7, pp. 521-529 (Sept. 1964).

14. S. Boilen et aI, "A Time-Sharing Debug
ging System for a Small Computer," Proceedings of
the Spring Joint Computer Conference, 23, Spartan
Books, Baltimore, 1963, pp. 51-58.

15. H. A. Kinslow, "The Time-Sharing Moni
tor System," Proceedings of the Fall Joint Comput
er Conference, 26, Spartan Books, Washington, D.C.,
] 964, pp. 443-454.

16. "The Dartmouth Time-Sharing System,"
Computation Center, Dartmouth College, Oct. 19,
1964.

17. "PDP-6 Time-Sharing Software," Form
F-61B, Digital Equipment Corp., Maynard, Mass.

From the collection of the Computer History Museum (www.computerhistory.org)

196 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

18. W. W. Lichtenberger and M. W. Pirtle, "A
Facility for Experimentation in Man-Machine In
teraction," this volume.

19. G. J. Culler and R. W. Huff, "Solution of
Nonlinear Integral Equations Using On-line Com
puter· Control," Proceedings of the Spring Joint
Computer Conference, 21, Spartan Books, Balti
more, 1962, pp. 129-138.

20. G. J. Culler and B. D. Fried, "The TRW
Two-Station, On-Line Scientific Computer:
General Description," Computer Augmentation of
Human Reasoning, Washington, D. C., June 1964,
Spartan Books, Washington, D.C., 1965.

21. "Carnegie Institute of TechnologyComputa
tion Center User's Manual."

22. J. C. Shaw, "JOSS: A Designer's View of an
Experimental On-Line Computing System," Pro
ceedings of the Fall Joint Computer Conference,
26, Spartan Books, Washington, D.C., 1964, pp.
455-464.

23. T. M. Dunn and J. H. Morrissey, "Remote
Computing-Ari Experimental System," Part 1; J. M.
Keller, E. C. Strum and G. H. Yang, Part 2, Pro
ceedings of the Spring Joint Computer Conference,
25, Spartan Books, Washington, D.C., 1964, pp.
413-443.

24. J. I. Schwartz, "Observations on Time
Shared Systems," ACM Proceedings of the 20th
National Conference, p. 525 (1965).

25. "Time-Sharing System Scorecard, No. 1
(Spring 1965) ," Computer Research Corp., 747
Pleasant St., Belmont, Mass.

26. R. M. Fano, "The MAC System: The Com
puter Utility Approach," IEEE Spectrum, vol. 2,
pp. 56-64 (Jan. 1965).

27. P. M. Morse, "Computers and Electronic
Data Processing," Industrial Research, vol. 6, no.
6, p. 62 (June 1964).

28. T. Kilburn, "One-Level Storage System,"
IRE Transactions on Electronic Computers, vol.
EC-11, no. 2 (Apr. 1962).

29. A. W. Holt, "Program Organization and
Record Keeping for Dynamic Storage Allocation,"
Comm. ACM, vol. 4, pp. 422-431 (Oct. 1961).

30. J. B. Dennis, "Program Structure in a Mul
ti-Access Computer," Tech. Rep. No. MAC
TR-ll, Project MAC, M.I.T., Cambridge, Mass.
(1964) .

31. J. B. Dennis, "Segmentation and the Design
of MUltiprogrammed Computer Systems," IEEE In
ternational Convention Record, Institute of Electrical
and Electronic Engineers, New York, 1965, Part 3,
pp.214-225.

32. J. B. Dennis and E. L. Glaser, "The Struc
ture of On-Line Information Processing Systems,"
Information Systems Sciences: Proceedings of the
Second Congress, Spartan Books, Washington, D.C.,
1965, pp. 1-11.

33. J. W. Forgie, "A Time- and Memory
Sharing Executive Program for Quick-Response
On-Line Applications," this volume.

34. M. N. Greenfield, "Fact Segmentation," Pro
ceedings of the Spring Joint Computer Conference,
21, Spartan Books, Baltimore, 1962, pp. 307-315.

35. "The Descriptor," Burroughs Corp., 1961.
36. "Univ. of Mich. Orders IBM Sharing Sys

tem," EDP Weekly, vol. 6, no. 5, p. 9 (May 24,
1965).

37. B. W. Arden et aI, "Program and Addressing
Structure in a Time-Sharing Environment" (sub
mitted for publication).

38. Computing Report for the Scientist and En
gineer, Data Processing Division, LB.M. Corp., vol.
1, no. 1, p. 8 (May 1965).

39. W. T. Comfort, "A Computing System De
sign for User Service," this volume.

40. "Proposed Revised American Standard Code
for Information Interchange," Comm. ACM, vol. 8,
no. 4, pp. 207-214 (Apr. 1965).

41. P. A. Crisman, ed., The Compatible Time
Sharing System: A Programmer's Guide, 2nd ed.,
M.LT. Press, Cambridge, Mass., 1965.

From the collection of the Computer History Museum (www.computerhistory.org)

