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1. Introduction
Compared to other fields, most papers in mathematics are
rarely cited. The average number of citations for an article
in a mathematics/computer journal in the two years follow-
ing publication is less than one (Amin and Mabe 2000).
Little (1961) is a mathematical paper. Its 50th anniversary
provides a good occasion to look back at its history and
ask why “Little’s Law” has become well known and, more
importantly, ask what has been its role in the development
of theory and practice in queuing.

Little’s Law deals with queuing systems. See Figure 1 for
a schematic diagram. A queuing system consists of discrete
objects we shall call items, which arrive at some rate to the
system. The items could be cars at a toll booth, people in a
cafeteria line, aircraft on a production line, or instructions
waiting to be executed inside a computer. The stream of
arrivals enters the system, joins one or more queues and
eventually receives service, and exits in a stream of depar-
tures. The service might be a taxi ride (travelers), a bowl
of soup (lunch eaters), or auto repair (car owners). In most
cases, service is the bottleneck that creates the queue, and
so we usually have a service operation with a service time,
but this is not required. In such a case we assume there
is nevertheless a waiting time. Sometimes a distinction is
made between number in queue and total number in queue
plus service, the latter being called number in system.

Little’s Law says that the average number of items in a
queuing system, denoted L, equals the average arrival rate
of items to the system, ã, multiplied by the average waiting
time of an item in the system, W . Thus,

L= ãW 0

For ease of exposition, we frequently shorten “Little’s Law”
to LL.
The purpose of the present paper is to summarize major

developments in theory and practice over the last 50 years.
This is made easier by excellent review papers on the the-
ory by Whitt (1991) and, more recently, Wolff (2011). We
shall particularly rely on them for guidance in identifying
the most significant developments in queuing theory.
Practice is a different story. By practice we mean

problem solving in the “real world,” aimed at improv-
ing an operation or system for an organization, preferably
with measured results. That is what operations research
originally tried to do and, of course, many operations
researchers continue to do. There is no ready source of
written material of this sort for a specialized topic like
Little’s Law. Nevertheless, the author has collected a few
interesting cases to report.
In the course of organizing material for this paper, the

author realized that the standard proofs of LL by sam-
ple path theory do not address certain issues that regularly
occur in practice. Whereas the usual proofs assume that
the process runs over a time axis (0∂ t <à5, practitioners
operate over a finite time period 601T 7. Furthermore, there
are advantages to viewing a queuing system this way.
Accordingly, §2 addresses queuing processes over a

finite time period, provides a rationale for doing so, and
proves two simple theorems. Each is motivated by an illus-
trative example from practice. Several corollaries extend
the usefulness of the theorems. We discuss their practical
implications in a series of remarks. Section 3 discusses the
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Figure 1. Schematic diagram of a queuing system.

Arrivals DeparturesQueuing system: Items in
queue and items in service

Flow of items through a queuing system

importance of Little’s Law to queuing theory and, as men-
tioned, provides an overview of developments since Little
(1961). Section 4 treats the importance of LL to practice.
The two biggest fields that make use of LL today are opera-
tions management (OM) and computer architecture. At this
point, the major OM textbooks devote significant space to
explaining and showing how to use LL, complete with ped-
agogical exercises. In addition, the author has included a
few published reports of hands-on experience in the field
with all their human and situational issues. Finally, §5 is a
note on the author’s personal history of involvement with
Little’s Law.

2. Queuing Processes Over a
Finite Time Period

Most sample path proofs of Little’s Law (Stidham 1974,
Whitt 1991, Wolff 2011) analyze queuing processes over
the entire time axis (0 ∂ t < à5 and show that L = ãW ,
subject to the existence and convergence of the three LL
parameters, and possibly other conditions.

We argue that proofs of LL for sample paths that are
restricted by (0∂ t ∂ T ) with T finite are valuable for many
applications in the real world. Among the reasons for this
are (1) all observations of practice take place in a finite
time interval and so we need a way to interpret the numbers
obtained; (2) we shall find that the finite time interval guar-
antees that the relationship L = ãW is numerically exact;
and (3) models in which the values of {L1ã1W } are fixed
for (0 ∂ t <à5 do not speak to applications in which, for
example, an objective is to be able to control the departure
rate in real time.

First, however, we prove Little’s Law in two settings,
motivating each with an example.

2.1. System Is Empty at 0 and T

2.1.1. Example: Supermarket. Little and Graves
(2008) consider a supermarket that opens at 7 a.m. and
closes at 11 p.m. each day. The “items” are customers, and
so the number in the store (system) is zero at the start
and finish of the day. By definition, the number of cus-
tomers in the store, averaged over the day, is L. The average
time the customer spends in the store is the wait in the
system, and has some average W hours/customer for the
day. Customers entering the store to shop have an average
arrival rate, ã, customers/hour over the day.

In this application, the time spent in the store is the
“waiting time” and so there is no need for a separate ser-
vice time.

To develop the potential value of the application fur-
ther, we note that checkout collects a treasure of computer-
readable data from each customer. This includes the store’s
identifying number for each item bought, the price paid for
it, whether a coupon was redeemed, the total amount spent
in the shopping trip, the time of day, and date. We would
like another data source as well. Suppose the store installs
RFID (radio frequency identification) on its carts. Then we
can find out when each customer enters the store and picks
up a cart and also when the customer leaves checkout. The
difference gives us each customer’s time in store, Wi, and,
by averaging over all customers, W . The cash register can
read the RFID and link the customer to the checkout data
in each case. The number of customers in the store at that
instant is inferable because the timing of each arrival and
departure is known. The total number of customers dur-
ing the day is easily determined by tabulating the number
of checkouts. By dividing this by the number of hours the
store is open, we obtain, ã, the average arrival rate. The
only LL parameter not measured directly is L, but it can
be calculated quickly from L= ãW . Thus, all LL parame-
ters are measured for the particular day, and we have rich
customer detail as well.
(In the interests of accuracy, we note that putting RFID

on carts keeps track of carts, not customers. In some cases,
multiple individuals will be associated with a given cart,
including people at home in contact by cell phone. We
could describe the collection as a “buying unit,” but “cus-
tomer” seems simpler and unlikely to be misunderstood.)

2.1.2. Proof of Little’s Law for a System Empty at
0 and T . L= ãW is a simple formula, and in this case
it has a simple proof. Consider a sample path (realization)
of a queuing process over a time interval 601T 7. A plot of
the number of items in the system versus time during the
interval might look like Figure 2.
Let

n4t5= number of items in the system at time t
ã= average arrival rate in 601T 7 (items/time unit)
N = the number of items arriving in 601T 7
L= average number of items in the system during 601T 7
W = average waiting time of an item during 601T 7

(time units)
A=

R T

0 n4t5dt = area under n4t5 over 601T 7
(time units).

Theorem LL.1 (Little’s Law). For a queuing system
observed over 601T 7 that is empty at 0 and T and has
0<T <à, the formula L= ãW holds.

Proof. Using the notation in the left-hand column above,
we see that

L=A/T

ã=N/T

W =A/N 1

whence

L=A/T = 4A/T 54N/N 5= 4N/T 54A/N 5= ãW 0 É
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Figure 2. n4t5 vs. t, showing the area under the curve for a sample path with n405= 0 and n4T 5= 0.
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Tt (time units)0
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2.1.3. The Reason Why Little’s Law Is True. The
author has long sought a good articulation of why Little’s
Law is true. The theorem LL.1 is sufficiently simple that it
is clear what is happening. Notice that the proof uses the
area “A” twice, once to calculate L, the average number of
items in the system, and again to calculate W , the average
wait for an item. This dual use is possible because of a
simple physical fact. An item in queue is also waiting. In
other words, at the same time that a customer is standing in
line and so can be counted, he or she is also accumulating
minutes waiting. This is the physical explanation of why
L= ãW .

2.1.4. Remarks About LL.1.
Our proof of LL.1 could be made more formal. Follow-

ing Wolff (2011), we could define things in terms of a
sample path, ó, in a queuing process. For i æ 1, item i
arrives at ti4ó5 and leaves at ti4ó5+Wi4ó5, where Wi4ó5
is the wait of item i in the system. The arrival times and
waiting times combine to produce n4t1ó5, the number in
the system at t. To emphasize the finite time period 601T 7,
we shall sometimes write L4T 5, W 4T 5, etc. The author has
no objection to formality, but in this section the objective
was to reduce notation and illustrate with sketches, partly
in hopes of reaching a broad audience.

What kind of averages? Each of the quantities in the
formula is a different average with different dimensions. L
is a time average of the number of items in the system,
and so is dimensionless. W is the sample average of the
waiting times of individual items, and so is measured in
time units. ã is an average rate calculated by counting the
points of arrival in 601T 7 and dividing by T , and so has the
dimensions of items per unit time. All of them are common
forms of averages that seem natural.

Under the conditions of Theorem LL.1, the formula
L= ãW is deterministic and holds exactly. In other words,
we assume that we have a particular sample path. From
this we can deterministically calculate each of the three LL
parameters. LL.1 says that they fit together exactly through
L= ãW . However, let it be noted that the determinism and
exactness are after the fact, i.e., the sample path is known.
This is not all bad. It just says that we are in the measure-
ment business, not the forecasting business. This doesn’t

prevent the practitioner from collecting many days of data
and using them to make forecasts using standard statistical
methods.
LL.1 holds under nonstationary conditions. A station-

ary process is one whose joint probability distribution does
not change with time. Taking our supermarket example,
the customer arrival process is certainly nonstationary. Cus-
tomers are likely to arrive a few at a time in the morning,
with a rate that increases and perhaps peaks a little after
noon and tapers off at the end of the day. In addition, quite
possibly, the types of customer change by time of day with
different mixes of housewives, seniors, couples, and stu-
dents. LL continues to be true. More to the point, we did
not have to assume that the underlying arrival process was
stationary in order to prove LL.1, and so it is not required.
LL.1 holds independent of queue discipline. Typical

queue disciplines include serving items FIFO (first in, first
out), LIFO (last in, first out), at random, or by priority
classes. No assumption has been made about order of ser-
vice in deriving LL.1, and so the result is independent of
queue discipline.
What often counts most in practice is the sample path.

The sample path occurs in real time and is what the man-
aging organization deals with. The organization may wish
to control aspects of the processes involved, say, to make a
profit or provide customer satisfaction. These activities are
separate from Little’s Law but are constrained by it.

2.2. Extending LL.1 to Permit Nonzero Starting
and Ending Queues

2.2.1. Example: Wine Cellar. Both Wolff (2011) and
Little and Graves (2008) use a wine cellar as an illustra-
tive example. An item is a bottle, and so the number of
items in the system is the number of bottles in the cel-
lar. The average arrival rate is the average rate of bringing
new bottles to the cellar. It is assumed that the average will
continue at roughly the same rate for some time, although
obviously there are fluctuations. A wine’s age (in years)
since its bottling is an important indicator of quality for
premium wines. The taste changes with age and generally
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becomes more complex and interesting with new flavors
appearing.

The wine cellar example illustrates two phenomena not
considered in LL.1: (1) A queue that may never go to zero
in 601T 7; and (2) a queue for which it would ordinarily be
expected that n405> 0 and n4T 5> 0.

W 4T 5, the average time in system over 601T 7, is likely
to be of interest to the wine buff because it measures the
average incremental age being added to the wines in the
cellar during the interval.

2.2.2. Proof of Little’s Law with Permissible Initial
and Final Queues in 601T 7. We can establish a more
general result than LL.1 by eliminating the restriction of
zero starting and ending queues in the interval 601T 7. Fig-
ure 3 shows an example of a sample path with nonzero
queues at 0 and T and shows the number in the system
versus time during the interval.

Theorem LL.2 (Little’s Law Over [0, T ]). For a queu-
ing system observed over 601T 7 that has 0< T <à, L=
ãW holds.

Proof. In LL.1 we defined N as the total arrivals in 601T 7.
Here we introduce S4t5 = cumulative number of items in
the system over 601 t7. This includes not only the cumula-
tive arrivals up to t, but also any items that were in the
system at t = 0. This permits S405= n405> 0 and n4T 5>
0 in contrast to LL.1. The definition A=

R T

0 n4t5dt = area
under n4t5 over 601T 7, however, continues as in LL.1. Oth-
erwise, paralleling the arguments used in LL.1 we obtain

L=A/T

ã= S4T 5/T

W =A/S4T 51

whence L = 6A/T 7 = 6A/T 76S4T 5/S4T 57 = 6S4T 5/T 7 ·
6A/S4T 57= ãW 0 É

The reader may ask, why prove LL.1 when LL.2 includes
it? The answer is that for LL.1, all arrivals, service opera-
tions, if any, and departures are contained cleanly in 601T 7.
Their meaning seems clear in practice. In LL.2 the items

Figure 3. n4t5 vs. t, showing the area under the curve for a sample path with n405> 0 and n4T 5> 0.
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in queue seem possibly connected to events prior to 0 and
after T , e.g., the items may have a history of waiting prior
to 0 and may stay in the system after T . Our algebra is
correct, but does using the LL.2 model of the world give
us answers to the questions we want to ask? In the case of
Example 2 (wine cellar), the author would say yes, but a
practitioner should always check his or her model assump-
tions for relevance to the task at hand. We note that aging
is not only for wine bottle populations, but also for humans
or polar bears, the question being, as individuals arrive and
depart from a system and time passes, what is the average
incremental change in age, i.e., what is the average wait in
the system? Notice that the wine bottle (or polar bear) pop-
ulations present at n405> 0 immediately start accumulating
incremental age until one or another of them departs.

2.2.3. Corollaries to LL.1 or LL.2 Extending Their
Applicability.
(1) LL.2 holds exactly even if the queuing system is

never empty.

Proof. This follows directly from LL.2 because there are
no restrictions to the contrary as in LL.1. É
(2) LL.2 holds even if there is no service operation.

Proof. Service is nowhere required (or mentioned) in
LL.2, only waiting time. É
This covers both the supermarket and the wine cellar

examples.
(3) Classes of items or market segments. Let k =

1121 0 0 0 1K index sets of mutually exclusive items. Let {Lk,
ãk, Wk} be the LL parameters for a class k item. Then

(a) Lk = ãkWk and
(b) letting ã = Ëkãk, L = ËkLk, and W =

Ëk4ãk/ã5Wk, it follows that

L= ãW 0

Proof. (a) is a special case of LL.2 where we only record
data about arrival time, departure time, and waiting time
for type k items. (b) follows from the definitions of ã, L,
and W and by noting that W = Ëk4ãk/ã5Wk = ËkLk/ã=
L/ã. É
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The practical meaning of (3) is that, for example, in a
machine shop with many types of goods being produced,
we can look at an individual type, e.g., k, in isolation, and
use LL. Of course, other activities going on may affect the
values of Lk, Wk, and ãk, but not the LL relationship. In
the example of the supermarket, we can look at a particular
market segment k, say, deli buyers, defined by purchases
from a specific set of deli products. This segment can be
compared with the remainder of the customers in terms of
average time spent in store (Wk5, average number in the
store over the day (Lk5, and average arrival rate during the
day (ãk5. Furthermore, the store can collect data having
nothing to do with LL (e.g., checkout data), but that make it
possible to evaluate profitability of the segment and the suc-
cess of any promotional activities that may have been run
during some time period of interest. LL provides a struc-
ture for the analysis and its own consistent three measures
of performance.

LL.2 encourages flexibility. Consider, for example,
dynamic control in a job shop. Suppose we have a machine
shop that takes on jobs that entail making widgets of
various types. One particular job may be of special inter-
est. Suppose a job consists of some fixed number of wid-
gets painted blue. Management is particularly interested in
this job and manually decides when to start each widget,
depending on the number in process, the current through-
put, and delays so far. Management can apply LL.2 over
601 t7 to monitor and manage the progress on this job.
Little’s Law tells what has happened up to t, and manage-
ment can then decide what to do next.

2.3. Why Is Little’s Law Useful in Practice?

Although §4 provides further discussion of Little’s Law
in practice with several real-world case studies, we intro-
duce three general points here. These are true whenever LL
holds, not just for the finite T case.

If you know two of {L1ã1W }, you can quickly calculate
the third. This is perhaps the most common and also the
most valuable use of LL and seems to turn up regularly
in case studies and illustrative examples. Sometimes one
of the three may be difficult or expensive to measure, and
yet important to know in a particular application. Little and
Graves (2008) illustrate each of the three possibilities with
plausible operations management scenarios.

L, ã, and W are three quite different and important mea-
sures of effectiveness of system performance, and LL insists
that they must obey the “law.” Some system managers may
seek high average throughput (large ã), e.g., to produce
many airplanes/month; others may want short average waits
(low W ) to give good customer service; and still others
may desire to reduce the average number in the system
(low L) to reduce inventory costs. LL locks the three mea-
sures together in a unique and consistent way for any sys-
tem in which it applies. LL will not tell the managers how
to handle trade-offs or provide innovations to improve their
chosen measures, but it lays down a necessary relation. As

such, it provides structure for thinking about any operation
that can be cast as a queue and suggests what data might
be valuable to collect. Note that if ã is prespecified, the
only way to reduce inventory (L) is to find a way to reduce
average wait/item (W ).
In engineering design, back-of-the-envelope calculations

can often give early estimates of average queues and wait-
ing times, e.g., for queues in the processes inside computers
or in the processes for the manufacture of products. Design
decisions require judgmental engineering calls. That’s fine.
It’s what engineers often do. With LL they can use their
knowledge of the physical systems to estimate two of the
three parameters and immediately fill in the third as they
try to scope out possibilities and rule out ineffective designs
quickly.

2.4. Sample Path vs. Stationary Proofs

So far we have dealt with sample path proofs, but there is
another world of stationary proofs. Circa 1960 the author
taught a course in queuing largely based on Morse (1958)
and knew only stationary queuing models. We shall take
up the distinction in §3.

3. Importance to Queuing Theory
Little’s Law and its extensions have stimulated a remark-
able number of theoretical papers, especially considering
their modest ancestry in a simple three-parameter formula.
Whitt (1991) and, more recently, Wolff (2011) have written
extensive reviews. El-Taha and Stidham (1999) have writ-
ten a book that covers Little’s Law and its extensions and
much new material, all approached by sample path analysis.
The present paper provides an overview of major theoreti-
cal developments, not a review, and tries to describe content
without repeating proofs. Readers interested in the proofs
will find many of them in the three references above.
Queuing theory, as a field and growing body of knowl-

edge, is primarily concerned with relationships among
long-run averages and is the subject of this section. Corre-
spondingly, queuing theory is not focused on what happens
in finite intervals. Little’s Law, as exemplified by Little
(1961) and studied by many others, deals with the long-
term average arrival rate, number in the system, and wait
per item. However, finite interval analyses involving the
formula L = ãW will often be valuable in practice for
engineering design and operational problem solving, as dis-
cussed in §§2 and 4. In the author’s view, these two intel-
lectual efforts support each other.
Listed below are several theoretical developments that

have some of their roots in Little’s Law. Under each major
topic, we state the main results and then discuss them. The
notation is that of Wolff, except for a few symbols for
which a slightly different notation seems standard.
Before embarking on the list, we distinguish between

two types of proof for Little’s Law and its extensions: sam-
ple path and stationary. Whitt (1991, p. 236) says, “There
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are two frameworks for expressing the results. The first
is a deterministic framework involving averages over sam-
ple paths. The second is a stationary framework involv-
ing steady-state distributions.” He goes on to say, “The
deterministic framework is appealing because it requires
only elementary arguments 0 0 0 and lays bare the essential
ideas 0 0 0 0The stationary framework is appealing because it
leads beyond the particular issue [at hand] 0 0 0 to a full inves-
tigation of the concept of statistical equilibrium or steady
state.”

3.1. The Role of Little’s Law in Queuing Theory

The first really rigorous proof of L = ãW in the generality
we know today was a sample path version given by Stidham
(1972). He followed this with a simpler but equally rigor-
ous sample path proof in Stidham (1974) under the title,
“A last word on L= ãW .” Later, in Stidham (2002, p. 212),
he added, “Of course it was not a last word, but just the
beginning of a twenty-five year research program concerned
with applying sample path analysis to a wide variety of prob-
lems in queuing theory and related fields 0 0 0 .”

3.1.1. Main Results. Let

L= lim
T!à

41/T 5
Z T

0
N 4t5dt W = lim

n!à
41/n5

nX

i=1

Wi

ã= lim
t!à

Â4t5

t

where N 4t5 = the number of items in the system at t;
Wi = the waiting time of item i; and Â4t5= the cumulative
number of arrivals up to t.

Little’s Law (sample path version):

Theorem. If limits ã and W exist and are finite, L exists
and is finite, and

L= ãW 0

Little’s Law (Stationary Version). In the sample path
version, it is only necessary to know that there is some
sample space and that the sample path comes from it. For
a stationary (steady-state) version, we need some sort of
probabilistic structure. For example, a classical G/G/s/à
queuing system is such a structure, although more restric-
tive than might at first glance appear. A more general
approach was developed by Franken et al. (1982), in
which, starting from a jointly stationary interarrival time
and waiting time process, they construct a stationary pro-
cess {N 4t5}. Furthermore, they show that

Theorem. (1) Wi has the same distribution for all i.
(2) N 4t5 has the same distribution for all t.
(3) E4N 4t55= ãE4Wi5.

Here E4 · 5 is the expectation operator.

3.1.2. Remarks. Little’s Law holds under remarkably
general conditions. It applies to individual queues and also
networks and subnetworks. It holds for subclasses of items
as well as the whole population and is independent of queue
discipline. It holds and is useful in many operations man-
agement settings, for example, when the managerial goal
is to obtain high throughput (ã5 and control processes are
superimposed on the queuing model.

3.2. An Important Generalization: H = ãG

L= ãW turns out to be a special case of the more general
H = ãG, as defined below.

3.2.1. Main Result. For each item, i, define a function
fi4t5, t æ 0, where

R à
0 ófi4t5ódt < à, and for some finite

li > 0, fi4t5= 0 for t y 6ti1 ti + li]. (Often li =Wi05 Define

Gi =
Z à

0
fi4t5dt1 iæ 11 and H4t5=

àX

i=1

fi4t51 t æ 00

Further define

G= lim
n!à

1
n

nX

i=1

Gi and H = lim
T!à

1
T

Z T

0
H4t5dt and

ã as defined in 3.1.1.

Theroem (H = ãG). If limits ã and G exist and are finite,
and technical condition li/ti ! 0 as i ! à holds, then
H exists and

H = ãG0

3.2.2. Remarks. This result is due to Brumelle (1971)
and Heyman and Stidham (1980).
H = ãG permits the practitioner (or theorist) to place a

different weighting function on the time spent in the sys-
tem by each item. L = ãW is the special case in which
fi4t5= 1 for t 2 6ti1 ti+ li] and li =Wi0 In the general case,
fi4t5 could be used in a variety of interesting applications,
for example, the dollar rate of return on the ith asset in a
portfolio of assets, or the unique cost rate of an item i in an
inventory. At the same time, we still have L= ãW for the
underlying queuing process. Therefore, we have available
the standard measures L and W simultaneously with the
new H and G. In the financial assets example, we would
know not only the time average dollar return H and aver-
age dollar return per asset G, but also the average number
of assets L and the average time of holding an asset, W .
We note that the holding cost concept has been extended

by Glynn and Whitt (1989) to include lump costs.
An important application of H = ãG is the concept of

work, defined as the sum of the remaining service times for
all the items in the system at t. This creates a new process
in its own right.
H = ãG is related to the Rate Conservation Law (RCL)

of Miyazawa (1994). Although the approaches are different,
Sigman (1991) has shown that the sample path versions of
these results are the same.
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3.3. A Distributional Form of Little’s Law (DLL)

It is natural to ask whether there is a distributional form of
Little’s Law, i.e., whether the stationary distributions of N
and W are related in some way by ã.

3.3.1. Main Result. We assume (a) items depart FIFO
from the queuing system, (b) {Wi} is stationary, and (c)
for every i1Wi is independent of the arrival process after
item i has arrived; in particular, it is independent of ti1,
which tells “how long ago” the item arrived. Under these
assumptions, N has the same distribution as Â4W 5, where
8Â4t59 and W are independent and Â4t5 is the cumulative
arrivals up to t.

3.3.2. Remarks. The conditions (a) through (c) are
quite restrictive. The result is due to Haji and Newell
(1971). Other distributional forms have been investi-
gated. A fairly recent discussion appears in Bertsimas and
Nakazato (1995).

3.4. Growth of Sample Path Analysis of
Queuing Systems

The general sample path proof of Little’s Law in Stidham
(1974) confirmed the power of the sample path approach. It
has grown since then and has been given a further boost by
the book Sample-Path Analysis of Queueing Systems (El-
Taha and Stidham 1999).

4. Importance to Practice
The two biggest fields in which Little’s Law regularly
comes into play are operations management (OM) and
computer architecture (“computers”). OM covers a multi-
tude of practical applications both in the manufacture and
distribution of goods, and also in providing services. Com-
puters have shown extraordinary growth in power, complex-
ity, and applicability. With the advent and explosion of the
Internet and its invasion of almost every aspect of science,
engineering, commerce, and daily life, not to mention the
huge growth of social networking and the imaginary lives
in computer games, computers have become, arguably, the
factories of the future.

4.1. Computer Architecture

To be able to talk about Little’s Law and computer archi-
tecture with some specificity, we focus on servers, which
are ubiquitous. As individuals we connect to them when
we draw money out of an ATM machine, or have a credit
card purchase approved, or visit Facebook to leave a mes-
sage or find one from someone else. Servers are a huge and
competitive market. They are made, or at least marketed
and sold, by HP, IBM, Dell, Acer, Hitachi, Lenovo, and
others. Any large operation—a bank, hospital, auto manu-
facturer, university, or social networking site—has one or
more systems with one or more banks of servers. Some of
these contain thousands of servers.

Where are the queues in these computers? Where does
Little’s Law offer design insight or connect to operational
control variables? We shall try to shed light on these
questions.
In truth, there are many queues in a single computer

system. We shall focus on the top and the bottom and find
queues in both places. At the top, we consider the value
proposition offered by the manufacturers (HP et al.) to their
customers (Facebook et al.). Then we shall look down into
the hardware to find queues in the execution of instructions
in individual threads. At this point we can discuss possible
design insights for computer architects. HP and Facebook
will be our placeholders for the many other players in the
real world of 2011.
For notation and nomenclature we shall use standard

queuing notation:
L= average number of items in the system (items).
ã= average arrival rate of items to the system (items/unit

time).
W = average wait in the system (time units/item).
However, we are in a computer server world and should

connect to the terminology used there. An item will be a
“request” to retrieve a piece of data needed for a response
that Facebook wants to make to a member or “post” data
that is derived from new activity by members. Therefore,
the connections are
L= average number of requests in process
ã= average arrival rate of requests (requests/second)
W = average response time per request (seconds) = latency

(seconds).
Latency is a key performance measure for computers

(low is good) and has an unspoken “average” implicitly
attached, but response time seems more meaningful for a
layperson.
The value proposition that Facebook would like from

HP is a low average response time at a reasonable price
so that its many members can communicate easily with
one another. Communications in Facebook can take many
forms: changes in the member’s profile are reported to
friends via the news feed. The news feed also brings to
the member changes in friends’ profiles and other events
or commentaries. Friends can be added or subtracted. A
member can post a message on the wall of another member.
Photo albums can be uploaded, etc. The task of Facebook’s
main application program is to turn members’ activities
into a stream of requests to the server. In the terminology
presented above, Little’s Law tells us that

ave. response time to a request 4seconds5

= ave. no of requests in process
ave. arrival rate of requests 4requests/second5

0

A computer architect looking at this would notice that
the arrival rate of requests is fixed by Facebook mem-
bers’ activities so that to reduce response time, the average
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requests in process (i.e., the average queue of requests)
should ideally be reduced.

But where are those requests in the machine? The answer
is: in computer memory.

Computer memory comes in various tiers with different
inherent response times. The tiers range from CPU cache
(fast), to DRAM (dynamic random access memory) (not
quite as fast), to RAM (random access memory) (a lit-
tle slower), all the way to solid-state drives and finally to
network attached storage (banks of hard disk drives). The
computer architect must trade off speed (quick response)
with cost, so as to make the server cost effective for the
potential customer.

Although hard drives have increased in speed and
decreased in response time over the years, they have been
vastly outstripped by the increased speed and decreased
response time of computer chips. There the growth in per-
formance has been exponential (Moore’s Law).

Consider a typical hierarchy of memory devices laid out
in order of decreasing speed as shown in Table 1. Note
that response time ranges from about a nanosecond up to
a glacial four milliseconds. As might be expected, the cost
per unit of storage goes in the opposite direction, although
there is room for ingenuity in engineering design.

One of the author’s puzzlements has been, “where are
the queues, physically?” If we look deeply enough inside
the machine, we shall eventually find a “von Neumann
computer” and, indeed, many of them. A von Neumann
computer is an elementary machine that executes a set of
computer instructions serially. In other words, if you list
a set of instructions on a page and start at the top, the
machine does them one at a time until it reaches the end
of that particular piece of code and thereby completes its
current task.

The server CPU contains microprocessors, each of which
contains cores, perhaps 8 or 16 of them. Each is a von
Neumann computer. Now we are coming to the queues. The
piece of code the computer is executing is aptly called a
thread (of instructions). The author visualizes it as a list of
instructions running down his penciled code sheet. Oh, oh,
the instruction calls for a piece of data that is somewhere
else in memory, electronically far away from the thread.
The thread STOPS and sends out a request for that data.
This may take a relatively long time. It is really a whole
new retrieval operation with a possibly large response time.
The stopped threads are in queue. (In standard queuing
terminology, the stop requires a service operation, which

Table 1. A set of memory tiers and their average re-
sponse times (latencies) in microseconds (ås).

Solid state Network attached
L1 L2 L3 DRAM RAM drive storage

Cache Disk drives
0.001 ås 0.05 ås 1 ås 250 ås 4,000 ås

will have a corresponding service time. The service time is
a random variable.)
There are a very large number of threads executing

instructions in real time on a server running Facebook oper-
ations. Because of the speed of modern nanosecond chips
compared to the speed of a Facebook member who is mak-
ing requests in seconds, we can work in a massively par-
allel way (even though each thread is actually serial). We
can “time slice” or “multiprocess,” moving from a stopped
thread to a ready thread, although the CPU must know how
to find the location of the stopped thread so that it can go
back there. Note that this will cost the CPU some time and
will require some memory. Time slicing and multiprocess-
ing introduce a factor of, say, 10 in the number of threads
that can be handled, thereby creating 100s or 1,000s or
100,000s of threads being worked on at once in terms of
a Facebook member’s time scale. For the input rate of all
online members, let ã = the average rate of total thread
processing required after all members’ requests have been
broken down into whatever detailed subtasks are required.
Let L be the average number of stopped threads in queue
during some relevant time. Then W = average response
time, measured, say, in seconds.
HP is trying to sell servers to Facebook on the basis of

low average response time. Component vendors are trying
to sell HP add-in modules to improve W even more (or,
alternatively, permit the server to handle a greater input
rate, ã5. Like any good model, Little’s Law ignores most
of the details of the operation (the rest of the code!) and
focuses on the important design details that will affect the
measures that HP’s customers care most about. Similarly,
vendors selling add-in modules to HP will focus on mem-
ory tiers that will improve response time. It turns out, as
we shall see, that Little’s Law must be combined with other
models to understand what is going on and enable engi-
neers to make sensible design decisions.

4.1.1. Queue-Related Overhead. A model is needed
to describe an important second-order effect that shows
up in many real-world queuing systems, including those
in computers. We shall call it queue-related overhead or,
with more words, describe it as an adverse nonlinearity
in response time as queues become large. In operations
management for manufacturing, for example, as queues
increase, someone has to keep track of the items. This
incurs a cost. It may be extra record keeping and the people
to do it, or it may be keeping track of physical objects and
finding a space to store them temporarily and moving them
there and back. The combined costs (partly time, partly dol-
lars) represent an overhead associated with large queues.
Computers have an analogous issue: they deal with pieces
of data, and it is necessary to know where every data item
in the queue is located in memory, itself a costly resource.
If the average queue, L, is large, the extra cost will be
large. Furthermore, the CPU itself must devote extra time
to keeping track of everything, and this effort too is part of
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the overhead. The extra cost, whatever is its source, can be
nontrivial—more memory is required, more switching takes
place among threads. This cost is not a consequence of
LL but is a second-order effect requiring a new submodel.
In particular, switching among threads and remembering
where the process was when the thread stopped will take
precious nanoseconds and slow down the average service
rate. This will feed back to increase the queue, creating
a larger queue in a nonlinear way with adverse effects on
response time (Flynn 2010).

Another important design characteristic of a server is the
physical capacity of its various memory tiers. Cache has
very low latency, and so if a request can be satisfied there,
it will be quick, but cache has little capacity. It fills up
quickly, and the request is sent on to slower and larger
capacity tiers.

We like the computer architecture example for illustrat-
ing the overhead phenomenon because performance mea-
surements are routinely made on computers and we can see
the nonlinear effects quantitatively in plots and tables and
understand why they are taking place, as well as see to what
degree they are hurting performance. Commercial services
are available to do benchmark tests of servers by feeding
them with a simulated client load of requests under vari-
ous hardware and load conditions. The data plotted below
comes from performance tests at a Microsoft FAST Search
Farm. This is a third-party service offered by Microsoft
to hardware vendors and their customers. Suppose Intel is
trying to sell servers to a large hospital for storage and
retrieval of medical records. Intel and the hospital study
the nature of the flow of requests and devise a load sim-
ulator. This can then be run on various configurations of
processors and memory tiers. The situation may be compet-
itive: HP may be interested in the same business. Microsoft
FAST Search Farm is a disinterested party that runs perfor-
mance analysis scenarios as a paid service.

Figure 4(a) shows the measured effect on latency
(response time) at the aggregate level during a benchmark
test for a particular server configuration designated as Sce-
nario M8. Plotted is latency versus the arrival rate, ã, of
user requests (simulated to resemble closely the client’s
setup). The measurements were done in November 2010.

As ã, the average requests/second, increases in the load
test, L, the average queue of requests goes up approxi-
mately linearly and then climbs steeply, indicating failure.
After about 18 requests/second further requests are essen-
tially dumped.

Some comments.
(i) These are actual numbers from the behavior of an

Intel server under increasing retrieval/storage loads in sim-
ulation of client operations.

(ii) At high client loads, performance seems to be hitting
a brick wall.

(iii) The author’s interpretation of this, following his dis-
cussion with Flynn (2010), is that large queues (L) are tak-
ing up storage and represent “overhead” that is slowing the
average service time, creating almost a singularity.

Figure 4. Increasing the load (requests/second, ã5 on
the server eventually causes it to fail.
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(iv) We could model the nonlinearity analytically and fit
it to data, but the plot tells the story better.
(v) We have used Little’s Law to go from the measured

latency, W , in the top graph to the average queue, L, in the
bottom. This is more useful and interesting than it might
appear at first glance. The client, Intel, is most interested
in measuring response time (latency, W ). This is rather
easy to do. To generate a point on Figure 4 (a) the simu-
lation system, using the designated rate, ã, generates, say,
1,000 queries. These go out at rather random intervals, as
would be expected of a cluster of users making requests.
The measurement process records the response time of each
request as it is completed and keeps a running total. After
the requests are all back, dividing by 1,000 gives the aver-
age latency, W , and a point on Figure 4(a). LL gives us
the corresponding point for L on Figure 4(b). As an alter-
native, a direct measurement of the average queue in the
same time period would require keeping track of all the ups
and downs in the queue during that period, then somehow
integrating to find the area under the curve and dividing by
the elapsed time. It is much easier to use LL.
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(vi) The upward-sloping part at the beginning of the
curves in Figure 4 is normal steady-state queuing theory.
The average queue and delay grow as the arrival rates
increase. However, at a fairly abrupt point on this machine,
the large queues slow the service rate and the machine
begins to fail. One could accurately say that the traffic
intensity (usually denoted by ê5 goes to 1, but the sys-
tem is not like an ordinary M/M/1 queue with a constant
service rate, å, and ê= ã/å. An important feature is that
increasing ã increases L, which in turn decreases å. Thus,
a deleterious feedback is initiated, hastening failure. The
computer architect wants to understand what is going on so
as best to design the system. With enough data, we could
presumably model the process.

(vii) On the client side, Facebook or whoever does not
want failure at all and so buys ample capacity. However,
in order to do this, the client needs to know at what ã the
failure is likely.

(viii) It is characteristic of applications of LL in practice
that it is used in conjunction with other models and other
measurements to look for system improvements.

4.1.2. Computer System Analysis and Computer Sys-
tem Performance. We have taken a look at the outside
and inside of a server as it might be used by Facebook
or a similar firm that is managing many user requests. We
find not only Little’s Law, but other phenomena, that can
potentially be modeled and used with it to understand and
improve performance. As we shall find in operations man-
agement in the next section, Little’s Law plays a sufficiently
distinct yet integrated role in understanding and solving
engineering problems that it appears in major textbooks. An
example of this in computer architecture is Lazowska et al.
(1984) with their text on computer system analysis using
queuing network models. Another is Gunther (2010), who
addresses the narrower task of analyzing computer system
performance.

4.2. Operations Management (OM)

Operations management (OM) covers a large arena of
practice. Little’s Law is discussed in several current OM
texts, including Hopp and Spearman (2000), Cachon and
Terwiesch (2004), and Chhajed and Lowe (2008). Much of
the introductory material in §2 applies directly, as do our
illustrative examples there. Queuing theory and OM gener-
ally use different notations for Little’s Law parameters, and
so we introduce that issue first. In a desire to get close to
people who are actually using LL to support decision mak-
ing, we also take up three field cases drawn from people
with whom the author has communicated directly.

4.2.1. Most Commonly Used Notations.
(a) Queuing theory. L= ãW

L= average number of items in the system (items)
ã= average arrival rate of items to the system (items/unit

time)
W = average wait in the system (time units/item)

(b) Operations management (Hopp and Spearman 2000)
TH = WIP/CT
TH = throughput (items/unit time)
WIP= work in process (items)
CT = cycle time (time units/item)
(c) Operations management (Cachon and Terwiesch

2004)
Average Inventory=Average Flow Rate⇥Average Flow

Time, where the flow unit is chosen to fit the application
(item, customer, vehicle, widget 0 0 0), and so the dimensions
of the terms in the LL equation are
Average Inventory (flow units)
Average Flow Rate (flow units/unit time)
Average Flow Time (time units/flow unit).

4.2.2. OM Has a Different Orientation from Queuing
Theory. Little and Graves (2008) make a few observa-
tions about OM versus queuing theory: It is easy to see
that TH =WIP/CT is equivalent to ã= L/W . However,
there is a more fundamental difference, in that for OM, the
law is stated in terms of the average output or departure
rate or flow rate for the system, rather than the arrival rate.
This reflects the perspective of a typical operating manager,
especially in manufacturing. Output is the primary focus,
because it is nominally its raison d’etre. As stated in (b), we
see that any increase in output requires either an increase
in work-in-process inventory or a reduction in cycle time
or both, unless some change is made in the manufacturing
process itself.
Furthermore, in many contexts the output rate is deter-

mined exogenously and is given to the manufacturing sys-
tem; it reflects orders, actual sales, and/or a forecast of
sales. The manufacturing system must then manage its
operations to achieve this rate. It will need to determine
how to release work to the operation so as to meet the tar-
get output. In effect, the arrival process is endogenous. The
operations manager decides the arrivals based on desired
outputs. There is extensive research in the operations litera-
ture on how best to set the work release (or arrival process)
to achieve the output targets. The best policies are dynamic
and depend on the state of the manufacturing shop, e.g.,
depend on the work in process.
We now turn to actual case studies in which the author

has personally communicated with the people involved to
understand better how things work out.

4.2.3. Case Studies.
(a) Staffing emergency departments in hospitals. Hos-

pitals are full of opportunities to apply OM methods.
Nowhere is this more evident than in the emergency depart-
ment (ED), where the unexpected is the norm. Mark Harris,
MD, published a paper (Harris 2010) that he entitled “Lit-
tle’s Law: The Science Behind Proper Staffing.” To learn
more about this work, the author talked to Harris for over
an hour. He works for a company, TeamHealth, which has
a major business in outsourcing emergency departments.
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It operates over 500 EDs, some at large hospitals. Harris is
the chief designer of the staff-scheduling systems.

An ED may be viewed as a queuing system with an
arrival rate of patients who receive medical service and
leave (possibly sent home or perhaps admitted to the hospi-
tal proper). A patient arriving at an ED potentially receives
a broad variety of services. She/he will quite likely see
a physician and almost certainly will see a nurse (RN),
may occupy a bed, see a hospitalist, have an X-ray, lab
work, etc. A key measure of ED performance is the average
length of stay (LOS), because this says something about
efficient use of expensive resources and also about moving
the patient toward recovery.

LOS fits easily into Little’s Law: it is W , the average
time spent by a patient in the system, here an ED. The
average arrival rate of patients is not ordinarily considered
controllable and has the same meaning as ã in queuing. L,
the average number in the system in queuing, translates into
“average number of patients in the system” or borrowing
OM terminology, “average patients in process,” and can be
given the acronym PIP. So, rewriting Little’s Law in ED-
relevant terms gives

4average length of stay (LOS) in ED)

= 4average no. of patients in process (PIP))
(average arrival rate of patients, ã)

0

TeamHealth has developed algorithms for doing the
scheduling of all the various kinds of staff and resources.
We can think of the passage of the patient through the ED
as a series of queues. Each of these involves one of the
ED resources, such as MDs, RNs, hospitalists, beds, etc.
Each contributes to the average length of stay (LOS). A
typical overall LOS goal for the busiest eight hours of the
day might be to keep LOS under three hours. The average
patient arrival rate is reasonably predictable by time of day
and, because the queues are in series, is the same for all
types of ED resources. Not all resources are used by all
patients, but the theory inherently deals with averages.

Consider, for example, MD resources. Little’s Law
tells us

4average length of stay (LOS) in MDs)

= 4average no. of patients in process (PIP) with MDs)
(average arrival rate of patients, ã)

0

Because of the serial arrangement of the queues, the
average arrival rate of patients, ã, is the same for all
resources, and so one constant of proportionality between
LOS and PIP applies to all.

Now we need to relate LOS to our control variables,
which are the numbers of MDs, RNs, etc., to be used in the
staffing plan. From historical records, the ED can determine
the average producer productivity for MDs, defined as the
average number of patients/hour that an MD can handle.
Call this PP(MD) patients per hour. Thus, we can find the

minimum number of MDs needed by dividing this into the
patient arrival rate, i.e., ã/PP(MD). For example, if MDs
can treat 2.5 patients/hour and the patient arrival rate is
10 per hour, the minimum number of MDs needed is 4.
We say minimum. The reason is basic queuing theory.

There is variability in the interarrival times between suc-
cessive ED patients and also in the service times of MDs,
RNs, and other resources. We know from queuing theory
(e.g., the M/M/1 queue) that, as the arrival rate approaches
the service rate, the average number of patients in pro-
cess (PIP) and average patient length of stay (LOS) both
increase, slowly at first and then rapidly. Therefore, we
shall need to build in extra resources (MDs, RNs, etc.) to
meet LOS targets, even though this means that there will
be idle resources part of the time. Harris suggests 10%–
20% extra staffing compared to the minimum, as a rule of
thumb. We now have a basic staffing strategy because we
can set the number of MDs, RNs, etc., to hold the total
LOS across all of the resources to be in the target range.
However, there is another danger. If, for whatever rea-

son we simply have too few RNs currently in the ED to
achieve the desired LOS for RNs, we may think we can
achieve it for the overall ED by returning to our formulas
and increasing, say, the MDs. Sorry. What happens is that
the RNs become a bottleneck and patients pile up in front
of them, leaving the extra MDs idle. Because everybody
tries to help out in an ED, some of the MDs may pitch in
and do work that RNs normally do. Harris reports that this
can cause confusion and make matters worse. The answer
is “balanced” staffing, in which the RN-to-MD ratio and
similar ratios are set up correctly at the start. It is best to
be balanced and suffer a temporary increase in the overall
LOS until adequate resources can be found.
Harris and TeamHealth and a number of similar firms

have developed quite elaborate models and calibrated them
on historical data collected at ED installations. Such mod-
els can, for example, take into account specific work rules
at a particular ED. However, these complicated systems are
black boxes for the CEOs of hospitals and hard to under-
stand. Harris reports that the simple explanations of staffing
basics built up from Little’s Law and basic queuing con-
cepts are much more useful for communicating the reasons
for formal models to CEOs than trying to explain compli-
cated black boxes or simply saying “Trust me.”
(b) Michael George: Lean Six Sigma and Little’s Law.

Michael George, usually called Mike George, founded a
consulting company, Converge Consulting Group Inc., with
a practice centered on Lean Six Sigma in manufacturing
(George 2002). A key feature in the methodology of the
firm’s practice was the use of Little’s Law. I met Mike in
my office at MIT in October 2008 and was joined by Steve
Graves to discuss our mutual interests in Little’s Law. Mike
connects the latter to Lean Six Sigma, starting from his
basic principle (George 2002).

The Principle of Lean Six Sigma: The activities that
cause the customer’s critical-to-quality issues and create the



Little: Little’s Law as Viewed on Its 50th Anniversary
Operations Research 59(3), pp. 536–549, © 2011 INFORMS 547

longest time delays in any process offer the greatest opportu-
nity for improvement in cost, quality, capital, and lead time.
(p. 4)

George offers a methodology for improving organiza-
tional effectiveness that starts with “The First Law of Lean
Six Sigma for Supply Chain Acceleration” (p. 47). This has
to do with finding the time delays (potential time traps) in
each workstation of the process. “The Second Law” (p. 51)
is the 80/20 rule, which says that 80% of the delays are
caused by less than 20% of the workstations. The Third
Law is Little’s Law, (p. 49), which he expresses as

Process Lead Time= (Number of “Things” in Process)
(Completions per Hour)

0

If we rewrite this equation in the OM words and notation
of Hopp and Spearman (2000), it becomes

Cycle Time2 CT = Work in Progress: WIP
Throughput: TH

0

One of the characteristics of OM applications of Little’s
Law is to draw the vocabulary for the application from
jargon of the client setting. Hopp and Spearman also offer
alternate words and expanded definitions: Throughput (TH)
is “the average output of a production process (machine,
workstation, line, plant) per unit time,” work in process
(WIP) as “the inventory between the start and end points
of a product routing,” and cycle time (CT) as “the average
time from release of a job at the beginning of the routing
until it reaches an inventory point at the end of the routing
(that is, the time the part spends as WIP.)” George (2002)
also has alternative descriptors, calling TH the velocity of
products through the plant in items per hour, WIP the aver-
age number of items in process in the plant, and CT the
process lead time, i.e., the average hours each item spends
in the plant.

Note that Little’s Law is not in charge of changing these
quantities—that is the responsibility of the lean-six-sigma
activities. By eliminating “time traps” in the operation of
individual workstations, CT can be reduced. By improv-
ing the precision of certain parts, buffer stock may be
decreased, and with it total WIP. Mike’s book reports a
variety of case studies in considerable detail. The role of
Little’s Law is to provide a structure that helps the client,
working with the consultants, define the three rather differ-
ent measurements of LL. After process improvements have
been made, the same measurements validate the results.
Mike George’s financial success and accolades from his
clients testify to his Little’s Law methodology.

Although we have talked about a plant and thereby
implied a manufacturing facility, nothing changes but the
vocabulary if we think in terms of a service process
with multiple stages. Mike has, for example, worked with
municipalities to improve their paperwork processing.

Postscript: George’s firm grew to considerable size and
about 2006 he sold it to the large consulting firm Accenture,

where the practice continues to operate as a division. In
March 2010, as the author was starting work on this 50th
anniversary paper, he received an e-mail from Mike show-
ing a photograph of a white board that he described as
“Little’s Law in Russian,” evidently from an international
consulting engagement by his former company.
(c) Flow analysis of observation units in a hospital.

In the current period of rising health costs and increas-
ing demand for hospital services, hospitals are under con-
tinuous pressure to provide more efficient service without
expensive expansion of facilities. Bill Lovejoy of the Uni-
versity of Michigan recently completed a study entitled
“Little’s Law Flow Analysis of Observation Unit Impact
and Sizing” (Lovejoy and Desmond 2011).
Observation care is defined by Medicare and Medicaid

as a well-defined set of specific, clinically appropriate ser-
vices. These include ongoing short-term treatment, assess-
ment, and reassessment before a decision is made whether
a patient requires further in-patient treatment or can be dis-
charged from the hospital. Observation services are com-
monly ordered for patients who come to the ED.
Congested hospitals frequently find that a considerable

number of observation care patients are occupying expen-
sive in-patient beds in the hospital. This suggests the pos-
sible advantage of constructing lower-cost observation care
units within the ED. Lovejoy and Desmond (2011) have
conducted an analysis of this strategy using a Little’s Law
flow analysis. For the large hospital they were dealing with,
their analysis indicated that a substantial observation care
unit of 14 beds would be warranted, taking into account
the cost and revenue flows. The resulting net annual rev-
enue attributable to the proposed unit was on the order of
$5.8 million.
Bill Lovejoy also e-mailed to the author what he thought

“in a nutshell” were the key advantages of Little’s Law in
this setting:
1. “Check on the raw data: It is surprising how often

data gathered in hospitals is inaccurate or inconsistent. Data
is gathered in a very decentralized fashion by a range
of personality types each of which can make their own
assumptions about how things are defined. I have frequently
been handed spreadsheets with data that do not add up.
Little’s Law provides a reality check.”
2. “Computing backfill patients for freeing up inpatient

beds: If the patients being removed (e.g., going to observa-
tion status) are different than backfill patients (e.g., patients
qualifying for regular admission) then the backfill flow has
to account for the change in lengths of stay.”
3. “Rough cut sizing: Observation patients stay on aver-

age 1.14 days, so for any given flow rate we know what
the inventory will be from Little’s Law, and dividing this
by the target utilization (say 90%) suggests how many beds
to install.”
Another comment he made was that the simplicity of

Little’s Law (a three-parameter equation) made it easy for
physicians to understand the patient flow analysis and see
where the results were coming from.
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4.3. Concluding Thoughts

4.3.1. Looking Back. Simple ideas can be extremely
powerful. Little’s Law seems to be one of them. It is a
mathematical relationship among three averages in a queu-
ing process. As a sometime physicist, the author has been
pleased to realize that a key to Little’s Law is that a person
in queue is also waiting. This physical simultaneity is the
glue that creates the equality in L= ãW .

Meanwhile, the queuing theorists have extended their
mathematics in important new directions such as H = ãG,
and have made connections to other forms of stochastic
systems and mathematical structures.

Within hands-on practice, operations management and
computer architecture have led the way. Most of this seems
to have been in the last 20 years of the 50 since Little
(1961). The amount of good practice still appears to be
increasing. Little’s Law can usually be expressed in words
that are adapted to be descriptive of the task at hand, e.g.,
scheduling MDs to treat patients in a hospital emergency
department. Such developments make the ideas easier to
implement and help explain why Little’s Law has become
well known over the past 50 years.

4.3.2. Looking Ahead. In terms of practice, H = ãG
seems full of potential. The model says that in an ongo-
ing queuing process with items indexed by i, instead of
each one merely countable, it can be assigned its own
unique numerical value, e.g., cost or profit. The ensuing
averages have new meaning, The applications await some-
one’s imagination.

A favorite thought of the author is that LL could serve
senior levels of management concerned with ongoing oper-
ations, e. g., the senior manager of a pharmaceutical firm’s
new product development program. Managers of ongoing
operations collect, or are given, piles of data. LL relates
three quite different average statistics {L1ã1W }. Each of
these is actually a measure of effectiveness of the process:
ã is throughput, the average rate at which “items” are pass-
ing through “the system.” L is the average number of items
in the system at an arbitrary time. W is the average time
spent in the system by an item. These are all quite different
and measure different aspects of the process, and yet are
tied together by LL. We argue that managers should seri-
ously consider collecting and displaying the LL measures
for whatever stream of “items” they are managing.

If something is amiss, most likely it will show up in
one or more of the three measures. We cannot, a priori,
tell the manager how to fix a problem, but all three mea-
sures are interlocked by LL. If the manager fixes a prob-
lem, it is likely to show in one or more of the measures.
Managers should also note the phenomenon that we have
called “queue-related overhead.” Large average queues tend
to generate inefficiencies having nothing to do with LL
per se, but LL helps measure them. Little’s Law does valu-
able work on the factory floor but might be ready for new
challenges.

Probably the biggest future winners have yet to be
conceived.

5. A Note of Personal History
[This is an updated version of a section originally appear-
ing in Little and Graves (2008).]
How did a sensible young OR Ph.D. like me get involved

in an unlikely field like this? From 1957–1962, I taught
operations research at the Case Institute of Technology in
Cleveland (now Case Western Reserve University). I was
asked to teach a course on queuing. OK. Initially I used
my own notes, but when Morse (1958) came out, I used his
book extensively. (I had been Morse’s doctoral student but
had done my thesis on optimal operation of hydroelectric
systems.) At Case, queuing was taken by most of the OR
graduate students and, indeed, one of these, Ron Wolff,
went on to become a first-class queuing theorist at Berkeley
(Wolff 1989).
One year the class was at the point when we had done the

basic Poisson-exponential queue and moved through multi-
server queues, and some other general cases. I remarked, as
many before and after me probably have (and Morse does
in his book), that the often reappearing formula L = ãW
seemed very general. In addition, I gave the heuristic proof
that is essentially Figure 2 of Little and Graves (2008).
After class I was talking to a number of students and one of
them (Sid Hess) asked, “How hard would it be to prove it
in general?” On the spur of the moment, I obligingly said,
“I guess it shouldn’t be too hard.” Famous last words. Sid
replied, “Then you should do it!”
The remark stuck in my mind and I started to think about

the question from time to time. Clearly there was something
fundamental going on, since, when you draw the picture
you don’t really seem to need any detailed assumptions
about interarrival times, service times, number of servers,
order of service, and all the other ingredients that go into
the standard queuing models I had been teaching. You only
seemed to need a process that goes up and down in unit
amounts and some guarantee of steady state and conserva-
tion of items. In addition, because I could see there were
end effects in the picture, there needed to be a way to
get rid of them in the limit. It seemed to me I was in
the general arena of stationary stochastic processes. I am
not a mathematician by training, and so I bought copies
of measure-theoretic stochastic process books like Doob
(1953), which mentioned stationary processes and ergodic
theorems.
My family’s habit at the time was to go to Nantucket in

the summer where my wife’s family had a small summer
house. We would load our children into a station wagon,
drive to Woods Hole, take the ferry, and spend a cou-
ple months away from the world. Since the beach was
our babysitter, I was able to split off solid blocks of time
to work on research as a good assistant professor should.
I always brought a pile of books and projects with me.
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L = ãW was one of them. I soon ran into problems that
required more than looking up theorems in my new books,
but I worked out approaches to the roadblocks and eventu-
ally wrote everything up, giving it my best shot. I sent the
paper off to Operations Research. It was accepted!

Nevertheless, I had learned my lesson. I decided that
Borel fields and metric transitivity were not going to be
my career and retired from queuing. That was in 1961. My
retirement held until 2004 when I was accosted by e-mail
and in person at an INFORMS meeting by Tim Lowe to
write a chapter on “Little’s Law” for an OM book. Even
then, as he will tell you, I resisted re-entrapment, saying,
“I don’t know anything about OM and I haven’t looked at
L= ãW for 40 years.” Being always susceptible to a new
challenge and, more importantly, thanks to much help from
Steve Graves, who really does know OM, I took a run at
holding up my end of the chapter. It was a wonderful expe-
rience, and I learned much. So I started to look around for
ways to use Little’s Law in marketing and gave a few talks
that were embellishments of the supermarket application in
Little and Graves (2008). Interestingly, perhaps because of
our chapter, my e-mail and telephone traffic about Little’s
Law picked up and I had a few visitors.

In a piece of remarkable serendipity, I received an e-mail
in December 2009 from Ron Wolff, with whom I had
had no contact for years, saying that he had been asked
by John Wiley to write an article on “Little’s Law and
Related Results” for the Wiley Encyclopedia of Operations
Research and Management Science. In February 2010,
I suddenly realized that 2011 would be the 50th anniver-
sary of Little (1961) and mentioned it to Steve Graves,
who promptly told David Simchi-Levi, editor of Opera-
tions Research, who then asked me whether I would like
to do a retrospective piece for the journal to coincide with
the anniversary. I quickly agreed. Ron and Steve have since
been trusted advisors and the readers of my drafts. I owe
them many thanks but remain responsible for whatever is
written here.
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