
1

The Rise of ``Worse is Better''
By Richard Gabriel

I and just about every designer of Common Lisp and CLOS has had extreme exposure to the
MIT/Stanford style of design. The essence of this style can be captured by the phrase ``the right
thing.'' To such a designer it is important to get all of the following characteristics right:

• · Simplicity-the design must be simple, both in implementation and interface. It is
more important for the interface to be simple than the implementation.

• · Correctness-the design must be correct in all observable aspects. Incorrectness is
simply not allowed.

• · Consistency-the design must not be inconsistent. A design is allowed to be slightly
less simple and less complete to avoid inconsistency. Consistency is as important as
correctness.

• · Completeness-the design must cover as many important situations as is practical.
All reasonably expected cases must be covered. Simplicity is not allowed to overly
reduce completeness.

I believe most people would agree that these are good characteristics. I will call the use of this
philosophy of design the ``MIT approach.'' Common Lisp (with CLOS) and Scheme represent
the MIT approach to design and implementation.

The worse-is-better philosophy is only slightly different:

• · Simplicity-the design must be simple, both in implementation and interface. It is
more important for the implementation to be simple than the interface. Simplicity is the
most important consideration in a design.

• · Correctness-the design must be correct in all observable aspects. It is slightly better
to be simple than correct.

• · Consistency-the design must not be overly inconsistent. Consistency can be
sacrificed for simplicity in some cases, but it is better to drop those parts of the design
that deal with less common circumstances than to introduce either implementational
complexity or inconsistency.

• · Completeness-the design must cover as many important situations as is practical.
All reasonably expected cases should be covered. Completeness can be sacrificed in
favor of any other quality. In fact, completeness must sacrificed whenever
implementation simplicity is jeopardized. Consistency can be sacrificed to achieve
completeness if simplicity is retained; especially worthless is consistency of interface.

Early Unix and C are examples of the use of this school of design, and I will call the use of this
design strategy the ``New Jersey approach.'' I have intentionally caricatured the worse-is-better
philosophy to convince you that it is obviously a bad philosophy and that the New Jersey
approach is a bad approach.

2

However, I believe that worse-is-better, even in its strawman form, has better survival
characteristics than the-right-thing, and that the New Jersey approach when used for software is a
better approach than the MIT approach.

Let me start out by retelling a story that shows that the MIT/New-Jersey distinction is valid and
that proponents of each philosophy actually believe their philosophy is better.

Two famous people, one from MIT and another from Berkeley (but working on Unix) once met
to discuss operating system issues. The person from MIT was knowledgeable about ITS (the
MIT AI Lab operating system) and had been reading the Unix sources. He was interested in how
Unix solved the PC loser-ing problem. The PC loser-ing problem occurs when a user program
invokes a system routine to perform a lengthy operation that might have significant state, such as
IO buffers. If an interrupt occurs during the operation, the state of the user program must be
saved. Because the invocation of the system routine is usually a single instruction, the PC of the
user program does not adequately capture the state of the process. The system routine must either
back out or press forward. The right thing is to back out and restore the user program PC to the
instruction that invoked the system routine so that resumption of the user program after the
interrupt, for example, re-enters the system routine. It is called ``PC loser-ing'' because the PC is
being coerced into ``loser mode,'' where ``loser'' is the affectionate name for ``user'' at MIT.

The MIT guy did not see any code that handled this case and asked the New Jersey guy how the
problem was handled. The New Jersey guy said that the Unix folks were aware of the problem,
but the solution was for the system routine to always finish, but sometimes an error code would
be returned that signaled that the system routine had failed to complete its action. A correct user
program, then, had to check the error code to determine whether to simply try the system routine
again. The MIT guy did not like this solution because it was not the right thing.

The New Jersey guy said that the Unix solution was right because the design philosophy of Unix
was simplicity and that the right thing was too complex. Besides, programmers could easily
insert this extra test and loop. The MIT guy pointed out that the implementation was simple but
the interface to the functionality was complex. The New Jersey guy said that the right tradeoff
has been selected in Unix-namely, implementation simplicity was more important than interface
simplicity.

The MIT guy then muttered that sometimes it takes a tough man to make a tender chicken, but
the New Jersey guy didn't understand (I'm not sure I do either).

Now I want to argue that worse-is-better is better. C is a programming language designed for
writing Unix, and it was designed using the New Jersey approach. C is therefore a language for
which it is easy to write a decent compiler, and it requires the programmer to write text that is
easy for the compiler to interpret. Some have called C a fancy assembly language. Both early
Unix and C compilers had simple structures, are easy to port, require few machine resources to
run, and provide about 50%--80% of what you want from an operating system and programming
language.

3

Half the computers that exist at any point are worse than median (smaller or slower). Unix and C
work fine on them. The worse-is-better philosophy means that implementation simplicity has
highest priority, which means Unix and C are easy to port on such machines. Therefore, one
expects that if the 50% functionality Unix and C support is satisfactory, they will start to appear
everywhere. And they have, haven't they?

Unix and C are the ultimate computer viruses.

A further benefit of the worse-is-better philosophy is that the programmer is conditioned to
sacrifice some safety, convenience, and hassle to get good performance and modest resource use.
Programs written using the New Jersey approach will work well both in small machines and
large ones, and the code will be portable because it is written on top of a virus.

It is important to remember that the initial virus has to be basically good. If so, the viral spread is
assured as long as it is portable. Once the virus has spread, there will be pressure to improve it,
possibly by increasing its functionality closer to 90%, but users have already been conditioned to
accept worse than the right thing. Therefore, the worse-is-better software first will gain
acceptance, second will condition its users to expect less, and third will be improved to a point
that is almost the right thing. In concrete terms, even though Lisp compilers in 1987 were about
as good as C compilers, there are many more compiler experts who want to make C compilers
better than want to make Lisp compilers better.

The good news is that in 1995 we will have a good operating system and programming language;
the bad news is that they will be Unix and C++.

There is a final benefit to worse-is-better. Because a New Jersey language and system are not
really powerful enough to build complex monolithic software, large systems must be designed to
reuse components. Therefore, a tradition of integration springs up.

How does the right thing stack up? There are two basic scenarios: the ``big complex system
scenario'' and the ``diamond-like jewel'' scenario.

The ``big complex system'' scenario goes like this:

First, the right thing needs to be designed. Then its implementation needs to be designed. Finally
it is implemented. Because it is the right thing, it has nearly 100% of desired functionality, and
implementation simplicity was never a concern so it takes a long time to implement. It is large
and complex. It requires complex tools to use properly. The last 20% takes 80% of the effort, and
so the right thing takes a long time to get out, and it only runs satisfactorily on the most
sophisticated hardware.

The ``diamond-like jewel'' scenario goes like this:

The right thing takes forever to design, but it is quite small at every point along the way. To
implement it to run fast is either impossible or beyond the capabilities of most implementors.

4

The two scenarios correspond to Common Lisp and Scheme.

The first scenario is also the scenario for classic artificial intelligence software.

The right thing is frequently a monolithic piece of software, but for no reason other than that the
right thing is often designed monolithically. That is, this characteristic is a happenstance.

The lesson to be learned from this is that it is often undesirable to go for the right thing first. It is
better to get half of the right thing available so that it spreads like a virus. Once people are
hooked on it, take the time to improve it to 90% of the right thing.

A wrong lesson is to take the parable literally and to conclude that C is the right vehicle for AI
software. The 50% solution has to be basically right, and in this case it isn't.

But, one can conclude only that the Lisp community needs to seriously rethink its position on
Lisp design. I will say more about this later.

