
Programming
Techniques

G. Manacher, S.L. Graham
Editors

An Efficient,
Incremental,
Automatic Garbage
Collector
L. Peter Deutsch and Daniel G. Bobrow
Xerox Palo Alto Research Center

This paper describes a new way of solving the
storage reclamation problem for a system such as Lisp
that allocates storage automatically from a heap, and
does not require the programmer to give any indication
that particular items are no longer useful or accessible.
A reference count scheme for reclaiming non-self-
referential structures, and a linearizing, compacting,
copying scheme to reorganize all storage at the users
discretion are proposed. The algorithms are designed to
work well in systems which use multiple levels of
storage, and large virtual address space. They depend
on the fact that most cells are referenced exactly once,
and that reference counts need only be accurate when
storage is about to be reclaimed. A transaction file
stores changes to reference counts, and a multiple
reference table stores the count for items which are
referenced more than once.

Key Words and Phrases: storage management,
garbage collection, Lisp

CR Categories: 4.19

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA 94304.

522

Introduction

Attention to details of allocation of storage, and
explicit deletion of storage no longer necessary, is a
burden on a programmer who is trying to focus atten-
tion on a problem to be solved. Languages such as Lisp
and Snobol, which are designed to facilitate program-
ming of complex symbolic processes, ease this burden
by providing automatic storage allocation and reClama-
tion. Such storage management facilities have been
designed, in general, to work best in an environment in
which all storage can be kept in rapid r andom access
memory. In addition, schemes thus far implemented
have a overhead while running which is proport ional to
the amount of storage in use.

In this paper, we suggest a combination of varia-
tions of the two standard methods which we claim
provides a more elegant and efficient solution to the
storage reclamation problem. Our scheme allows in-
cremental collection of most unused storage, and works
well in a system which uses a hierarchy of memory
storage devices. Automatic reclamation of storage no
longer in use is done by the following two techniques:

(1) Garbage collection. When storage fills up, the
system traces starting f rom all data structures directly
accessible to the programmer, marking these and all
indirectly accessible structures as needing to be retained.
Then all space not marked is reclaimed. The disadvan-
tage of garbage collection is that the time it takes to
collect unused space is proport ional to the amount of
space still in use, since that all must be traced. In addi-
tion, in an extended physical memory system, the gar-
bage collector must access many pages on secondary
store, an inherently slow process. Finally, garbage
collection is a completely disruptive process; computa-
tion cannot proceed while it is in progress. Aside f rom
the Bobrow proposal [1] for garbage collection while
processing continues, which has never been imple-
mented and may actually not work, garbage collection
usually requires a consistent static state, with the stack
frozen.

(2) Reference counts. Each allocated datum keeps
track of how many other data reference it. (This in-
eludes pointers f rom variable values as well as f rom
other allocated data.) When the count becomes zero,
the da tum can be reclaimed. This scheme does not
detect self-referential structures which are not accessible
f rom the outside; also, the reference count is often only
a few bits wide, and once it reaches its max imum value
it can never be decremented. These properties require a
garbage collector in addition to the reference counting.
Most inaccessible storage is picked up by the reference
count going to zero, and thus garbage collections can
be much less frequent and ensure max imum utilization
of storage. Since the garbage collections are not needed
often, the user can be given the choice (responsibility)
for choosing a convenient moment to initiate one.

The chief attraction of there fe rence count scheme

Communications September 1976
of Volume 19
the ACM Number 9

is that it is transaction-oriented: that is, the overhead
required for proper storage reclamation (the increment-
ing and decrementing of the counts) is proportional to
the number of transactions which affect the accessibility
of data. Only operations which change pointers to
structures can affect accessibility. These include up-
dating pointers in record structures, and changing the
values of variables which contain pointer values. Since
these operations are usually uniformly distributed in a
computation, the overhead for storage maintenance is
roughly proportional to the total computational effort.
This is not true for garbage collection: the overhead
for the marking phase is proportional to the total
amount of data in the system. This tends to suggest
reference counts, rather than tracing, as the basis of
any incremental reclamation scheme.

A pure reference count scheme has two significant
sources of overhead:

(1) Every allocated datum (list cell, record, etc.)
must include space for the reference count. This space
overhead may be quite significant in a system like Lisp
where the allocation unit is a single word. Packing con-
straints often render it awkward to store the reference
count within the datum itself, which engenders addi-
tional computational overhead. There is also a tradeoff
between wider counts and more frequent garbage col-
lections necessitated by counts reaching their maximum
value.

(2) Every transaction which may affect the accessi-
bility of a datum must alter the reference count. This
includes creation of new data, of course, but it also
includes resetting of pointer variables, binding and un-
binding of function arguments, and all stores into exist-
ing allocated data. In many systems the time (or code)
overhead required for altering the count on every
assignment to a variable is intolerable. In a system in
which the data referenced can be in secondary memory
when the reference change is made (e.g. Interlisp), the
time to update the count will be intolerable, even if
special hardware allows simple code for in-core refer-
ence changes.

In the remainder of this paper we will discuss a
specific scheme for overcoming both of these deficien-
cies.

Our proposals are specifically directed towards Lisp,
although they are applicable to other systems which
exhibit similar statistical properties. We derive our
motivation from the following behavioral properties of
the Lisp programs examined by Clark and Green [4].
These data indicate that when list ceils (data items) are
created, they tend to be "nailed down" very soon by
the creation of another cell which references them. Al-
ternatively, (although less frequently) they are soon
"abandoned," with no reference to them remaining
anywhere. For kinds of data other than lists (for exam-
ple, strings, real numbers) it is even more likely that a
newly allocated object holds a " temporary" result and
will be abandoned in short order. In addition, very few

cells (2 percent to 10 percent) are ever referenced by
more than one cell. Put another way, allocated space
tends to be used in a somewhat stack-like manner. (We
conjecture that this is a natural property of computa-
tions written in languages which encourage hierarchical
decomposition of programs.)

We also take the point of view that core space is at
a premium, that disk accesses are expensive, but that
computational power is fairly cheap. This is well in
keeping with current technological trends (microcom-
puters and other microprogrammed processors).

1. Basic Method

We begin by borrowing a notion from commercial
data processing: the transaction file. In an environment
where most data is stored on tape, update information
must be accumulated over a long period of time, and
then sorted to be merged serially with the data. (We
assume that our data are stored on disk, not tape, but
since we are interested in interactive and even real-time
applications, we have proportionately more stringent
time constraints on processing time for an individual
transaction.) We can identify three kinds of transactions
(other than manipulation of variable values, which we
do not wish to subject to any transaction overhead)
that may affect accessibility of allocated data: alloca-
tion of a new cell from free space; creation of a pointer
to a cell; and destruction of a pointer to a cell. Rather
than incur the space overhead for storing reference
counts with the data themselves, the immediate time
overhead for adjusting them at the time of the transac-
tion, and the paging overhead associated with random
access to data, we simply save away the transactions on
a (sequential) file. At suitable intervals, we read back
the transactions and adjust all the reference counts,
which are stored completely separate from the data.

Since the vast majority of data have a reference
count of 1, we propose to keep a hash table in which
the key is the cell address, a hash link as described by
Bobrow [2]. The associated value is the reference count,
in which only those cells with a count of 2 or more
appear. Since we are not counting variable references,
we logically need another table to account for data
only referenced from variables on the stack or not at
all; that is, all cells for which the number of references
from other cells is zero. We will refer to these tables as
the multireference table or MRT, and the zero count
table or ZCT, respectively. Then bringing the tables up
to date essentially requires performing the following
steps for each entry in the transaction file:

For an "allocate" transaction: make an entry in the
ZCT, since there are no pointers to the new datum yet.
I f an allocate is immediately followed by an operation
which "created a pointer" to this new datum (a common
case), then the pair of transactions can be ignored.

For a "create pointer" transaction: if the datum

523 Communications September 1976
of Volume 19
the ACM Number 9

being referenced is in the ZCT, just delete it, since the
effective reference count is 1; if the datum is in the
MRT, increment the associated count (unless it is at
its maximum) ; otherwise, the datum has a default count
of 1, so enter it in the MRT with a count of 2.

For a "destroy pointer" transaction: if the datum
being referenced is in the MRT, delete it if the asso-
ciated count is 2; if the count is at its maximum, leave
it; otherwise decrement the count. I f there is no entry
in the MRT, the da tum has a default count of 1, so
enter it in the ZCT.

Once the tables are correct, precisely those data are
reclaimable which are present in the ZCT and are not
referenced by variables. One efficient way to find these
items is to create a variable reference table (VRT) which
contains in a hash table all those pointers referenced
from the stack. Then the ZCT can be scanned, and any
cell not referenced from the VRT can be reclaimed.
Entries for reclaimed cells can be deleted from the
ZCT; entries for cells referenced from variables can not
be deleted.

Reclaiming a datum requires not only linking it to
a free space list, but also decrementing the reference
counts of any data which it may point to. This transac-
tion may, of course, be stored for future processing just
like those which occur in the course of normal compu-
tation, but since there is a good chance that a sizable
structure will be freed all at once, and since the hash
tables must be in core during the reclamation process
anyway, it seems preferable to do the transaction
processing on-the-spot. If this transaction in turn leads
to new entries in the ZCT, they must be checked against
the VRT to determine whether they too can be re-
claimed. If a large structure is being freed, however, it
may be desirable to defer some of the processing in
order to disperse the disruptive effects of disk refer-
ences required if the structure occupies many pages.

2. Improvements

Our statistics show that a newly allocated datum is
likely to be either "nailed down" or abandoned within
a relatively short time. In the former case, there will
be an "allocate" and a "create pointer" transaction
close together in the file; in the latter, an "allocate"
and no more transactions involving that datum at all.
We would like both cases to be detected as they occur,
to shift more of the reclamation overhead to accom-
pany the ongoing computation, provided we can do
this without tying up additional core space.

To detect "aUocate"-"create" events in the trans-
action file, we would like the file itself to be hashed by
address. This is not practical, of course, since the file is
sequential precisely so that it does not have to occupy
scarce random-access memory. However, it will pre-
sumably have a reasonable buffer in core, to economize
on disk references, and this buffer can be organized as

524

a hash table. In this table, the key is the cell address
and the cumulative adjustment of the reference count
is the value, with a distinguished value indicating an
"allocate" transaction. Then a "create" which finds an
"allocate" in the table can simply remove the entry;
similarly, a "dest roy" which follows a single "create"
can delete the entry.

To detect rapidly abandoned data, we can use the
same hash table: just before finally writing out the
buffer, we can scan the stack, and any "al locate"
entry (which implies no subsequent "create" transac-
tions for that datum) whose datum is not referenced
from the stack can be reclaimed then and there. This
process sounds expensive, but if the stack is all in core
and only occupies a few thousand cells, the time is on
the order of tens of milliseconds, which is certainly
supportable in an interactive system. In fact, this time
is comparable to that required to write the buffer on
the disk.

3. Linearizing Garbage Collection

The reclamation scheme just described relies on
reference counts, and therefore cannot reclaim circular
structures not referenced from outside themselves. How-
ever, as remarked in the introductory section, all refer-
ence count schemes also require an independent trace-
accessible-storage garbage collector (which can be run
quite infrequently) to deal with this situation. Since it
runs so seldom, we think Of the principal functions of
this independent garbage collector as compaction of
storage and reorganization to produce more linear lists,
as opposed to the dynamic reclamation of abandoned
data which we have been discussing.

The algorithm derived below uses the tracing tech-
nique for linearization invented by Minsky [6], and
copies the structures to be retained into a new linearized
space as was suggested by Fenichel and Yokelson [5].
All of the space copied from is returned to free storage
as a block. The principal difference between our scheme
and the Fenichel-Yokelson scheme is that their scheme
requires every list cell to be large enough to contain a
mark and a pointer to the place to which that cell has
been moved. In our algorithm, only those ceils which
are multiply referenced need an associated mark and
relocation address. This becomes important when the
statistics of lists allow compact encoding of individual
cells; in the usual case, the ceils may actually be too
small to accommodate even one full-size address.

For the purposes of this compaction algorithm, the
MRT is copied into a new form which has room in
each entry for the relocation address for the multiply
referenced cell; that is, a pointer to the cell into which
it is moved when found by tracing from one of the user-
accessible root pointers. This expanded MR T is also
augmented by those data referenced from the stack
which are not in the ZCT, i.e. those wh;ch are multiply

Communications September 1976
of Volume 19
the ACM Number 9

referenced taking the stack into account. If there is
significant locality in the list structure, as might be
produced by an appropriate allocation algorithm [3],
access to the expanded MRT could be made nearly
sequential if it is kept sorted rather than hashed.

In the algorithm below, a tom(a) , car(a) , and cdr(a)
have their usual Lisp meanings. N l i s t p (x) is true if x is
not a list cell, and col lec tn l i s tp (x) invokes that portion
of the garbage collector which collects non-list items.
The free variable L N is the location of the next avail-
able cons cell in the space into ~vhich we are copying.
I n c r (L N) will increment this quantity, taking account
of any nonuniformities of the space. D o c o n s (L N , a,d)
inserts in the cons cell at L N the pointers to a and d in
the car and cdr fields, respectively. Claim(oldhal f space)
makes the old halfspace free. The set of root pointers
can be sorted by address to minimize paging. For a
multiply referenced cell c, we will refer to the entry for c
in the expanded MRT as mrt[c]. We" assume that
t o r t [c] - -0 if and only if c has not yet been seen in the
compaction-collection cycle. If x is a cell which is not
multiply referenced, then mrt[x] = - 1.

Here is the algorithm:

compactor() =
prog[[p]

initialize (LN);
(for each root pointer p) p : = GCcopy(p);
claim (oldhal f space) ;
]

GCcopy(p) =
nlistp(p)--*collectnlistp(p) ;
mrt[p]> O--*mrt[p]; p has previously been copied, return

new location
T---~prog[[a,d,n]

n: = LN; incr(LN) ;
(mrt[p]=O--~mrt[p]:=n);p not yet copied but is multiply

referenced, save new address
d: = GCcopy(cdr(p)) ;
a: = GCcopy(car(p)) ;
docons(n,a,d) ; make new cons cell
return(n);
]

1

4. Incremental Linearization

Linearization of data even within a single page may
be desirable if linear storage of lists leads to a particu-
larly compact representation (as discussed in [4] and
[7]). Complete compaction of a system with hundreds
of thousands of words of data would take on the order
of several minutes, since most of the critical data would
not fit in core. It appears that incremental compaction,
if done sufficiently often, will require relatively few disk
references, and take five or ten seconds with relatively
small working set.

The basic idea is that immediately after a compac-
tion, one "draws a line" which separates all data struc-
tures created before the compaction from those created
after. We will call the data created since the last com-

525

paction "new data." Incremental linearization will be
done only to this new data. This assumes that the
reference count scheme will take care of most of the
old data released, and full linearization will be done
sometime if the rest of storage needs to be reclaimed.
The same basic algorithm works, with a few straight-
forward modifications--specifying a different set of root
pointers, segmenting the MRT and ZCT tables, and
checking for references from the new data to the old
data.

R o o t pointers . In the global algorithm, Compactor,
the set of root pointers is all the permanent or exter-
nally accessible places for storage of a pointer, and the
stack if one is active at that time. For incremental
linearization, the root pointers are just those ceils in
the old data which refer to the new data, including
externally accessible cells which point into the new
data space. One way of determining this set of root
pointers is by a linear sweep of the entire virtual address
space, checking each pointer encountered. This may be
reasonable on some hardware configurations where the
time to do a linear sweep over the virtual space is rela-
tively low, and the check can be done on the fly. To
eliminate much of this sweep, a bit can be kept for each
page of old data, and it can be set to 1 if and only if it
has been written on since the line was drawn. (This
type of check is easy to implement in a microprocessor).
A third alternative is to augment the transaction mecha-
nism. For every "create-pointer" transaction which
changes a pointer from the old data to the new data,
the location of the cell changed could be recorded. This
set of locations, sorted with duplicates removed would
form the set of root pointers (along with the stack
entries).

The M R T and Z C T tables. In compacting the new
data, only that portion of the MRT is needed which
contains reference counts for the new data area. This
implies that the MRT might be segmented by address
of the cell referenced. This segmentation has the added
advantage that if the entire MRT cannot fit in core
during full compaction, the transaction processor can
easily make multiple passes over the transaction file,
filtering entries on the basis of a simple magnitude test.
A similar argument holds for the segmentation of the
ZCT by address.

The algorithm for compactor can be modified by
replacing references to mrt[p] by references to lmrt[p],
a local multiple reference table. One other change must
be made; where the m r t table is checked, a check should
be made previously to see if p is a pointer into the old
data. I f so, the pointer itself should be returned as the
lmrt[p].

5. Further Observations

It appears that the reclamation process can be done
almost entirely by a processor and local memory sepa-

Communications September 1976
of Volume 19
the ACM Number 9

rate from the processor and memory used for the main
computation. The ZCT and MRT need never be refer-
enced by the main processor. The transaction buffers
can be delivered to the auxiliary processor and used to
update the reference count tables as soon as they arrive.
When the main processor reaches a convenient point,
it can transmit the current stack to the auxiliary proces-
sor; the auxiliary processor can look the pointers up in
the ZCT as they arrive, and obtain a list of reclaimable
cells immediately upon receiving the last piece of the
stack. There still remains the problem of reclaiming
ceils which become free when the last cell referencing
them is reclaimed; however, since no transactions will
ever reference a cell once that cell is genuinely inaccessi-
ble, the main processor can ship pages to the auxiliary
processor at its leisure, and the auxiliary processor lags
behind the main processor in the identification of re-
claimable cells.

Even without the use of a second processor, it
appears feasible to use this method in a real time envi-
ronment. To do this we must be able to identify the
storage needs of those operations which must run in
real time. We can then construct a second allocation
zone, with its own transaction queue and count tables
(perhaps both kept in core), for use by the real time
program. For this to work properly, we must guarantee
that any transaction which affects the real time zone
be placed on the real time queue, and that the reclaimer
for the real time zone must run often enough to empty
the queue and maintain adequate free storage.

Received November 1974; revised June 1975

References
1. Bobrow, D.G. Storage management in LISP. In Symbol
Manpulation Languages and Techniques, D.G. Bobrow, Ed.,
North-Holland Pub. Co., Amsterdam, 1968.
2. Bobrow, D.G. A note on hash linking. Comm. ACM 18, 7
(July 1975), 413--415.
3. Bobrow, D.G., and Murphy, D.L. Structure of a LISP system
using two-level storage. Comm. ACM 10, 3 (March 1967),
155-159.
4. Clark, D., and Green, C.C. An empirical study of list
structure in LISP. Stanford U., Stanford, Calif. Comm. ACM (to
appear).
5. Fenichel, R.R., and Yochelson, J.C. A LISP Garbage-Col-
lector for Virtual-Memory Computer Systems. Comm. ACM 12,
11 (Nov. 1969), 611-612.
6. Minsky, M.L. A LISP garbage collector algorithm using
secondary serial storage, rev. Memo No. 58, M.I.T. Artificial
Intelligence Lab., M.1.T., Cambridge, Mass., 1963.
7. Van der Poel, W.L. A manual of HISP for the PDP-9. U. of
Delft, Delft, Netherlands, 1974.

Programming
Techniques

G. Manacher, S.L. Graham
Editors

Faster Retrieval from
Context Trees
Ben Wegbreit
Xerox Palo Alto Research Center

Context trees provide a convenient way of storing
data which is to be viewed as a hierarchy of contexts.
This note presents an algorithm which improves on
previous context tree retrieval algorithms. It is based
on the observation that in typical uses context changes
are infrequent relative to retrievals, so that data can
be cached to speed up retrieval. A retrieval is started
from the position of the previous retrieval and auxiliary
structures are built up to make the search rapid.
Algorithms for addition and deletion of data and for
garbage collection are outlined.

Key Words and Phrases: context trees, frame
problem, variable bindings, data structures

CR Categories: 3.69, 3.74, 4.10

526

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA 94304.

Communications September 1976
of Volume 19
the ACM Number 9

