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This paper describes a new way of  solving the 
storage reclamation problem for a system such as Lisp 
that allocates storage automatically from a heap, and 
does not require the programmer to give any indication 
that particular items are no longer useful or accessible. 
A reference count scheme for reclaiming non-self- 
referential structures, and a linearizing, compacting, 
copying scheme to reorganize all storage at the users 
discretion are proposed. The algorithms are designed to 
work well in systems which use multiple levels of 
storage, and large virtual address space. They depend 
on the fact that most cells are referenced exactly once, 
and that reference counts need only be accurate when 
storage is about to be reclaimed. A transaction file 
stores changes to reference counts, and a multiple 
reference table stores the count for items which are 
referenced more than once. 

Key Words and Phrases: storage management, 
garbage collection, Lisp 

CR Categories: 4.19 

Copyright © 1976, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Authors' address: Xerox Palo Alto Research Center, 3333 
Coyote Hill Road, Palo Alto, CA 94304. 

522 

Introduction 

Attention to details of  allocation of storage, and 
explicit deletion of storage no longer necessary, is a 
burden on a programmer  who is trying to focus atten- 
tion on a problem to be solved. Languages such as Lisp 
and Snobol, which are designed to facilitate program- 
ming of complex symbolic processes, ease this burden 
by providing automatic storage allocation and reClama- 
tion. Such storage management  facilities have been 
designed, in general, to work best in an environment in 
which all storage can be kept in rapid r andom access 
memory.  In addition, schemes thus far implemented 
have a overhead while running which is proport ional  to 
the amount  of  storage in use. 

In this paper, we suggest a combination of varia- 
tions of the two standard methods which we claim 
provides a more elegant and efficient solution to the 
storage reclamation problem. Our scheme allows in- 
cremental collection of most  unused storage, and works 
well in a system which uses a hierarchy of memory  
storage devices. Automatic  reclamation of storage no 
longer in use is done by the following two techniques: 

(1) Garbage collection. When storage fills up, the 
system traces starting f rom all data structures directly 
accessible to the programmer,  marking these and all 
indirectly accessible structures as needing to be retained. 
Then all space not  marked is reclaimed. The disadvan- 
tage of garbage collection is that  the time it takes to 
collect unused space is proport ional  to the amount  of  
space still in use, since that all must  be traced. In addi- 
tion, in an extended physical memory  system, the gar- 
bage collector must access many  pages on secondary 
store, an inherently slow process. Finally, garbage 
collection is a completely disruptive process; computa-  
tion cannot proceed while it is in progress. Aside f rom 
the Bobrow proposal  [1] for garbage collection while 
processing continues, which has never been imple- 
mented and may actually not work, garbage collection 
usually requires a consistent static state, with the stack 
frozen. 

(2) Reference counts. Each allocated datum keeps 
track of how many other data reference it. (This in- 
eludes pointers f rom variable values as well as f rom 
other allocated data.) When the count becomes zero, 
the da tum can be reclaimed. This scheme does not 
detect self-referential structures which are not  accessible 
f rom the outside; also, the reference count is often only 
a few bits wide, and once it reaches its max imum value 
it can never be decremented. These properties require a 
garbage collector in addition to the reference counting. 
Most  inaccessible storage is picked up by the reference 
count going to zero, and thus garbage collections can 
be much less frequent and ensure max imum utilization 
of  storage. Since the garbage collections are not  needed 
often, the user can be given the choice (responsibility) 
for choosing a convenient moment  to initiate one. 

The chief attraction of there fe rence  count scheme 
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is that it is transaction-oriented: that is, the overhead 
required for proper storage reclamation (the increment- 
ing and decrementing of the counts) is proportional to 
the number of transactions which affect the accessibility 
of data. Only operations which change pointers to 
structures can affect accessibility. These include up- 
dating pointers in record structures, and changing the 
values of variables which contain pointer values. Since 
these operations are usually uniformly distributed in a 
computation, the overhead for storage maintenance is 
roughly proportional to the total computational effort. 
This is not true for garbage collection: the overhead 
for the marking phase is proportional to the total 
amount  of data in the system. This tends to suggest 
reference counts, rather than tracing, as the basis of 
any incremental reclamation scheme. 

A pure reference count scheme has two significant 
sources of overhead: 

(1) Every allocated datum (list cell, record, etc.) 
must include space for the reference count. This space 
overhead may be quite significant in a system like Lisp 
where the allocation unit is a single word. Packing con- 
straints often render it awkward to store the reference 
count within the datum itself, which engenders addi- 
tional computational overhead. There is also a tradeoff 
between wider counts and more frequent garbage col- 
lections necessitated by counts reaching their maximum 
value. 

(2) Every transaction which may affect the accessi- 
bility of a datum must alter the reference count. This 
includes creation of new data, of course, but  it also 
includes resetting of pointer variables, binding and un- 
binding of function arguments, and all stores into exist- 
ing allocated data. In many systems the time (or code) 
overhead required for altering the count on every 
assignment to a variable is intolerable. In a system in 
which the data referenced can be in secondary memory 
when the reference change is made (e.g. Interlisp), the 
time to update the count will be intolerable, even if 
special hardware allows simple code for in-core refer- 
ence changes. 

In the remainder of this paper we will discuss a 
specific scheme for overcoming both of these deficien- 
cies. 

Our proposals are specifically directed towards Lisp, 
although they are applicable to other systems which 
exhibit similar statistical properties. We derive our 
motivation from the following behavioral properties of 
the Lisp programs examined by Clark and Green [4]. 
These data indicate that when list ceils (data items) are 
created, they tend to be "nailed down" very soon by 
the creation of another cell which references them. Al- 
ternatively, (although less frequently) they are soon 
"abandoned,"  with no reference to them remaining 
anywhere. For  kinds of data other than lists (for exam- 
ple, strings, real numbers) it is even more likely that a 
newly allocated object holds a " temporary"  result and 
will be abandoned in short order. In addition, very few 

cells (2 percent to 10 percent) are ever referenced by 
more than one cell. Put another way, allocated space 
tends to be used in a somewhat stack-like manner. (We 
conjecture that this is a natural property of computa- 
tions written in languages which encourage hierarchical 
decomposition of programs.) 

We also take the point of view that core space is at 
a premium, that disk accesses are expensive, but that 
computational power is fairly cheap. This is well in 
keeping with current technological trends (microcom- 
puters and other microprogrammed processors). 

1. Basic  Method 

We begin by borrowing a notion from commercial 
data processing: the transaction file. In an environment 
where most data is stored on tape, update information 
must be accumulated over a long period of time, and 
then sorted to be merged serially with the data. (We 
assume that our data are stored on disk, not tape, but  
since we are interested in interactive and even real-time 
applications, we have proportionately more stringent 
time constraints on processing time for an individual 
transaction.) We can identify three kinds of transactions 
(other than manipulation of variable values, which we 
do not wish to subject to any transaction overhead) 
that may affect accessibility of allocated data: alloca- 
tion of a new cell from free space; creation of a pointer 
to a cell; and destruction of a pointer to a cell. Rather 
than incur the space overhead for storing reference 
counts with the data themselves, the immediate time 
overhead for adjusting them at the time of the transac- 
tion, and the paging overhead associated with random 
access to data, we simply save away the transactions on 
a (sequential) file. At suitable intervals, we read back 
the transactions and adjust all the reference counts, 
which are stored completely separate from the data. 

Since the vast majority of data have a reference 
count of 1, we propose to keep a hash table in which 
the key is the cell address, a hash link as described by 
Bobrow [2]. The associated value is the reference count, 
in which only those cells with a count of 2 or more 
appear. Since we are not counting variable references, 
we logically need another table to account for data 
only referenced from variables on the stack or not at 
all; that is, all cells for which the number of references 
from other cells is zero. We will refer to these tables as 
the multireference table or MRT, and the zero count 
table or ZCT, respectively. Then bringing the tables up 
to date essentially requires performing the following 
steps for each entry in the transaction file: 

For an "allocate" transaction: make an entry in the 
ZCT, since there are no pointers to the new datum yet. 
I f  an allocate is immediately followed by an operation 
which "created a pointer" to this new datum (a common 
case), then the pair of transactions can be ignored. 

For a "create pointer" transaction: if the datum 
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being referenced is in the ZCT, just delete it, since the 
effective reference count is 1; if the datum is in the 
MRT, increment the associated count (unless it is at 
its maximum) ; otherwise, the datum has a default count 
of 1, so enter it in the MRT with a count of 2. 

For a "destroy pointer" transaction: if the datum 
being referenced is in the MRT, delete it if the asso- 
ciated count is 2; if the count is at its maximum, leave 
it; otherwise decrement the count. I f  there is no entry 
in the MRT, the da tum has a default count of 1, so 
enter it in the ZCT. 

Once the tables are correct, precisely those data are 
reclaimable which are present in the ZCT and are not 
referenced by variables. One efficient way to find these 
items is to create a variable reference table (VRT) which 
contains in a hash table all those pointers referenced 
from the stack. Then the ZCT can be scanned, and any 
cell not referenced from the VRT can be reclaimed. 
Entries for reclaimed cells can be deleted from the 
ZCT;  entries for cells referenced from variables can not 
be deleted. 

Reclaiming a datum requires not only linking it to 
a free space list, but also decrementing the reference 
counts of any data which it may point to. This transac- 
tion may, of course, be stored for future processing just 
like those which occur in the course of normal compu- 
tation, but  since there is a good chance that a sizable 
structure will be freed all at once, and since the hash 
tables must be in core during the reclamation process 
anyway, it seems preferable to do the transaction 
processing on-the-spot. If  this transaction in turn leads 
to new entries in the ZCT, they must be checked against 
the VRT to determine whether they too can be re- 
claimed. If  a large structure is being freed, however, it 
may be desirable to defer some of the processing in 
order to disperse the disruptive effects of disk refer- 
ences required if the structure occupies many pages. 

2. Improvements 

Our statistics show that a newly allocated datum is 
likely to be either "nailed down" or abandoned within 
a relatively short time. In the former case, there will 
be an "allocate" and a "create pointer" transaction 
close together in the file; in the latter, an "allocate" 
and no more transactions involving that datum at all. 
We would like both cases to be detected as they occur, 
to shift more of the reclamation overhead to accom- 
pany the ongoing computation, provided we can do 
this without tying up additional core space. 

To detect "aUocate"-"create"  events in the trans- 
action file, we would like the file itself to be hashed by 
address. This is not practical, of  course, since the file is 
sequential precisely so that it does not  have to occupy 
scarce random-access memory. However, it will pre- 
sumably have a reasonable buffer in core, to economize 
on disk references, and this buffer can be organized as 
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a hash table. In this table, the key is the cell address 
and the cumulative adjustment of the reference count 
is the value, with a distinguished value indicating an 
"allocate" transaction. Then a "create" which finds an 
"allocate" in the table can simply remove the entry; 
similarly, a "dest roy" which follows a single "create" 
can delete the entry. 

To detect rapidly abandoned data, we can use the 
same hash table: just before finally writing out the 
buffer, we can scan the stack, and any "al locate" 
entry (which implies no subsequent "create"  transac- 
tions for that datum) whose datum is not referenced 
from the stack can be reclaimed then and there. This 
process sounds expensive, but if the stack is all in core 
and only occupies a few thousand cells, the time is on 
the order of tens of milliseconds, which is certainly 
supportable in an interactive system. In fact, this time 
is comparable to that required to write the buffer on 
the disk. 

3. Linearizing Garbage Collection 

The reclamation scheme just described relies on 
reference counts, and therefore cannot reclaim circular 
structures not referenced from outside themselves. How- 
ever, as remarked in the introductory section, all refer- 
ence count schemes also require an independent trace- 
accessible-storage garbage collector (which can be run 
quite infrequently) to deal with this situation. Since it 
runs so seldom, we think Of the principal functions of  
this independent garbage collector as compaction of 
storage and reorganization to produce more linear lists, 
as opposed to the dynamic reclamation of abandoned 
data which we have been discussing. 

The algorithm derived below uses the tracing tech- 
nique for linearization invented by Minsky [6], and 
copies the structures to be retained into a new linearized 
space as was suggested by Fenichel and Yokelson [5]. 
All of the space copied from is returned to free storage 
as a block. The principal difference between our scheme 
and the Fenichel-Yokelson scheme is that their scheme 
requires every list cell to be large enough to contain a 
mark and a pointer to the place to which that cell has 
been moved. In our algorithm, only those ceils which 
are multiply referenced need an associated mark and 
relocation address. This becomes important  when the 
statistics of lists allow compact encoding of individual 
cells; in the usual case, the ceils may actually be too 
small to accommodate even one full-size address. 

For  the purposes of this compaction algorithm, the 
MRT is copied into a new form which has room in 
each entry for the relocation address for the multiply 
referenced cell; that is, a pointer to the cell into which 
it is moved when found by tracing from one of the user- 
accessible root  pointers. This expanded MR T is also 
augmented by those data referenced from the stack 
which are not  in the ZCT, i.e. those wh;ch are multiply 
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referenced taking the stack into account. If  there is 
significant locality in the list structure, as might be 
produced by an appropriate allocation algorithm [3], 
access to the expanded MRT could be made nearly 
sequential if it is kept sorted rather than hashed. 

In the algorithm below, a tom(a ) ,  car(a) ,  and cdr(a) 
have their usual Lisp meanings. N l i s t p ( x )  is true if x is 
not a list cell, and col lec tn l i s tp (x )  invokes that portion 
of the garbage collector which collects non-list items. 
The free variable L N  is the location of the next avail- 
able cons cell in the space into ~vhich we are copying. 
I n c r ( L N )  will increment this quantity, taking account 
of any nonuniformities of the space. D o c o n s ( L N ,  a,d) 
inserts in the cons cell at L N  the pointers to a and d in 
the car and cdr fields, respectively. Claim(oldhal f space)  
makes the old halfspace free. The set of root  pointers 
can be sorted by address to minimize paging. For  a 
multiply referenced cell c, we will refer to the entry for c 
in the expanded MRT as mrt[c].  We" assume that 
t o r t [c ] - -0  if and only if c has not yet been seen in the 
compaction-collection cycle. If  x is a cell which is not 
multiply referenced, then mrt[x]  = - 1. 

Here is the algorithm: 

compactor( ) = 
prog[[p] 

initialize (LN); 
(for each root pointer p) p : =  GCcopy(p); 
claim ( oldhal f space) ; 
] 

GCcopy(p) = 
nlistp(p)--*collectnlistp(p) ; 
mrt[p]> O--*mrt[p]; p has previously been copied, return 

new location 
T---~prog[ [a,d,n] 

n: = LN; incr(LN) ; 
(mrt[p]=O--~mrt[p]:=n);p not yet copied but is multiply 

referenced, save new address 
d: = GCcopy(cdr(p) ) ; 
a: = GCcopy(car(p) ) ; 
docons(n,a,d) ; make new cons cell 
return(n); 
] 

1 

4. Incremental Linearization 

Linearization of data even within a single page may 
be desirable if linear storage of lists leads to a particu- 
larly compact representation (as discussed in [4] and 
[7]). Complete compaction of a system with hundreds 
of thousands of words of data would take on the order 
of several minutes, since most of the critical data would 
not fit in core. It appears that incremental compaction, 
if done sufficiently often, will require relatively few disk 
references, and take five or ten seconds with relatively 
small working set. 

The basic idea is that immediately after a compac- 
tion, one "draws a line" which separates all data struc- 
tures created before the compaction from those created 
after. We will call the data created since the last com- 
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paction "new data."  Incremental linearization will be 
done only to this new data. This assumes that the 
reference count scheme will take care of most of  the 
old data released, and full linearization will be done 
sometime if the rest of storage needs to be reclaimed. 
The same basic algorithm works, with a few straight- 
forward modifications--specifying a different set of  root  
pointers, segmenting the MRT and ZCT tables, and 
checking for references from the new data to the old 
data. 

R o o t  pointers .  In the global algorithm, Compactor,  
the set of root  pointers is all the permanent or exter- 
nally accessible places for storage of a pointer, and the 
stack if one is active at that time. For  incremental 
linearization, the root  pointers are just those ceils in 
the old data which refer to the new data, including 
externally accessible cells which point into the new 
data space. One way of determining this set of  root  
pointers is by a linear sweep of the entire virtual address 
space, checking each pointer encountered. This may be 
reasonable on some hardware configurations where the 
time to do a linear sweep over the virtual space is rela- 
tively low, and the check can be done on the fly. To  
eliminate much of this sweep, a bit can be kept for each 
page of old data, and it can be set to 1 if and only if it 
has been written on since the line was drawn. (This 
type of  check is easy to implement in a microprocessor). 
A third alternative is to augment the transaction mecha- 
nism. For  every "create-pointer" transaction which 
changes a pointer from the old data to the new data, 
the location of the cell changed could be recorded. This 
set of locations, sorted with duplicates removed would 
form the set of  root  pointers (along with the stack 
entries). 

The M R T  and  Z C T  tables.  In compacting the new 
data, only that portion of the MRT is needed which 
contains reference counts for the new data area. This 
implies that the MRT might be segmented by address 
of the cell referenced. This segmentation has the added 
advantage that if the entire MRT cannot fit in core 
during full compaction, the transaction processor can 
easily make multiple passes over the transaction file, 
filtering entries on the basis of a simple magnitude test. 
A similar argument holds for the segmentation of the 
ZCT by address. 

The algorithm for compactor can be modified by 
replacing references to mrt[p] by references to lmrt[p],  
a local multiple reference table. One other change must 
be made; where the m r t  table is checked, a check should 
be made previously to see if p is a pointer into the old 
data. I f  so, the pointer itself should be returned as the 
lmrt[p].  

5. Further Observations 

It appears that the reclamation process can be done 
almost entirely by a processor and local memory sepa- 
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rate from the processor and memory used for the main 
computation. The ZCT and MRT need never be refer- 
enced by the main processor. The transaction buffers 
can be delivered to the auxiliary processor and used to 
update the reference count tables as soon as they arrive. 
When the main processor reaches a convenient point, 
it can transmit the current stack to the auxiliary proces- 
sor; the auxiliary processor can look the pointers up in 
the ZCT as they arrive, and obtain a list of reclaimable 
cells immediately upon receiving the last piece of the 
stack. There still remains the problem of reclaiming 
ceils which become free when the last cell referencing 
them is reclaimed; however, since no transactions will 
ever reference a cell once that cell is genuinely inaccessi- 
ble, the main processor can ship pages to the auxiliary 
processor at its leisure, and the auxiliary processor lags 
behind the main processor in the identification of re- 
claimable cells. 

Even without the use of a second processor, it 
appears feasible to use this method in a real time envi- 
ronment. To do this we must be able to identify the 
storage needs of those operations which must run in 
real time. We can then construct a second allocation 
zone, with its own transaction queue and count tables 
(perhaps both kept in core), for use by the real time 
program. For  this to work properly, we must guarantee 
that any transaction which affects the real time zone 
be placed on the real time queue, and that the reclaimer 
for the real time zone must run often enough to empty 
the queue and maintain adequate free storage. 

Received November 1974; revised June 1975 

References 
1. Bobrow, D.G. Storage management in LISP. In Symbol 
Manpulation Languages and Techniques, D.G. Bobrow, Ed., 
North-Holland Pub. Co., Amsterdam, 1968. 
2. Bobrow, D.G. A note on hash linking. Comm. ACM 18, 7 
(July 1975), 413--415. 
3. Bobrow, D.G., and Murphy, D.L. Structure of a LISP system 
using two-level storage. Comm. ACM 10, 3 (March 1967), 
155-159. 
4. Clark, D., and Green, C.C. An empirical study of list 
structure in LISP. Stanford U., Stanford, Calif. Comm. ACM (to 
appear). 
5. Fenichel, R.R., and Yochelson, J.C. A LISP Garbage-Col- 
lector for Virtual-Memory Computer Systems. Comm. ACM 12, 
11 (Nov. 1969), 611-612. 
6. Minsky, M.L. A LISP garbage collector algorithm using 
secondary serial storage, rev. Memo No. 58, M.I.T. Artificial 
Intelligence Lab., M.1.T., Cambridge, Mass., 1963. 
7. Van der Poel, W.L. A manual of HISP for the PDP-9. U. of 
Delft, Delft, Netherlands, 1974. 

Programming 
Techniques 

G. Manacher, S.L. Graham 
Editors 

Faster Retrieval from 
Context Trees 
Ben Wegbreit 
Xerox Palo Alto Research Center 

Context trees provide a convenient way of storing 
data which is to be viewed as a hierarchy of  contexts. 
This note presents an algorithm which improves on 
previous context tree retrieval algorithms. It is based 
on the observation that in typical uses context changes 
are infrequent relative to retrievals, so that data can 
be cached to speed up retrieval. A retrieval is started 
from the position of  the previous retrieval and auxiliary 
structures are built up to make the search rapid. 
Algorithms for addition and deletion of data and for 
garbage collection are outlined. 
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