Wait-Free Synchronization

Maurice Herlihy
Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square
Cambridge, MA 02139

January 11, 1993

Abstract

A wait-free implementation of a concurrent data object is one that
guarantees that any process can complete any operation in a finite
number of steps, regardless of the execution speeds of the other pro-
cesses. The problem of constructing a wait-free implementation of one
data object from another lies at the heart of much recent work in
concurrent algorithms, concurrent data structures, and multiprocessor
architectures. In the first part of this paper, we introduce a simple
and general technique, based on reduction to a consensus protocol, for
proving statements of the form “there is no wait-free implementation of
X by Y.” We derive a hierarchy of objects such that no object at one
level has a wait-free implementation in terms of objects at lower levels.
In particular, we show that atomic read/write registers, which have
been the focus of much recent attention, are at the bottom of the hier-
archy: they cannot be used to construct wait-free implementations of
many simple and familiar data types. Moreover, classical synchroniza-
tion primitives such as testéset and fetch&add, while more powerful
than read and write, are also computationally weak, as are the stan-
dard message-passing primitives. Nevertheless, in the second part of
the paper, we show that there do exist simple universal objects from
which one can construct a wait-free implementation of any sequential
object.

A preliminary version of this paper appeared in the Proceedings of
the Seventh ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, August 1988 [12].

1 Introduction

A concurrent object is a data structure shared by concurrent processes. Al-
gorithms for implementing concurrent objects lie at the heart of many im-
portant problems in concurrent systems. The traditional approach to im-
plementing such objects centers around the use of critical sections: only one
process at a time is allowed to operate on the object. Nevertheless, criti-
cal sections are poorly suited for asynchronous, fault-tolerant systems: if a
faulty process is halted or delayed in a critical section, non-faulty processes
will also be unable to progress. Even in a failure-free system, a process can
encounter unexpected delay as a result of a page fault or cache miss, by
exhausting its scheduling quantum, or if it is swapped out. Similar prob-
lems arise in heterogeneous architectures, where some processors may be
inherently faster than others, and some memory locations may be slower to
access.

A wait-free implementation of a concurrent data object is one that guar-
antees that any process can complete any operation in a finite number of
steps, regardless of the execution speeds of the other processes. The wait-free
condition provides fault-tolerance: no process can be prevented from com-
pleting an operation by undetected halting failures of other processes, or by
arbitrary variations in their speed. The fundamental problem of wait-free
synchronization can be phrased as follows:

Given two concurrent objects X and Y, does there exist a wait-
free implementation of X by ¥7

It is clear how to show that a wait-free implementation exists: one dis-
plays it. Most of the current literature takes this approach. Examples
include “atomic” registers from non-atomic “safe” registers [19], complex
atomic registers from simpler atomic registers [4, 5, 16, 23, 25, 26, 29, 31],
read-modify-write operations from combining networks [11, 15], and typed
objects such as queues or sets from simpler objects [14, 18, 20].

It is less clear how to show that such an implementation does not ex-
ist. In the first part of this paper, we propose a simple new technique for
proving statements of the form “there is no wait-free implementation of X
by Y.” We derive a hierarchy of objects such that no object at one level
can implement any object at higher levels (see Figure 1). The basic idea
is the following: each object has an associated consensus number, which is
the maximum number of processes for which the object can solve a simple

consensus problem. In a system of » or more concurrent processes, we show
that it is impossible to construct a wait-free implementation of an object
with consensus number n from an object with a lower consensus number.

These impossibility results do not by any means imply that wait-free
synchronization is impossible or infeasible. In the second part of this paper,
we show that there exist universal objects from which one can construct a
wait-free implementation of any object. We give a simple test for univer-
sality, showing that an object is universal in a system of n processes if and
only if it has a consensus number greater than or equal to ». In Figure 1,
each object at level n is universal for a system of n processes. A machine
architecture or programming language is computationally powerful enough
to support arbitrary wait-free synchronization if and only if it provides a
universal object as a primitive.

Most recent work on wait-free synchronization has focused on the con-
struction of atomic read/write registers [4, 5, 16, 19, 23, 25, 26, 29, 31].
Our results address a basic question: what are these registers good for?
Can they be used to construct wait-free implementations of more complex
data structures? We show that atomic registers have few, if any, interesting
applications in this area. From a set of atomic registers, we show that it
is impossible to construct a wait-free implementation of (1) common data
types such as sets, queues, stacks, priority queues, or lists, (2) most if not
all the classical synchronization primitives, such as test&set, compare&swap,
and fetch&add, and (3) such simple memory-to-memory operations as move
or memory-to-memory swap. These results suggest that further progress in
understanding wait-free synchronization requires turning our attention from
the conventional read and write operations to more fundamental primitives.

Our results also illustrate inherent limitations of certain multiprocessor
architectures. The NYU Ultracomputer project [10] has investigated archi-
tectural support for wait-free implementations of common synchronization
primitives. They use combining networks to implement fetchéadd, a gen-
eralization of testédset. IBM’s RP3 [8] project is investigating a similar
approach. The fetch&add operation is quite flexible: it can be used for
semaphores, for highly concurrent queues, and even for database synchro-
nization [11, 14, 30]. Nevertheless, we show that it is not universal, disprov-
ing a conjecture of Gottlieb et al. [11]. We also show that message-passing
architectures such as hypercubes [28] are not universal either.

This paper is organized as follows. Section 2 defines a model of com-
putation, Section 3 presents impossibility results, Section 4 describes some
universal objects, and Section 5 concludes with a summary.

Consensus Object
Number
1 read/write registers
2 test&set, swap, fetch&add, queue, stack
2n — 2 n-register assignment
00 memory-to-memory move and swap, augmented queue,
compare&swap, fetch&cons, sticky byte

Figure 1: Impossibility and Universality Hierarchy

2 The Model

Informally, our model of computation consists of a collection of sequential
threads of control called processes that communicate through shared data
structures called objects. Each object has a type, which defines a set of pos-
sible states and a set of primitive operations that provide the only means to
manipulate that object. Each process applies a sequence of operations to ob-
jects, issuing an invocation and receiving the associated response. The basic
correctness condition for concurrent systems is linearizability [14]: although
operations of concurrent processes may overlap, each operation appears to
take effect instantaneously at some point between its invocation and re-
sponse. In particular, operations that do not overlap take effect in their
“real-time” order.

2.1 1I/0 Automata

Formally, we model objects and processes using a simplified form of I/0
automata [22]. Because the wait-free condition does not require any fairness
or liveness conditions, and because we consider only finite sets of processes
and objects, we do not make use of the full power of the I/O automata
formalism. Nevertheless, simplified I/O automata provide a convenient way
to describe the basic structure of of our model, and to give the basic defi-
nition of what it means for one object to implement another. For brevity,
our later constructions and impossibility results are expressed less formally
using pseudocode. It is a straightforward exercise to translate this notation
into I/O automata.

An I/0 automaton A is a non-deterministic automaton with the follow-
ing components’:

o States(A) is a finite or infinite set of states, including a distinguished
set of starting states.

e In(A)is a set of input events,
o Out(A) is a set of output events,
o Int(A) is a set of internal events,

o Steps(A) is a transition relation given by a set of triples (s, e, s), where
s and s’ are states and e is an event. Such a triple is called a step,
and it means that an automaton in state s’ can undergo a transition
to state s, and that transition is associated with the event e.

If (s',e,s)is a step, we say that e is enabledin s’. I/O automata must satisfy
the additional condition that inputs cannot be disabled: for each input event
e and each state s’, there exist a state s and a step (s, e, s).

An ezecution fragment of an automaton A is a finite sequence sg, €1, 81, . . . €, Sn
or infinite sequence sg, €1, s1,... of alternating states and events such that
each (s;,€;41,5:41) is a step of A. An ezecution is an execution fragment
where sg is a starting state. A history fragment of an automaton is the
subsequence of events occurring in an execution fragment, and a history is
the subsequence occurring in an execution.

A new I/O automaton can be constructed by composing a set of com-
patible I/O automata. (In this paper we consider only finite compositions.)
A set of automata are compatible if they share no output or internal events.
A state of the composed automaton S is a tuple of component states, and a
starting state is a tuple of component starting states. The set of events of S,
FEvents(S), is the union of the components’ sets of events. The set of output
events of S, Out(S), is the union of the components’ sets of output events;
the set of internal events, Int(S), is the union of the components’ sets of
internal events; and the set of input events of S, In(S), is In(S) — Out(S5),
all the input events of S that are not output events for some component.
A triple (s',e,s) is in Steps(S) if and only if, for all component automata
A, one of the following holds: (1) e is an event of A, and the projection of

!To remain consistent with the terminology of [14], we use “event” where Lynch and
Tuttle use “operation,” and “history” where they use “schedule.”

the step onto A is a step of 4, or (2) e is not an event of A, and A’s state
components are identical in s’ and s. Note that composition is associative.
If H is a history of a composite automaton and A a component automaton,
H| A denotes the subhistory of H consisting of events of A.

2.2 Concurrent Systems

A concurrent system is a set of processes and a set of objects. Processes
represent sequential threads of control, and objects represent data struc-
tures shared by processes. A process P is an I/O automaton with output
events INVOKE(P, op, X), where op is an operation ? of object X, and in-
put events RESPOND(P,res, X), where res is a result value. We refer to
these events as invocations and responses. Two invocations and responses
match if their process and object names agree. To capture the notion that
a process represents a single thread of control, we say that a process his-
tory is well-formed if it begins with an invocation and alternates matching
invocations and responses. An invocation is pending if it is not followed
by a matching response. An object X has input events INVOKE(P, op, X),
where P is a process and op is an operation of the object, and output events
RESPOND(P, res, X), where res is a result value. Process and object names
are unique, ensuring that process and object automata are compatible.

A concurrent system { P, ..., Pp; A1,...,An}is an I/O automaton com-
posed from processes Pi,..., P, and objects Ai,...,A,,, where processes
and objects are composed by identifying corresponding INVOKE and RE-
SPOND events. A history of a concurrent system is well-formed if each H|P;
is well-formed, and a concurrent system is well-formed if each of its his-
tories is well-formed. Henceforth, we restrict our attention to well-formed
concurrent systems.

An execution is sequential if its first event is an invocation, and it al-
ternates matching invocations and responses. A history is sequential if it
is derived from a sequential execution. (Notice that a sequential execution
permits process steps to be interleaved, but at the granularity of complete
operations.) If we restrict our attention to sequential histories, then the be-
havior of an object can be specified in a particularly simple way: by giving
pre- and postconditions for each operation. We refer to such a specification
as a sequential specification. In this paper, we consider only objects whose
sequential specifications are total: if the object has a pending invocation,

2 Op may also include argument values.

then it has a matching enabled response. For example, a partial deq might
be undefined when applied to an empty queue, while a total deq would re-
turn an exception. We restrict out attention to objects whose operations
are total because it is unclear how to interpret the wait-free condition for
partial operations. For example, the most natural way to define the effects
of a partial deq in a concurrent system is to have it wait until the queue
becomes non-empty, a specification that clearly does not admit a wait-free
implementation.

Each history H induces a partial “real-time” order <y on its opera-
tions: opy <g op, if the response for op, precedes the invocation for op;.
Operations unrelated by <y are said to be concurrent. If H is sequential,
< is a total order. Let complete(H) denote the maximal subsequence of H
consisting only of invocations and matching responses. A concurrent system
{P1,...,Pn; A1,...,Apn} is linearizable if, for each history H, there exists a
sequential history S such that:

e For all P;, complete(H')|P; = S|P;
o <gC<g

In other words, the history “appears” sequential to each individual process,
and this apparent sequential interleaving respects the real-time precedence
ordering of operations. Equivalently, each operation appears to take effect
instantaneously at some point between its invocation and its response. A
concurrent object A is linearizable [14] if, for every history H of every con-
current system {Pi,...,Pp;A41,...,A4;,...,An}, H|A; is linearizable. A
linearizable object is thus “equivalent” to a sequential object, and its opera-
tions can also be specified by simple pre- and postconditions. Henceforth, all
objects are assumed to be linearizable. Unlike related correctness conditions
such as sequential consistency [17] or strict serializability [24], linearizability
is a local property: a concurrent system is linearizable if and only if each in-
dividual object is linearizable [14]. We restrict our attention to linearizable
concurrent systems.

2.3 Implementations

An implementation of an object A is a concurrent system {Fi,..., F,; R},
where the F; are called front-ends, and R is called the representation object.
Informally, R is the data structure that implements A, and F; is the proce-
dure called by process P; to execute an operation. An object implementation
is shown schematically in Figure 2.

Object A
INVOKE _ INVOKE .
Process RESPOND Front- End | RESPOND _| Object R

Figure 2: Schematic View of Object Implementation

e The external events of the implementation are just the external events
of A: each input event INVOKE(P;, op, A) of A is an input event of F},
and each output event RESPOND(P;, res, A) of A is an output event of
F;.

e Theimplementation has the following internal events: each input event
INVOKE(F;, op, R) of R is composed with the matching output event
of F;, and each output event RESPOND(F;,res, R) of R is composed
with the matching input event of F;.

e To rule out certain trivial solutions, front-ends share no events; they
communicate indirectly through R.

Let I; be an implementation of Aj;. Ij is correct, if for every his-

tory H of every system {Py,...,Pp;A1,...,1;,...,Ap}, there exists a his-
tory H' of {Pl,...,Pn;Al,...,AJ,..., m}, such that H|{Py,...,P,} =
HI|{P17"'7PTL}'

An implementation is wait-free if:

e It has no history in which an invocation of P; remains pending across
an infinite number of steps of F;.

o If P; has a pending invocation in a state s, then there exists a history
fragment starting from s, consisting entirely of events of F; and R,
that includes the response to that invocation.

The first condition rules out unbounded busy-waiting: a front-end can-
not take an infinite number of steps without responding to an invocation.
The second condition rules out conditional waiting: F; cannot block waiting
for another process to make a condition true. Note that we have not found
it necessary to make fairness or liveness assumptions: a wait-free implemen-
tation guarantees only that that if R eventually responds to all invocations
of Fj, then F; will eventually respond to all invocations of P;, independently
of process speeds.

An implementation is bounded wait-free if there exists N such that there
is no history in which an invocation of P; remains pending across N steps of
F;. Bounded wait-free implies wait-free, but not vice-versa. We use the wait-
free condition for impossibility results, and the bounded wait-free condition
for universal constructions.

For brevity, we say that R implements A if there exists a wait-free im-
plementation {F},..., F,; R} of A. It is immediate from the definitions that
implements is a reflexive partial order on the universe of objects. In the rest
of the paper, we investigate the mathematical structure of the implements
relation. In the next section, we introduce a simple technique for proving
that one object does not implement another, and in the following section we
display some “universal” objects capable of implementing any other object.

3 Impossibility Results

Informally, a consensus protocolis a system of n processes that communicate
through a set of shared objects {X1,...,Xm}. The processes each start with
an input value from some domain D, they communicate with one another
by applying operations to the shared objects, they eventually agree on a
common input value and halt. A consensus protocol is required to be:

e (onsistent: distinct processes never decide on distinct values.
e Wait-free: each process decides after a finite number of steps.
e Valid: the common decision value is the input to some process.

For our purposes, it is convenient to express the consensus problem using
the terminology of abstract data types. A consensus object provides a single
operation:

decide(input: value) returns(value)

A protocol’s sequential specification is simple: all decide operations re-
turn the argument value of the first decide (c.f., Plotkin’s “sticky-bit” [27]).
This common value is called the history’s decision value. A wait-free lin-
earizable implementation of a consensus object is called a consensus protocol
(c.f., Fisher, Lynch, and Paterson [9]).

We will investigate the circumstances under which it is possible to con-
struct consensus protocols from particular objects. Most of the constructions
presented in this paper use multi-reader/multi-writer registers in addition
to the object of interest. For brevity we say “X solves m-process consensus”
if there exists a consensus protocol {Fi,..., F,; W, X}, where W is a set of
read/write registers, and W and X may be initialized to any state.

Definition 1 The consensus number for X is the largest n for which X
solves n-process consensus. If no largest n exists, the consensus number is
said to be infinite.

It is an immediate consequence of our definitions that if Y implements X,
and X solves n-process consensus, then Y also solves n-process consensus.

Theorem 2 If X has consensus number n, and Y has consensus number
m < n, then there exists no wait-free implementation of X by Y in a system
of more than m processes.

Proof: As noted above, all front-end and object automata are compatible by
definition, and thus their composition is well-defined. Let {Fi,..., Fx; W, X'}
be a consensus protocol, where £ > m and W is a set of read/write regis-
ters. Let {Fj,...,F[;Y} be an implementation of X. It is easily checked
that {F1,..., Fo; W, {F}{,..., FE.;Y}} is wait-free, and because composition
is associative, it is identical to {Fy - Fy,..., F, - F;W,Y}, where F; - F} is
the composition of F; and F;. Since the former is a consensus protocol, so
is the latter, contradicting the hypothesis that Y has consensus number m.

In the rest of this section, we consider a number of objects, displaying
consensus protocols for some, and impossibility results for others. For impos-
sibility proofs, we will usually assume the existence of a consensus protocol,
and then derive a contradiction by constructing a sequential execution that
forces the protocol to run forever. When constructing a consensus protocol
for a particular linearizable object, we observe that the linearizability condi-
tion implies that if there exists an execution in which consensus fails, either
because it is inconsistent, invalid, or it runs forever, then there exists an

10

P reads ¢ runs alone

Q@ decides y
Q@ runs alone

Q@ decides z

Figure 3: P reads first.

Q writes P writes r

Figure 4: P and @ write different registers.

equivalent sequential execution with the same property. As a consequence,
a consensus protocol is correct if and only if all its sequential executions are
correct. For brevity, protocols are defined informally by pseudo-code; their
translations into I/O automata should be self-evident.

3.1 Atomic Read/Write Registers

In this section, we show there exists no two-process consensus protocol
using multi-reader /multi-writer atomic registers. First, some terminology.
A protocol state is bivalent if either decision value is still possible: i.e.,
the current execution can be extended to yield different decision values.
Otherwise it is univalent. An z-valent state is a univalent state with eventual
decision value z. A deciston step is an operation that carries a protocol from
a bivalent to a univalent state.

Theorem 3 Read/write registers have consensus number 1.

11

) writes r

P writes r

P decides z
P runs alone

P decides y

Figure 5: P and @ write the same register.

Proof: Assume there exists a two-process consensus protocol implemented
from atomic read/write registers. We derive a contradiction by constructing
an infinite sequential execution that keeps any such protocol in a bivalent
state. If the processes have different input values, the validity condition
implies that the initial state is bivalent. Consider the following sequential
execution, starting from the initial state. In the first stage, P executes a
sequence of operations (i.e., alternates matching invocation and response
events) until it reaches a state where the next operation will leave the pro-
tocol in a univalent state. P must eventually reach such a state, since it
cannot run forever, and it cannot block. In the second stage, @ executes
a sequence of operations until it reaches a similar state, and in successive
stages, P and @ alternate sequences of operations until each is about to make
a decision step. Because the protocol cannot run forever, it must eventually
reach a bivalent state s in which any subsequent operation of either process
is a decision step. Suppose P’s operation carries the protocol to an z-valent
state, and)’s operation carries the protocol to a y-valent state, where z
and y are distinct.

e Suppose the decision step for one process, say P, is to read a shared

register (Figure 3). Let s’ be the protocol state immediately following
the read. The protocol has a history fragment starting from s, con-

12

RMW(r: register, f: function) returns(value)
previous :=r
r:= {(r)
return previous

end RMW

Figure 6: Read-Modify-Write

sisting entirely of operations of @, yielding decision value y. Since the
states s and s’ differ only in the internal state of P, the protocol has
the same history fragment starting in s’, an impossibility because s’ is
z-valent.

e Suppose the processes write to different registers (Figure 4). The state
that results if P’s write is immediately followed by @’s is identical to
the state that results if the writes occur in the opposite order, which
is impossible, since one state is z-valent and the other is y-valent.

e Suppose the processes write to the same register (Figure 5). Let s’ be
the z-valent state immediately after P’s write. There exists a history
fragment starting from s’ consisting entirely of operations of P that
yields the decision value z. Let s” be the y-valent state reached if Q’s
write is immediately followed by P’s. Because P overwrites the value
written by @, s’ and s” differ only in the internal states of @, and
therefore the protocol has the same history fragment starting from s”,
an impossibility since s” is y-valent.

Similar results have been shown by Loui and Abu-Amara [21], Chor,
Israeli, and Li [6], and Anderson and Gouda [1]. Our contribution lies in
the following corollary:

Corollary 4 It is impossible to construct a wait-free itmplementation of any

object with consensus number greater than 1 using atomic read/write regis-
ters.

3.2 Read-Modify-Write Operations

13

decide(input: value) returns(value)
prefer[P] := input
if RMW(r,f) = v
then return prefer[P]
else return prefer[Q]
end if

end decide

Figure 7: Read-Modify-Write: Two-Process Consensus

Kruskal, Rudolph, and Snir [15] have observed that many, if not all,
of the classical synchronization primitives can be expressed as read-modify-
write operations, defined as follows. Let r be a register, and f a function
from values to values. The operation RMW(r, f)is informally defined by the
procedure shown in Figure 6, which is executed atomically. If f is the iden-
tity, RMW(r, f) is simply a read operation. A read-modify-write operation
is non-trivial if f is not the identity function. Examples of well-known non-
trivial read-modify-write operations include testéset, swap, compareéswap,
and fetch&add. Numerous others are given in [15].

Theorem 5 A register with any non-trivial read-modify-write operation has
a consensus number at least 2.

Proof: Since f is not the identity, there exists a value v such that v # f(v).
Let P and @ be two processes that share a two-register array prefer, where
each entry is initialized to L, and a read-modify-write register r, initialized
to v. P executes the protocol shown in Figure 7 (Q’s protocol is symmetric.)

Expressed in terms of the I/O automaton model, the read-modify-write
register r is the object X, the prefer array is the set of atomic registers
W, and the pseudo-code in Figure 7 defines the front-end automaton for
P. The front-end has three output events: the write and RMW invocations
sent to r and prefer, and the decision value returned to P. Similarly, its
input events are P’s invocation of decide, and the responses to the write and
RMW invocations.

As noted above, because r and prefer are linearizable, it suffices to check
correctness for sequential executions. The only operations that do not com-
mute are the two read-modify-write operations applied to r. The protocol
chooses P’s input if P’s operation occurs first, and @’s input otherwise. |

14

Corollary 6 It is impossible to construct a wait-free tmplementation of any
non-trivial read-modify-write operation from a set of atomic read/write reg-
isters in a system with two or more processes.

Although read-modify-write registers are more powerful than read/write
registers, many common read-modify-write operations are still computa-
tionally weak. In particular, one cannot construct a wait-free solution to
three process consensus using registers that support any combination of read,
write, testéiset, swap, and fetch€add operations. Let F be a set of functions
indexed by an arbitrary set S. Define F' to be interfering if for all values v
and all ¢ and j in §, either (1) f; and f; commute: f;(f;(v)) = f;(fi(v)),
or (2) one function “overwrites” the other: either f;(f;(v)) = fi(v) or

fi(fi(v)) = fi(w).

Theorem T There is no wait-free solution to three-process consensus using
any combination of read-modify-write operations that apply functions from
an wnterfering set F.

Proof: By contradiction. Let the three processes be P, @), and R. As
in the proof of Theorem 2, we construct a sequential execution leaving the
protocol in bivalent state where every operation enabled for P and @ is a
decision step, some operation of P carries the protocol to an z-valent state,
and some operation of @} carries the protocol to a y-valent state, where z
and y are distinct. By the usual commutativity argument, P and @ must
operate on the same register; say, P executes RMW(r, f;) and @ executes
RMW(r, f;).

Let v be the current value of register 7. There are two cases to consider.
First, suppose fi(fj(v)) = f;(fi(v)). The state s that results if P executes
RMW(r, f;) and Q executes RMW(r, f;) is z-valent, thus there exists some
history fragment consisting entirely of operations of R that yields decision
value z. Let s’ be the state that results if P and @ execute their operations
in the reverse order. Since the register values are identical in s and ¢,
the protocol has the same history fragment starting in s’, contradicting the
hypothesis that s’ is y-valent.

Second, suppose f;(f;(v)) = fj(v). The state s that results if P executes
RMW(r, f;) and Q executes RMW(r, f;) is z-valent, thus there exists some
history fragment consisting entirely of operations of R that yields decision
value z. Let s’ be the state that results if @ alone executes its operation.
Since the register values are identical in s and s’, the protocol has the same

15

compare&swap(r: register, old: value, new: value)
returns(value)
previous :=r
if previous = old
then r := new
end if
return previous
end compare&swap

Figure 8: Compare&Swap

history fragment starting in s’, contradicting the hypothesis that s’ is y-
valent.

It follows that one cannot use any combination of these classical primi-
tives to construct a wait-free implementation of any object with consensus
number greater than 2.

Another classical primitive is compareédswap, shown in Figure 8. This
primitive takes two values: old and new. If the register’s current value is
equal to old, it is replaced by new, otherwise is left unchanged. The register’s
old value is returned.

Theorem 8 A compare&swap register has infinite consensus number.

Proof: In the protocol shown in Figure 9, the processes share a register
r initialized to L. Each process attempts to replace 1 with its input; the
decision value is established by the process that succeeds.

This protocol is clearly wait-free, since it contains no loops. Consistency
follows from the following observations: (1) 7 # L is a postcondition of
compare&swap, and (2) for any v # L, the assertion r = v is stable — once
it becomes true, it remains true. Validity follows from the observation that
if r # L, then r contains some process’s input.

Corollary 9 It s impossible to construct a wait-free implementation of a
compare&swap register from a set of registers that support any combination
of read, write, test&set, swap, or fetch&add operations in a system of three
or more processes.

16

decide(input: value) returns(value)
first := compare&swap(r, L, input)
if first = bottom
then return input
else return first
end if

end decide

Figure 9: Compare&Swap: n-Process Consensus

decide(input: value) returns(value)
prefer[P] := input
if deq(q) =0
then return prefer[P]
else return prefer[Q]
end if
end decide

Figure 10: FIFO Queues: Two-Process Consensus

3.3 Queues, Stacks, Lists, Etc.

Consider a FIFO queue with two operations: engq places an item at the
end of the queue, and deq removes the item from the head of the queue,
returning an error value if the queue is empty.

Theorem 10 The FIFQO queue has consensus number at least 2.

Proof: Figure 10 shows a two-process consensus protocol. The queue is
initialized by enqueuing the value 0 followed by the value 1. As above, the
processes share a two-element array prefer. P executes the protocol shown
in Figure 10 (Q’s protocol is symmetric). Each process dequeues an item
from the queue, returning its own preference if it dequeues 0, and the other’s
preference if it dequeues 1.

The protocol is wait-free, since it contains no loops. If each process
returns its own input, then they must both have dequeued 0, violating the
queue specification. If each returns the others’ input, then they must both
have dequeued 1, also violating the queue specification. Let the “winner” be
the process that dequeues 0. Validity follows by observing that the winner’s
position in prefer is initialized before the first queue operation. |

17

Trivial variations of this program yield protocols for stacks, priority
queues, lists, sets, or any object with operations that return different re-
sults if applied in different orders.

Corollary 11 It is tmpossible to construct a wait-free implementation of
a queue, stack, priority queue, set, or list from a set of atomic read/write
registers.

Although FIFO queues solve two-process consensus, they cannot solve
three-process consensus.

Theorem 12 FIFO queues have consensus number 2.

Proof: By contradiction. Assume we have a consensus protocol for pro-
cesses P, @, and R. As before, we maneuver the protocol to a state where
P and @ are each about to make a decision step. Assume that P’s operation
would carry the protocol to an z-valent state and @’s to a y-valent state.
The rest is a case analysis.

First, suppose P and @ both execute deq operations. Let s be the pro-
tocol state if P dequeues and then @ dequeues, and let s’ be the state if
the dequeues occur in the opposite order. Since s is z-valent, there exists
a history fragment from s, consisting entirely of operations of R, yielding
decision value z. But s and s’ differ only in the internal states of P and
@, thus the protocol has the same history fragment from s’, a contradiction
because s’ is y-valent.

Second, suppose P does an eng and @ a deq. If the queue is non-empty,
the contradiction is immediate because the two operations commute: R can-
not observe the order in which they occurred. If the queue is empty, then
the y-valent state reached if) dequeues and then P enqueues is indistin-
guishable to R from the z-valent state reached if P alone enqueues.

Finally, suppose both P and @ do eng operations. Let s be the state at
the end of the following execution:

1. P and @ enqueue items p and ¢ in that order.

2. Run P until it dequeues p. (Since the only way to observe the queue’s
state is via the deq operation, P cannot decide before it observes one

of por q.)
3. Run @ until it dequeues g.

Let s’ be the state after the following alternative execution:

18

decide(input: value) returns(value)
enq(q, input)
return peek(q)
end decide

Figure 11: Augmented FIFO Queue: n-Process Consensus

1. @ and P enqueue items ¢ and p in that order.
2. Run P until it dequeues g.

3. Run @ until it dequeues p.

Clearly, s is z-valent and s’ is y-valent. Both of P’s executions are identical
until it dequeues p or ¢q. Since P is halted before it can modify any other
objects, @’s executions are also identical until it dequeues p or q. By a
now-familiar argument, a contradiction arises because s and s’ are indistin-

guishable to R.

Trivial variations of this argument can be applied to show that many
similar data types, such as sets, stacks, double-ended queues, and priority
queues, all have consensus number 2.

A message-passing architecture (e.g., a hypercube, [28]) is a set of pro-
cessors that communicate via shared FIFO queues. Theorem 12 implies that
message-passing architectures cannot solve three-process consensus or imple-
ment any object that can. Dolev, Dwork, and Stockmeyer [7] give a related
result: point-to-point FIFO message channels cannot solve two-process con-
sensus. That result does not imply Theorem 12, however, because a queue
item, unlike a message, is not “addressed” to any particular process, and
hence it can be dequeued by anyone.

3.4 An Augmented Queue

Let us augment the queue with one more operation: peek returns but
does not remove the first item in the queue.

Theorem 13 The augmented queue has infinite consensus number.

Proof: In the protocol shown in Figure 11, the queue g is initialized to
emptly, and each process enqueues its own input. The decision value is the
input of the process whose eng occurs first.

19

decide(input: value) returns(value)
prefer[P] := input
r[P,2] « r[P,1]
foriin P+1 .. ndo
rfi, 1] :=0
end for
foriinn .. 1do
if rfi,2] =1
then return prefer[i]
end if
end for
end decide

O 0 ~ O O & W N~

—_
o

Figure 12: Memory-To-Memory Move: n-Process Consensus

As usual, the protocol is wait-free, since it contains no loops. Consistency
follows from the following observations: (1) “the queue is non-empty” is a
postcondition of each eng, and hence a precondition for each peek, and (2)
for any v, “v is the first item in the queue” is stable. Validity follows from
the observation that the first item in the queue is some process’s input.

Corollary 14 It is tmpossible to construct a wail-free implementation of
the augmented queue from a set of registers supporting any combination of
read, write, test&set, swap, or fetch&add operations.

Corollary 15 It is tmpossible to construct a wail-free implementation of
the augmented queue from a set of reqular queues.

The fetchéfcons operation atomically threads an item onto the front of a
linked list. By an argument virtually identical to the one given for Theorem
13, a linked list with fetch&cons has infinite consensus number.

3.5 Memory-To-Memory Operations

Consider a collection of atomic read /write registers having one additional
operation: move atomically copies the value of one register to another 3. We
use the expression “a < b” to move the contents of b to a.

3Memory-to-memory mowve should not be confused with assignment; the former copies
values between two public registers, while the latter copies values between public and
private registers.

20

Theorem 16 An array of registers with move has infinite consensus num-
ber.

Proof: An m-process consensus protocol appears in Figure 12. The pro-
cesses share two arrays: prefer(l..n| and r[l..n,1..2], where r[P, 1] is initial-
ized to 1 and r[P,2] to 0, for 1 < P < n. The protocol is clearly wait-free,
since all loops are bounded.

To show consistency, we use the following assertions:

P(P) = r[P,1]=0AT[P,2]=0
Q(P) = r[pP2]=1
S(P) = P(P)vQ(P)

It is easily checked that P(P), Q(P), and S(P) are stable for each P, that
P(P) and Q(P) are mutually exclusive, that S(P) is true after P executes
Statement #2, and that S(%) is true after each execution of Statement #4.
We say that a process P has stabilized if S(P) holds.

We claim that if P(P) holds for some P, then Q(Q) holds for some
@ < P, and that every process between ¢ and P has stabilized. Let P be the
least process for which P(P) holds. Since r[P, 1] and r[P, 2] are both 0, some
@ < P must have assigned 0 to r[P,1] (Statement #4) before P executed
Statement #2. @, however, executes Statement #2 before Statement #4,
hence §(Q) holds. Since P(Q) is false by hypothesis, Q(Q) must hold.
Moreover, if @ has assigned to r[P, 1], then it has assigned to every r[P’,1]
for Q@ < P’ < P, thus each such P’ has stabilized.

Define the termination assertion as follows:

T(P) = Q(P) A (VQ > P)P(Q).

7T is stable, and it holds for at most one process. When P finishes the
first loop (Statements #3-5), every process greater than or equal to P has
stabilized. If any of them satisfies 7, we are done. Otherwise, there exists
a largest @ < P satisfying Q(@Q), and all the processes between P and Q
have stabilized, implying that 7(Q) holds. When P’s protocol terminates,
it chooses the input of the unique @ satisfying 7(Q). Since the termination
assertion is stable, all processes agree.

Validity follows because prefer|P] must be initialized before 7(P) can
become true. i

21

decide(input: value) returns(value)
prefer[P] := input
swap(a[P],r)
forQin 1. ndo
ifalQ] =1
then return prefer[Q]
end if
end for
end decide

Figure 13: Memory-To-Memory Swap: n-Process Consensus

Theorem 17 An array of registers with memory-to-memory swap * has
infinite consensus number.

Proof: The protocol is shown in Figure 13. The processes share an array
of registers a[1..n] whose elements are initialized to 0, and a single register
r, initialized to 1. The first process to swap 1 into a wins. The protocol
is wait-free because the loop is bounded. To show consistency, consider the
following assertions, where “3!P” means “there exists a unique P.”

r=1v(3'P)a[P] =1
r=20

The first assertion is invariant, and the second is stable and becomes true
after the first swap. It follows that each process observes a unique, stable P
such that a[P] = 1.

Validity follows because each process initializes its position in prefer
before executing a swap.

Corollary 18 It is tmpossible to construct a wail-free implementation of
memory-to-memory move or swap from a set of registers that support any
combination of read, write, test&set, swap, or fetch&add operations.

Corollary 19 It is tmpossible to construct a wail-free implementation of
memory-to-memory move or swap from a set of FIFO queues.

*The memory-to-memory swap should not be confused with the read-modify-write
swap; the former exchanges the values of two public registers, while the latter exchanges
the value of a public register with a processor’s private register.

22

3.6 Multiple Assignment

The expression:
TlyeeeyTm ‘= V1y...,Um

atomically assigns each value v; to each register r;.

Theorem 20 Atomic m-register assignment has consensus number at least
m.

Proof: The protocol uses m “single-writer” registers 71, ..., m, where F;
writes to register 7;, and m(m—1)/2 “multi-writer” registers r;;, where ¢ > 7,
where P; and P; both write to register r;;. All registers are initialized to
1. Each process atomically assigns its input value to m registers: its single-
writer register and its m — 1 multi-writer registers. The decision value of
the protocol is the first value to be assigned.

After assigning to its registers, a process determines the relative ordering
of the assignments for two processes P; and P; as follows.

e Read 7;;. If the value is L, then neither assignment has occurred.

o Otherwise, read r; and r;. If 7;’s value is is 1, then P; precedes P;,
and similarly for r;.

o If neither r; nor r; is L, reread r;;. If its value is equal to the value
read from r;, then P; precedes P, else vice-versa.

By repeating this procedure, a process can determine the value written
by the earliest assignment. i

This result can be improved.

Theorem 21 Atomic m-register assignment has consensus number at least
2m — 2.

Proof: Consider the following two-phase protocol. Each process has two
single-writer registers, one for each phase, and each pair of processes share
a register. Divide the processes into two predefined groups of m — 1. In the
first phase, each group achieves consensus within itself using the protocol
from Theorem 20. In the second phase, each process atomically assigns
its group’s value to its phase-two single-writer register and the m — 1 multi-
writer registers shared with processes in the other group. Using the ordering

23

procedure described above, the process constructs a directed graph G with
the property that there is an edge from P; to Py if P; and Py are in different
groups and the former’s assignment precedes the latter’s. It then locates
a source process having at least one outgoing edge but no incoming edges,
and returns that process’s value. At least one process has performed an
assignment, thus G has edges. Let) be the process whose assignment is
first in the linearization order. @) is a source, and it has an outgoing edge to
every process in the other group, thus no process in the other group is also
a source. Therefore, all source processes belong to the same group.

This algorithm is optimal with respect to the number of processes.

Theorem 22 Atomic m-register assignment has consensus number ecactly
2m — 2.

Proof: We show that atomic m-register assignment cannot solve 2m — 1-
process consensus for m > 1. By the usual construction, we can maneuver
the protocol into a bivalent state s in which any subsequent operation exe-
cuted by any process is a decision step. We refer to the decision value forced
by each process as its default.

We first show that each process must have a “single-writer” register that
it alone writes to. Suppose not. Let P and @ be processes with distinct
defaults z and y. Let s’ be the state reached from s if P performs its
assignment, @ performs its assignment, and the other processes perform
theirs. Because P went first, s’ is z-valent. By hypothesis, every register
written by P has been overwritten by another process. Let s” be the state
reached from s if P halts without writing, but all other processes execute in
the same order. Because @ wrote first, s” is y-valent. There exists a history
fragment from s’, consisting entirely of operations of @, with decision value
z. Because the values of the registers are identical in s’ and s”, the protocol
has the same history fragment from s”, a contradiction because s” is y-valent.

We next show that if P and @ have distinct default values, then there
must be some register written only by those two processes. Suppose not.
Let s’ be the state reached from s if P performs its assignment, performs
its assignment, followed by all other processes’ assignments. Let s” be the
state reached by the same sequence of operations, except that P and @
execute their assignments in the reverse order. Because s’ is z-valent, there
exists a history fragment from s’ consisting of operations of P that with
decision value z. But because every register written by both P and @ has
been overwritten by some other process, the register values are the same in

24

both s and s, hence the protocol has the same history fragment from s”, a
contradiction.

It follows that if P has default value z, and there are k& processes with
different default values, then P must assign to k + 1 registers. If there are
2m — 1 processes which do not all have the same default, then some process
must disagree with at least m other processes, and that process must must
assign to m + 1 registers. i

The last theorem shows that consensus is irreducible in the following
sense: it is impossible to achieve consensus among 2n processes by combining
protocols that achieve consensus among at most 2m < 2n processes. If
it were possible, one could implement each individual 2m-process protocol
using m — l-register assignment, yielding a 2n-process consensus protocol,
contradicting Theorem 22.

3.7 Remarks

Fischer, Lynch, and Paterson [9] have shown that there exists no two-process
consensus protocol using message channels that permit messages to be de-
layed and reordered. That result does not imply Theorem 3, however, be-
cause atomic read/write registers lack certain commutativity properties of
asynchronous message buffers. (In particular, Lemma 1 of [9] does not hold.)

Dolev, Dwork, and Stockmeyer [7] give a thorough analysis of the circum-
stances under which consensus can be achieved by message-passing. They
consider the effects of thirty-two combinations of parameters: synchronous
vs. asynchronous processors, synchronous vs. asynchronous communication,
FIFO vs. non-FIFO message delivery, broadcast vs. point-to-point transmis-
sion, and whether send and receive are distinct primitives. Expressed in their
terminology, our model has asynchronous processes, synchronous communi-
cation, and distinct send and receive primitives. We model send and receive
as operations on a shared message channel object; whether delivery is FIFO
and whether broadcast is supported depends on the type of the channel.
Some of their results translate directly into our model: it is impossible to
achieve two-process consensus by communicating through a shared channel
that supports either broadcast with unordered delivery, or point-to-point
transmission with FIFO delivery. Broadcast with ordered delivery, however,
does solve n-process consensus.

A safe read/write register [19] is one that behaves like an atomic read /write
register as long as operations do not overlap. If a read overlaps a write,

25

however, no guarantees are made about the value read. Since atomic reg-
isters implement safe registers, safe registers cannot solve two-process con-
sensus, and hence the impossibility results we derive for atomic registers
apply equally to safe registers. Similar remarks apply to atomic registers
that restrict the number of readers or writers.

Loui and Abu-Amara [21] give a number of constructions and impossibil-
ity results for consensus protocols using shared read-modify-write registers,
which they call “test&set” registers. Among other results, they show that
n-process consensus for n > 2 cannot be solved by read-modify-write oper-
ations on single-bit registers.

Lamport [18] gives a queue implementation that permits one enqueuing
process to execute concurrently with one dequeuing process. With minor
changes, this implementation can be transformed into a wait-free implemen-
tation using atomic read/write registers. Theorem 3 implies that Lamport’s
queue cannot be extended to permit concurrent deq operations without aug-
menting the read and write operations with more powerful primitives.

A concurrent object implementation is non-blocking if it guarantees that
some process will complete an operation in a finite number of steps, re-
gardless of the relative execution speeds of the processes. The non-blocking
condition guarantees that the system as a whole will make progress despite
individual halting failures or delays. A wait-free implementation is neces-
sarily non-blocking, but not vice-versa, since a non-blocking implementation
may permit individual processes to starve. The impossibility and universal-
ity results presented in this paper hold for non-blocking implementations as
well as wait-free implementations.

Elsewhere [14], we give a non-blocking implementation of a FIFO queue,
using read, fetchéfadd, and swap operations, that permits an arbitrary num-
ber of concurrent eng and deq operations. Corollary 14 implies that this
queue implementation cannot be extended to support a non-blocking peek
operation without introducing more powerful primitives.

4 Universality Results

An object is universal if it implements any other object. In this section,
we show that any object with consensus number n is universal in a system
of n (or fewer) processes. The basic idea is the following: we represent the
object as a linked list, where the sequence of cells represents the sequence of
operations applied to the object (and hence the object’s sequence of states).

26

A process executes an operation by threading a new cell on to the end of the
list. When the cell becomes sufficiently old, it is reclaimed and reused. Our
construction requires O(n?) memory cells to represent the object, and O(n?)
worst-case time to execute each operation. We assume cells can hold integers
of unbounded size. Qur presentation is intended to emphasize simplicity, and
omits many obvious optimizations.

Let INvoC be the object’s domain of invocations, RESULT its domain
of results, and STATE its domain of states. An object’s behavior may be
specified by the following relation:

apply C INVOC X STATE X STATE X RESULT.

This specification means that applying operation p in state s leaves the
object in a state s’ and returns result value r, where (p,s,s’,r) € apply.
Apply is a relation (rather than a function) because the operation may be
non-deterministic. For brevity, we use the notation apply(p, s) to denote an
arbitrary pair (s',r) such that (p,s, s',r) € apply.

4.1 The Algorithm

An object is represented by a doubly-linked list of cells having the following
fields:

e Seq is the cell’s sequence number in the list. This field is zero if the
cell is initialized but not yet threaded onto the list, and otherwise it is
positive. Sequence numbers for successive cells in the list increase by
one.

e Inv is the invocation (operation name and argument values).

e New is a consensus object whose value is the pair (new.state, new.result).
The first component is the object’s state following the operation, and
the second is the operation’s result value, if any.

e Before is a pointer to the previous cell in the list. This field is used
only for free storage management.

e After is consensus object whose value is a pointer to the next cell in
the list.

If ¢ and d are cells, the function max(c, d) returns the cell with the higher
sequence number.

27

Initially, the object is represented by a unique anchor cell with sequence
number 1, holding a creation operation and an initial state.
The processes share the following data structures.

e Announce is an n-element array whose P** element is a pointer to the
cell P is currently trying to thread onto the list. Initially all elements
point to the anchor cell.

e Head is an n-element array whose P** element is a pointer to the last
cell in the list that P has observed. Initially all elements point to the
anchor cell.

Let max(head) be max(head[l].seq, ..., head[n].seq), and let “c € head”
denote the assertion that a pointer to cell ¢ has been assigned to head[@],
for some Q.

We use the following auxiliary variables:

e concur(P) is the set of cells whose addresses have been stored in the
head array since P’s last announcement.

e start(P) is the the value of max(head) at P’s last announcement.

Notice that:
|concur(P)| + start(P) = max(head) (1)

Auxiliary variables do not affect the protocol’s control flow; they are present
only to facilitate proofs.

The protocol for process P is shown in Figure 14. In this figure, “v:
T := e” declares and initializes variable v of type T to a value e, and the
type “*cell” means “pointer to cell.” Sequences of statements enclosed in
angle brackets are executed atomically. In each of these compound state-
ments, only the first affects shared data or control flow; the remainder are
“bookkeeping operations” that update auxiliary variables. For readability,
auxiliary variables are shown in italics.

Informally, the protocol works as follows. P allocates and initializes a
cell to represent the operation (Statement #1). It stores a pointer to the cell
in announce[P] (Statement #2), ensuring that if P itself does not succeed in
threading its cell onto the list, some other process will. To locate a cell near
the end of the list, P scans the head array, setting head[P] to the cell with
the maximal sequence number (Statement #3). P then enters the main loop
of the protocol (Statement #4), which it executes until its own cell has been

28

threaded onto the list (detected when its sequence number becomes non-
zero). P chooses a process to “help” (Statement #6), and checks whether
that process has an unthreaded cell (Statement #7). If so, then P will try
to thread it, otherwise it tries to thread its own cell. (If this helping step
were omitted, the protocol would be non-blocking rather than wait-free.) P
tries to set head[P].after to point to the cell it is trying to thread (Statement
#8). The after field must be a consensus cell to ensure that only one process
succeeds in setting it. Whether or not P succeeds, it then initializes the
remaining fields of the next cell in the list. Because the operation may be
non-deterministic, different processes may try to set the newfield to different
values, so this field must be a consensus object (Statement #9). The values
of the other fields are computed deterministically, so they can simply be
written as atomic registers (Statements #10 and #11). For brevity, we say
that a process threads a cell in Statement #7 if the decide operation alters
the value of the after field, and it announces a cell at Statement #2 when
it stores the cell’s address in announce.

Lemma 23 The following assertion is invariant:
|concur(P)| > n = announce(P) € head

Proof: If |concur(P)| > n, then concur(P) includes successive cells ¢ and
r with respective sequence numbers equal to P — 1 mod n and P mod n,
threaded by processes and R. Because ¢ is in concur(P), @ threads ¢
after P’s announcement. Because R cannot modify an unthreaded cell, R
reads announce[P] (Statement #5) after @ threads ¢. It follows that R reads
announce| P] after P’s announcement, and therefore either announce[P] is
already threaded, or r is p.

Lemma 23 places a bound on the number of cells that can be threaded
while an operation is in progress. We now give a sequence of lemmas show-
ing that when P finishes scanning the head array, either announce[P] is
threaded, or head[P] lies within n + 1 cells of the end of the list.

Lemma 24 The following assertion is invariant:

max(head) > start(P).

Proof: The sequence number for each head[Q] is non-decreasing. i

29

universal(what: INVOC) returns(RESULT)
mine: cell := [seq: 0,
inv: what,
new: create(consensus_object),
before: create(consensus_object)
after: null]
(announce[P] := mine; start(P) := max(head))
for each process @ do
head[P] := max(head[P], head[Q])
end for
while announce[P].seq = 0 do
c: *cell := head[P]
help: *cell := announce[(c.seq mod n) + 1]
if help.seq = 0
then prefer := help
else prefer := announce[P]
end if
d := decide(c.after, prefer)
decide(d.new, apply(d.inv, c.new.state))
d.before := ¢
d.seq := c.seq + 1
(head[P] := d; (VQ) concur(Q) := concur(Q) U {d})
end while
(head[P] := announce[P]; (VQ) concur(Q) := concur(Q) U {d})
return (announce[P].new.result)
end universal

w

- o ol

10
11
12

13
14

Figure 14: A Universal Construction

30

Lemma 25 The following is a loop invariant for Statement #3:
max(head[P], head[Q], . . ., head[n]) > start(P).
where Q) s the loop indez.

Proof: When @ is 1, the assertion is implied by Lemma 24. The truth
of the assertion is preserved at each iteration, when head[P] is replaced by

max(head[P], head[Q)]).

Lemma 26 The following assertion holds just before Statement #4:
head[P].seq > start(P).

Proof: After the loop at Statement #3, max(kead[P], head[Q], . .., head[n])
is just head[P].seq, and the result follows from Lemma 25. i
Lemma 27 The following is invariant:

|concur(P)| > head[P).seq — start(P) > 0

Proof: The lower bound follows from Lemma 26, and the upper bound
follows from Equation 1.

Theorem 28 The protocol in Figure 14 is correct and bounded wazit-free.

Proof: Linearizability is immediate, since the order in which cells are
threaded is clearly compatible with the natural partial order of the cor-
responding operations.

The protocol is bounded wait-free because P can execute the main loop
no more than n 4+ 1 times. At each iteration, head[P].seq increases by one.
After n + 1 iterations, Lemma 27 implies that

|concur(P)| > head[P].seq — start(P) > n.

Lemma 23 implies that announce[P] must be threaded. i

31

4.2 Memory Management

In this section we discuss how cells are allocated and reclaimed. To reclaim
a cell, we assume each consensus object provides a reset operation that
restores the object to a state where it can be reused for a new round of
consensus. Our construction resets a consensus object only when there are
no concurrent operations in progress.

The basic idea is the following: a process executing an operation will
traverse no more than n + 1 cells before its cell is threaded (Theorem 28).
Conversely, each cell will be traversed no more than n 4+ 1 times. When a
process is finished threading its cell, it releases each of the n + 1 preceding
cells by setting a bit. When a cell has been released n + 1 times, it is safe
to recycle it. Each cell holds an additional field, an array released of n + 1
bits, initially all false. When a process completes an operation, it scans the
n + 1 earlier cells, setting released[i] to true in the cell at distance 3.

Each process maintains a private pool of cells. When a process needs
to allocate a new cell, it scans its pool, and reinitializes the first cell whose
released bits are all {rue. We assume here that each object has its own
pool; in particular, the cell’s new sequence number exceeds its old sequence
number. While a process P is allocating a new cell, the list representing an
object includes at most » — 1 incomplete operations, and each such cell can
inhibit the reclamation of at most n + 1 cells. To ensure that P will find a
free cell, it needs a pool of at least n2 cells. Note that locating a free cell
requires at worst O(n3) read operations, since the process may have to scan
n? cells, and each cell requires reading n + 1 bits. If an atomic fetch&add
operation is available, then a counter can be used instead of the released
bits, and a free cell can be located in O(n?) read operations.

The proof of Lemma 23 remains unchanged. For Lemma 24, we observe
that a cell can be reclaimed only if it is followed in the list by at least n 4+ 1
other cells, hence reclaiming a cell cannot affect the value of max(head).
The statement of Lemma 26 needs to be strengthened:

Lemma 29 The following assertion holds just before Statement #4:
announce[P] € head V head|P).seq > start(P).

Proof: When P announces its cell, there is some process ¢ such that
head[Q] has sequence number greater than or equal to start(P). This cell
can be reclaimed only if n+ 1 other cells are threaded in front of it, implying
that |concur(P)| > n+ 1, and hence that announce[P| € head (Lemma 23).

32

The proof of Theorem 28 proceeds as before. There is one last detail to
check: if P’s cell has not been threaded by the time it finishes scanning head,
then we claim that none of the cells it traverses will be reclaimed while the
operation is in progress. Lemma 23 states that the list cannot have grown
by more than n cells since P’s announcement, thus every cell reachable from
head|P] lies within n+ 1 cells of the end of the list, or of announce[P] if it is
threaded. In either case, those cells cannot be reclaimed while P’s operation
is in progress, since they must have at least one released bit unset.

4.3 Remarks

The first universal construction [12] used unbounded memory. Plotkin [27]
describes a universal construction employing “sticky-byte” registers, a kind
of write-once memory. In Plotkin’s construction, cells are allocated from a
common pool, and reclaimed in a way similar to ours. The author [13] de-
scribes a universal construction using compare&swap that is currently being
implemented on a multiprocessor.

A randomized wail-free implementation of a concurrent object is one that
guarantees that any process can complete any operation in a finite ezpected
number of steps. Elsewhere [2], we give a randomized consensus protocol
using atomic registers whose expected running time is polynomial in the
number of processes. This protocol has several important implications. If
the wait-free guarantee is allowed to be probabilistic in nature, then the
hierarchy shown in Figure 1 collapses because atomic registers become uni-
versal. Moreover, combining the randomized consensus protocol with our
universal construction yields a polynomial-time randomized universal con-
struction. Bar-Noy and Dolev [3] have adapted our randomized consensus
protocol to a message-passing model; that protocol can be used to manage
randomized wait-free replicated data objects.

5 Conclusions

Wait-free synchronization represents a qualitative break with the traditional
locking-based techniques for implementing concurrent objects. We have
tried to suggest here that the resulting theory has a rich structure, yield-
ing a number of unexpected results with consequences for algorithm design,
multiprocessor architectures, and real-time systems. Nevertheless, many in-
teresting problems remain unsolved. Little is known about lower bounds
for universal constructions, both in terms of time (rounds of consensus) and

33

space (number of cells). The ¢mplements relation may have additional struc-
ture not shown in the impossibility hierarchy of Figure 1. For example, can
atomic registers implement any object with consensus number 1 in a sys-
tem of two or more processes? Can fetchédadd implement any object with
consensus number 2 in a system of three or more processes? Does the im-
plements relation have a different structure for bounded wait-free, wait-free,
or non-blocking synchronization? Finally, little is known about practical
implementation techniques.

Acknowledgments

I am grateful to Jim Aspnes, Vladimir Lanin, Michael Merritt, Serge Plotkin,
Mark Tuttle, Jennifer Welch, and the anonymous referees for many invalu-
able suggestions.

References

[1] J.H. Anderson and M.G. Gouda. The virtue of patience: Concurrent
programming with and without waiting. Private Communication.

[2] J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared
memory. Technical Report CMU-CS-88-205, CMU Computer Science
Dept., December 1988. To appear, Journal of Algorithms.

[3] A. Bar-Noy and D. Dolev. Shared memory vs. message-passing in
an asynchronous distributed environment. In Fighth ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pages
307-318, August 1989.

[4] B. Bloom. Constructing two-writer atomic registers. In Proceedings
of the Swzth ACM Symposium on Principles of Distributed Computing,
pages 249-259, 1987.

[6] J.E. Burns and G.L. Peterson. Constructing multi-reader atomic values
from non-atomic values. In Proceedings of the Sizth ACM Symposium
on Principles of Distributed Computing, pages 222-231, 1987.

[6] B. Chor, A. Israeli, and M. Li. On processor coordination using asyn-
chronous hardware. In Proceedings of the Sizth ACM Symposium on
Principles of Distributed Computing, pages 86-97, 1987.

34

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Dolev, C. Dwork, and L Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM, 34(1):77-97,
January 1987.

G.H. Pfister et al. The ibm research parallel processor prototype (rp3):
introduction and architecture. In International Conference on Parallel
Processing, 1985.

M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed
commit with one faulty process. Journal of the ACM, 32(2), April 1985.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,
and M. Snir. The nyu ultracomputer — designing an mimd parallel com-
puter. IEEE Transactions on Computers, C-32(2):175-189, February
1984.

A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for
the efficient coordination of very large numbers of cooperating sequen-

tial processors. ACM Transactions on Programming Languages and
Systems, 5(2):164-189, April 1983.

M.P. Herlihy. Impossibility and universality results for wait-free syn-

chronization. In Seventh ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, pages 276-290, August 1988.

M.P. Herlihy. A methodology for implementing highly concurrent data
structures. In Proceedings of the Second ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, March 1990. To
appear.

M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In 14th
ACM Symposium on Principles of Programming Languages, pages 13—
26, January 1987.

C.P. Kruskal, L. Rudolph, , and M. Snir. Efficient synchronization on

multiprocessors with shared memory. In Fifth ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, August 1986.

L. Lamport. Concurrent reading and writing. Communications of the
ACM, 20(11):806-811, November 1977.

35

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IFEFE Transactions on Computers,
C-28(9):690, September 1979.

L. Lamport. Specifying concurrent program modules. ACM Trans-
actions on Programming Languages and Systems, 5(2):190-222, April
1983.

L. Lamport. On interprocess communication, parts i and ii. Distributed
Computing, 1:77-101, 1986.

V. Lanin and D. Shasha. Concurrent set manipulation without lock-
ing. In Proceedings of the Seventh ACM Symposium on Principles of
Database Systems, pages 211-220, March 1988.

M.C. Loui and H.H. Abu-Amara. Memory Requirements for Agreement
Among Unreliable Asynchronous Processes, volume 4, pages 163-183.
JAI Press, 1987.

N.A. Lynch and M.R. Tuttle. An introduction to input/output au-
tomata. Technical Report MIT/LCS/TM-373, M.I.T. Laboratory for
Computer Science, November 1988.

R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared
variables. In Proceedings of the Sizth ACM Symposium on Principles
of Distributed Computing, pages 232—-249, 1987.

C.H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631-653, October 1979.

G.L. Peterson. Concurrent reading while writing. ACM Transactions
on Programming Languages and Systems, 5(1):46-55, January 1983.

G.L. Peterson and J.E. Burns. Concurrent reading while writing ii: the
multi-writer case. Technical Report GIT-ICS-86/26, Georgia Institute
of Technology, December 1986.

S.A. Plotkin. Sticky bits and universality of consensus. In Proceedings
of the Eighth ACM Symposium on Principles of Distributed Computing,
pages 159-176, 1989.

C.L. Seitz. The cosmic cube. Communications of the ACM, 28(1),
January 1985.

36

[29]

[30]

[31]

A K. Singh, J.H. Anderson, and M.G. Gouda. The elusive atomic regis-
ter revisited. In Proceedings of the Sizth ACM Symposium on Principles
of Distributed Computing, pages 206-221, 1987.

H.S. Stone. Database applications of the fetch-and-add instruction.
IEEE Transactions on Computers, C-33(7):604-612, July 1984.

P. Vitanyi and B. Awerbuch. Atomic shared register access by asyn-
chronous hardware. In Proceedings of of the 27th IEEE Symposium on
Foundations of Computer Science, pages 223-243, 1986. See also errata
in SIGACT News 18(4), Summer, 1987.

37

