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ABSTRACT
We present a new class of estimators for approximating the
entropy of multi-dimensional probability densities based on
a sample of the density. These estimators extend the classic
”m-spacing” estimators of Vasicek and others for estimating
entropies of one-dimensional probability densities. Unlike
plug-in estimators of entropy, which £rst estimate a proba-
bility density and then compute its entropy, our estimators
avoid the dif£cult intermediate step of density estimation.
For £xed dimension, the estimators are polynomial in the
sample size. Similarities to consistent and asymptotically
ef£cient one-dimensional estimators of entropy suggest that
our estimators may share these properties.

1. INTRODUCTION

The entropy H(f) of a continuous probability density f(x)
is given by

H(f) = −
∫ ∞

−∞

f(x) log f(x) dx,

as described in [1]. In this paper, we concern ourselves with
the estimation of the entropy when the density f(x) is un-
known, but when we have a sample of size N drawn iid
from this density. The estimation of entropy from a sam-
ple is an important problem, with applications in goodness-
of-£t tests, parameter estimation, source-coding, economet-
rics, and many other areas [2].

Beirlant et al. [2] give an excellent review of standard
methods of entropy estimation. A common practice is to
use so-called plug-in estimates. In this approach, the un-
known density f(x) is £rst estimated from a sample using
any standard density estimation technique. Subsequently,
the entropy of the density estimate f̂(x) is computed as an
estimate of the true entropy of f . While plug-in estimates
work well in low-dimensions and for densities with known
parametric form, the dif£cult problem of density estimation
makes them impractical for small sample sizes in higher di-
mensions.
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Another method for estimating one-dimensional entropies
is based on the order statistics of a sample. In this paper, we
show how these consistent and rapidly converging estima-
tors can be extended to multiple dimensions, resulting in ef-
fective and computationally ef£cient entropy estimators for
multidimensional distributions.

2. M-SPACINGS ESTIMATES IN ONE DIMENSION

2.1. Order statistics and spacings

Consider a scalar random variable Z, and a random sample
of Z denoted by Z1, Z2, ..., ZN . The order statistics of a
random sample of Z are simply the elements of the sample
rearranged in non-decreasing order: Z(1) ≤ Z(2) ≤ ... ≤
Z(N) (c.f. [3]). A spacing of order m, or m-spacing, is then
de£ned to be Z (i+m) − Z(i), for 1 ≤ i < i + m ≤ N .
Finally, if m is a function of N , one may de£ne the mN -
spacing as Z(i+mN ) − Z(i).

The mN−spacing estimator of entropy, originally due
to Vasicek [4], can now be de£ned as

ĤN (Z1, ..., ZN ) =
1

N

N−mN
∑

i=1

log

(

N

mN

(Z(i+mN ) − Z(i))

)

.

(1)
To see where this estimator comes from, we £rst make the
following observation regarding order statistics. For any
random variable Z with an impulse-free density p(·) and
continuous distribution function P (·), the following holds.
Let p∗ be the N -way product density p∗(Z1, Z2, ..., ZN ) =
p(Z1)p(Z2)...p(ZN ). Then

Ep∗ [P (Z(i+1))−P (Z(i))] =
1

N + 1
, ∀i, 1 ≤ i ≤ N − 1.

(2)
That is, the expected value of the probability mass of the
interval between two successive elements of a sample from
a random variable1 is just 1

N+1 of the total probability (1.0).
This surprisingly general fact is a simple consequence of the
uniformity of the random variable P (Z). P (Z), the random
variable describing the “height” on the cumulative curve of

1The probability mass of the interval between two successive points is
the integral of the density function between these two points.



a random draw from Z (as opposed to the function P (z))
is called the probability integral transform of Z (c.f. [5]).
Thus, the key insight is that the intervals between successive
order statistics have the same expected probability mass.

Using this idea, one can develop a simple entropy esti-
mator. We start by approximating the probability density
p(z) by assigning equivalent masses to each interval be-
tween points and assuming a uniform distribution of this
mass across the interval2. De£ning Z (0) to be the in£mum
of the support of p(z) and de£ning Z (N+1) to be the supre-
mum of the support of p(z), we have:

p̂(z;Z1, ..., ZN ) =
1

N+1

Z(i+1) − Z(i)
, (3)

for Z(i) ≤ z < Z(i+1). Then, we can write

H(Z)

= −
∫ ∞

−∞

p(z) log p(z)dz

(a)
≈ −

∫ ∞

−∞

p̂(z) log p̂(z)dz

= −
N
∑

i=0

∫ Z(i+1)

Z(i)

p̂(z) log p̂(z)dz

= −
N
∑

i=0

∫ Z(i+1)

Z(i)

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)
dz

= −
N
∑

i=0

1
N+1

Z(i+1) − Z(i)
log

1
N+1

Z(i+1) − Z(i)

∫ Z(i+1)

Z(i)

dz

= − 1

N + 1

N
∑

i=0

log
1

N+1

Z(i+1) − Z(i)

(b)
≈ − 1

N − 1

N−1
∑

i=1

log
1

N+1

Z(i+1) − Z(i)

=
1

N − 1

N−1
∑

i=1

log
(

(N + 1)(Z(i+1) − Z(i))
)

≡ Ĥsimple(Z
1, ..., ZN ).

The approximation (a) arises by approximating the true
density p(z) by p̂(z;Z1, ..., ZN ). The approximation (b)
stems from the fact that we in general do not know Z(0) and
Z(N+1), i.e. the true support of the unknown density. There-
fore, we form the mean log density estimate using only in-
formation from the region for which we have some informa-
tion, ignoring the intervals outside the range of the sample.
This is equivalent to assuming that outside the sample range,
the true density has the same mean log probability density
as the rest of the distribution.

2We use the notion of a density estimate to aid in the intuition behind
m−spacing estimates of entropy. However, we stress that density estima-
tion is not a necessary intermediate step in our ultimate entropy estimator.

2.2. Lowering the variance of the estimate

The estimate Ĥsimple has both intuitive and theoretical ap-
peal3, but it has relatively high variance since while the ex-
pectation of the interval probabilities (2) is 1

N+1 , their vari-
ance is high.

This problem can be mitigated, and asymptotically elim-
inated completely, by considering m−spacing estimates of
entropy, such as

Ĥm−spacing(Z
1, ..., ZN ) ≡ (4)

m

N − 1

N−1
m

−1
∑

i=0

log

(

N + 1

m
(Z(m(i+1)+1) − Z(mi+1))

)

.

By letting

m→∞,
m

N
→ 0, (5)

this estimator also becomes consistent [2]. It is typical to
set m =

√
N .

The intuition behind this estimator is that by consider-
ing m-spacings with larger and larger values of m, the vari-
ance of the probability mass of these spacings, relative to
their expected values, gets smaller and smaller. As m and
N grow, the probability masses for m-spacings concentrate
around their expected values. This property holds for all
probability distributions with continuous cumulative distri-
bution functions.

A modi£cation of (4) in which the m−spacings overlap:

Ĥoverlap(Z
1, ..., ZN ) ≡ (6)

1

N −m

N−m
∑

i=1

log

(

N + 1

m
(Z(i+m) − Z(i))

)

,

reduces the asymptotic variance of the spacings estimator.
Note that this is equivalent asymptotically to Vasicek’s es-
timator [4]. Weak and strong consistency have been shown
given (5) by various authors under a variety of general con-
ditions. For details of these results, see [2]. Perhaps the
most important property of this estimator is that it is asymp-
totically ef£cient, as shown in [7].

3. EXTENDING SPACING ESTIMATORS TO
MULTIPLE DIMENSIONS

Ultimately, m-spacings estimators of entropy are based on
the intuition that sums of small random intervals (based
on order statistics) have consistent behavior. While there
is no clear extension of order statistics to higher dimen-
sions, there are methods for generating random regions of
multi-dimensional spaces with constant expected probabil-
ity mass. Such methods will allow us to extend the notion

3The addition of a small constant renders this estimator weakly consis-
tent for bounded densities under certain tail conditions ([6]).



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 1. Hyper-Voronoi regions for N = 4000 points. On the left the points were drawn from a uniform distribution over the
unit square. On the right, the points were drawn from a two-dimensional Gaussian distribution with diagonal covariance. In
each case, the Hyper-Voronoi regions have probability mass that is approximately linear in the number of Voronoi regions
that compose them. As a rudimentary test of the m-Voronoi estimator we estimated the entropy of a two-dimensional unit
variance Gaussian like the one shown at right. The true entropy in nats for this distribution is approximately 2.8379. Over 100
trials with N = 1000, our estimator produced a mean entropy of 3.07 with standard deviation 0.11. Presumably it is biased
upward by the assumption that probability is distributed uniformly (and hence with maximum entropy) in each Hyper-Voronoi
region. (For color versions of these £gures, see http://www.eecs.berkeley.edu/˜egmil/papers/vor.pdf.)

of spacings estimates to higher dimensions. We present two
(dual) methods for generating such random regions in the
next subsections.

3.1. Voronoi regions in D dimensions

Given a set of points Z1, Z2, ..., ZN in D dimensions, a set
of Voronoi regions V 1, V 2, ..., V N is formed by associating
with each point Zi the set V i of all points which are closer
to Zi than to any other point Zj . [8] is an extensive text
on Voronoi regions, Voronoi diagrams, and Voronoi tessel-
lations.

One can easily construct a density estimate of an un-
known distribution f from a sample of size N in three steps,
by 1) constructing the Voronoi regions, 2) assuming a £xed
probability mass ( 1

N
) for each Voronoi region, and 3) as-

suming uniform density over each Voronoi region. The only
subtlety here is that the density becomes effectively zero for
Voronoi regions which extend to in£nity. As with the spac-
ings estimate, if we know the support of the unknown den-
sity f , we may bound these external regions and assign a
£nite £xed density to them, or in the case when the sup-
port is not known, we may simply choose to ignore these

external regions when estimating expectations of quantities
based on the sample, just as the spacings estimator ignores
the 0th and Nth intervals in the spacings estimate. (See step
(b) of the Ĥsimple derivation.)

If the support of f is known, then through a parallel
derivation, this leads to

ĤV or−simple ≡
1

N

N
∑

i=1

log
(

NA(V i)
)

, (7)

where A(V i) is the D-dimensional volume of Voronoi re-
gion V i. When the support is not known, an almost equiva-
lent estimator can be used:

ĤV or−simple2 ≡
1

N −K

∑

V is.t.A(V i)6=∞

log
(

NA(V i)
)

,

(8)
where K is the number of Voronoi regions with in£nite vol-
ume.

3.2. Delaunay regions in D dimensions

A simple variation on this theme is to use Delaunay regions
instead of Voronoi regions in the estimator. Delaunay re-



gions are the duals of Voronoi regions. In two dimensions,
a Delaunay region is formed by connecting the centers of
three mutually adjacent Voronoi regions [8]. Due to lack
of space, we cannot fully discuss the Delaunay estimators,
but we note that they may be advantageous when we have a
small sample N and high dimension D.

3.3. m-Voronoi and m-Delaunay estimators

Just as the 1-spacing estimator (Ĥsimple) was extended to
the m-spacings estimator (Ĥm−spacing), we can extend the
basic Voronoi and Delaunay entropy estimators to reduce
their variance. In one dimension, this was achieved by merely
“pasting” together contiguous intervals into an m-spacing,
as de£ned by the order statistics of a sample. In D dimen-
sions, we will do this by pasting together multiple Voronoi
regions into Hyper-Voronoi regions or multiple Delaunay
regions into Delaunay clusters. Hyper-Voronoi regions for
two different distributions are shown in Figure 2.2.

It is tempting to include in a Hyper-Voronoi region any
Voronoi region whose center is included in some Euclidean
ε-ball of a particular point. However, this method of form-
ing Hyper-Voronoi regions gives clusters with many more
constituent Voronoi regions in areas of high density than in
areas of low density, since low density regions tend to have
larger regions. Instead, we desire a technique which gives
the same expected number of sub-regions for each Hyper-
Voronoi region, irrespective of the underlying density.

To achieve this, we de£ne an adjacency metric on the
set of Voronoi regions by setting the distance between any
two regions V i and V j to be the shortest path on the adja-
cency graph for the set of Voronoi regions (with each edge
having weight 1). The Voronoi clustering algorithm then
proceeds as follows. m of the N Voronoi regions are cho-
sen at random as Hyper-Voronoi region seeds. Then the
Hyper-Voronoi regions are “grown” by adding to them all
of the Voronoi regions that are adjacent to them and have
not yet been assigned. That is, a Hyper-Voronoi “ball” is
formed using the Voronoi adjacency metric. This process
is continued (the balls are grown) until all Voronoi regions
have been assigned to a Hyper-region. This is essentially
the same process by which Voronoi regions themselves are
de£ned, only with the adjacency metric rather than with the
traditional Euclidean metric. It is for this reason that we call
these clusters Hyper-Voronoi regions.

This leads to the types of regions shown in Figure 2.2.
Note that while the Hyper-Voronoi regions do not have the
same number of Voronoi region components, their probabil-
ity masses will tend to be linear (and hence predictable with
low variance) in the number of component Voronoi regions.
Such predictable and locally assigned probability mass to
such regions allows the reliable estimation of functionals of
the underlying density, such as entropy.

Assuming now that each Hyper-Voronoi region U i has
probability mass proportional to the number of (£nite vol-
ume) regions it is composed of, that this mass is again dis-
tributed uniformly, that the number of (£nite volume) Voronoi
regions in a Hyper-Region U i is given by C(U i), and that
N =

∑

i C(U i), we have the £nal form of our estimator:

ĤHyperV or ≡
m
∑

i=1

C(U i)

N
log

NA(U i)

C(U i)
. (9)

We can extend this estimator to incorporate overlapping
Hyper-Voronoi regions, as in the overlapping m-spacings
estimate. We conjecture that these overlapping estimators
have similar consistency and convergence properties to the
one-dimensional overlapping m−spacing estimators, but the
proof of these properties is left to future work.

Finally, regarding computational complexity, we note
that for £xed dimension, the evaluation of (9) and its over-
lapping version is polynomial in N . While Hyper-Voronoi
regions can be implicitly de£ned in polynomial time, the
calculation of their volumes needed for (9) appears, unfor-
tunately, to be exponential in the dimension.
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