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Abstract

Human beings exhibit rapid learning when presented with a small number of images of a
new object. A person can identify an object under a wide variety of visual conditions after
having seen only a single example of that object. This ability can be partly explained by the
application of previously learned statistical knowledge to a new setting. This thesis presents
an approach to acquiring knowledge in one setting and using it in another. Specifically, we
develop probability densities over common image changes. Given a single image of a new
object and a model of change learned from a different object, we form a model of the new
object that can be used for synthesis, classification, and other visual tasks.

We start by modeling spatial changes. We develop a framework for learning statistical
knowledge of spatial transformations in one task and using that knowledge in a new task.
By sharing a probability density over spatial transformations learned from a sample of
handwritten letters, we develop a handwritten digit classifier that achieves 88.6% accuracy
using only a single hand-picked training example from each class.

The classification scheme includes a new algorithm, congealing, for the joint alignment
of a set of images using an entropy minimization criterion. We investigate properties of
this algorithm and compare it to other methods of addressing spatial variability in images.
We illustrate its application to binary images, gray-scale images, and a set of 3-D neonatal
magnetic resonance brain volumes.

Next, we extend the method of change modeling from spatial transformations to color
transformations. By measuring statistically common joint color changes of a scene in an
office environment, and then applying standard statistical techniques such as principal com-
ponents analysis, we develop a probabilistic model of color change. We show that these color
changes, which we call color flows, can be shared effectively between certain types of scenes.
That is, a probability density over color change developed by observing one scene can pro-
vide useful information about the variability of another scene. We demonstrate a variety of
applications including image synthesis, image matching, and shadow detection.

Thesis Supervisor: Paul A. Viola
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Chapter 1

Introduction

This thesis is motivated by the ability of humans to learn a useful model of a class from a
small number of examples, often just a single example (Moses et al., 1996). Consider the
symbol for the new European currency, the “euro,”, shown in Figure 1-1. This symbol was
only recently conceived, and many people saw their first example of it during the last few
years. Fortunately, after seeing a single example of this character, humans can recognize
it in a wide variety of contexts, styles, and positions. It would certainly be inconvenient if
people needed 1000 examples of such a new character in order to develop a good model of
its appearance.

Since human beings are bound by the laws of probability and estimation, it would
appear that we achieve this sparse-data learning by using prior1 knowledge. Some of the
most fundamental questions in machine learning and artificial intelligence concern prior
knowledge, namely:

• What is its form?

• How is it obtained?

• How is it applied in new learning scenarios to improve the efficiency of learning?2

• Can prior knowledge be used to build a good model of a class from a single example?

The primary focus of this thesis is not to elucidate the exact mechanisms of human learning,
but rather to emulate the dramatic learning efficiency of human beings by leveraging the
knowledge gained in previously learned tasks.

1.1 Contributions

This thesis formalizes a general approach to acquiring prior knowledge and applying it to
new learning problems to improve performance, specifically in the domain of machine vision
and pattern recognition. We adopt an explicit form for prior knowledge in vision problems:
probability densities over transformations of images. We develop probability densities on
spatial transformations and on color transformations, both of which can be applied in a
wide range of settings to produce useful object models from a small amount of data.

1By prior knowledge we mean knowledge obtained prior to a particular task.
2Efficiency can be thought of, informally, as the number of training examples required to achieve a certain

test performance in a particular task.

15



Figure 1-1: A handwritten version of the symbol for the new European currency, the euro.

We establish a novel methodology for modeling new classes of objects based only on
samples of related classes (or support classes) and a single example of the new class. This is
done for object classes that exhibit variability in shape (handwritten digits) and for object
classes whose variability is due to lighting change (e.g. the same face under different lighting
conditions).

The general approach is to use the support classes to form probabilistic models, not of
images, but of image change. Changes due to spatial variations are represented by optical
flow fields. Changes due to lighting variations and related phenomena are represented by a
new type of structure: color flow fields. Combining a generic model of image change with
a sample of a new object provides a model of the new object.

These object models are used to perform a variety of tasks. In the case of handwritten
digit recognition, we develop a classifier based upon just a single randomly chosen example
of each digit that achieves mean accuracy rates of 74.7%. This is the best known accuracy
on such a task to date. Other classifiers typically score well below this mark even for training
sets with several examples. By hand-selecting a single example of each digit for training
rather than choosing the example randomly, this accuracy is boosted to 88.6%. This result
stands in stark contrast to the usual practice of using thousands of training examples per
character.

Another contribution is a new algorithm for the joint alignment of a set of one-dimensional
signals, two-dimensional images, or three-dimensional volumes of the same class. This al-
gorithm, called congealing, plays a central role in generating models of spatial variability
from support sets. It is useful not only for generating these models, but also as a general
tool for alignment and complexity reduction.

In the domain of lighting variability, we introduce a new probabilistic model of joint
color change in objects due to lighting change and certain non-linear camera parameters.
The model is learned from one object, and then can be transferred to a new object. We show
how this model of color change, when combined with a single image of a new object, can be
used to produce plausible alternative images of the new object. We demonstrate preliminary
results in image matching as well as shadow detection and removal. The common theme in
this work is that performance of a new task is improved by using knowledge gained from
previous data sets or tasks.

1.2 Learning to learn

Using previously learned concepts to improve performance of the current task is not a new
idea. The general problem of sharing arbitrary knowledge between tasks, also referred to
as learning to learn has been considered by many authors. An introduction to the topic
of learning to learn is given in (Thrun and Pratt, 1998) and summaries of much of the
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relevant work can be found in (Pratt and Jennings, 1998). In this section, three techniques
for sharing knowledge from previous tasks are reviewed. These include hierarchical Bayesian
analysis, weight sharing in neural networks, and Bollacker and Ghosh’s hierarchical classifier
architecture.

Given a family of tasks, training experience for each of these tasks, and a family of
performance measures (e.g., one for each task), Thrun and Pratt (Thrun and Pratt, 1998)
define an algorithm that learns to learn as one for which the performance of each task
improves with experience and with the number of tasks. Presumably, some kind of trans-
fer must occur between tasks that has a positive impact on task performance if such an
algorithm is to be developed. Suppose we identify a particular task of interest, which we
shall call the target task. As mentioned above, data from sets not directly related to the
target task, such as a set of handwritten letters provided when the target task is to classify
handwritten digits, are called support sets. Support sets can provide a useful (or harmful)
bias during the learning of a new task.

1.2.1 Hierarchical Bayes

One of the most common ways of leveraging support sets, or prior experience, is hierarchical
Bayesian analysis (Berger, 1985; Baxter, 1998). Hierarchical Bayesian analysis is a simple
extension of common Bayesian methods in which there is hierarchical structure in a set
of data samples. The method is easily understood by comparing it to standard maximum
likelihood (ML) and maximum a posteriori (MAP) estimation.

Taking an example from Berger (Berger, 1985), suppose one is trying to estimate the
mean bushels of corn per acre for a farm X from a given county, and that we have data (the
number of bushels) from several acres on farm X. In the ML approach, we would simply
compute the most likely value for the mean given the data, which can be shown to be the
sample mean. In this example, it would be the average of the bushel counts from the acres
for which data was available on farm X.

In a (non-hierarchical) Bayesian analysis, we would also specify a prior probability distri-
bution on the parameter of interest that incorporates (possibly subjective) prior knowledge.
For example, we may have been told by an experienced farmer to expect the mean bushels of
corn per acre to be approximately 100 with a standard deviation of about three bushels per
acre, and to be distributed in an approximately Gaussian fashion. Along with the observed
data, this prior would influence our final MAP estimate of the mean. An empirical mean
(based only on the observed data) of substantially less than 100, say 90, based on a small
sample of acres would thus be judged as erroneously low and adjusted upward to better fit
the prior knowledge of the farmer.

Suppose, however, that we do not have trustworthy prior information about the expected
number of bushels of corn from farm X, but that we have reason to believe that the statistics
for other farms in the same county should be similar, although not identical, to farm X. In
a hierarchical Bayesian approach, we can attempt to incorporate data gathered from other
farms (assuming it is available) in an effort to estimate a “prior” distribution on the mean
and variance of bushels per acre for all farms. A simple (but sub-optimal) way to do this
is to calculate3 the mean and variance of the bushel-per-acre means using the data from
other farms, again assuming that these means are distributed in an approximately Gaussian

3Details of hierarchical Bayes calculations can be found in Berger (Berger, 1985), who provides abundant
details.
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fashion. These so-called hyperparameters play the same role as the information imparted
to us by the experienced farmer, but this technique represents a more formal way of taking
into account experience rather than merely “pulling a prior out of the air.”

This type of approach represents a clear and principled way to incorporate data from
prior experience, albeit by invoking certain assumptions about the data. The limitation of
hierarchical Bayes is that for practical purposes, it requires a strict parametric formulation
of the problem. It is often difficult to apply in artificial intelligence settings since most
of the distributions that arise are not representable in simple parametric forms. There
are, however, a variety of knowledge-sharing methods that have been developed for more
complex scenarios.

1.2.2 Weight sharing in neural networks

Another method for learning from related tasks is to simultaneously train a learning machine
on multiple related tasks. This approach has been applied to neural networks by many
authors as in (Sharkey and Sharkey, 1993; Thrun, 1996; Baxter, 1995).

The idea is that the nodes of a multi-layer neural network can be considered as computing
features of the data. Suppose one layer of units is task specific (say, the output layer) and
another layer is shared among tasks. The intuition behind this scheme is that if tasks are
“similar enough,” then they may benefit from similar intermediate layers or representations.
Performance can presumably be improved on a task with a small amount of training data
by “borrowing” a well-estimated intermediate layer from a task or set of tasks that have
abundant training data.

One problem with this approach is that there is no explicit evaluation of whether tasks
are similar enough to benefit from shared nodes. Building a network from dissimilar tasks
can degrade performance substantially by providing a worse-than-random bias for inference.
A partial solution to this problem is addressed in the following scheme.

1.2.3 The Supra-Classifier architecture

Another approach to the problem of learning to learn is given in (Bollacker and Ghosh,
1998). In this work, classifiers developed previously for support classes are used as features
in developing a classifier for a target class. That is, a set of positive and negative examples
of a target class is evaluated by each of the previous classifiers, and the labels assigned by
the previous classifiers are used as additional information about the target class.

The mutual information4 between the training class labels and the output labels from
the support set classifiers is used to determine which classifiers provide the most information
about the target class.

A simple example serves to illustrate how mutual information can be used to apply
knowledge from previous tasks only when it is most relevant. Suppose that we are trying
to build classifiers for each handwritten digit from a small number of examples but that we
have already built classifiers for each class of handwritten letters. Consider a set of training
zeroes that have been labeled as zeroes and a set of additional images that have been labeled
as non-zeroes. It is highly probable that the classifier for the letter “O” will generate nearly

4The mutual information between two random variables X and Y is defined to be H(X)+H(Y )−H(X, Y ),
where H(·) is the discrete entropy function, and H(·, ·) is the discrete joint entropy function(Cover and
Thomas, 1991). Mutual information can be thought of as the amount of information in a random variable
X about Y , or vice versa.
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Figure 1-2: Using a model of change, derived from a support set, in creating a new object
model.

the same set of labels (either “in class” or “not in class”) for these training images of zeroes
as they are labeled with, since zeroes and ohs are very similar in appearance. More formally,
the “zeroness” of images and the “oh-ness” of images, viewed as random variables, have
high mutual information. The supra-classifier scheme would thus heavily weight the vote
of the “oh” classifier in determining whether any new image were in fact a zero.

Perhaps the most appealing aspect of this architecture is that there is an explicit scheme
for using prior information only when it is relevant. This should greatly reduce the proba-
bility that performance in such a scheme will actually get worse when incorporating prior
experience. Since the technique explicitly estimates the “relatedness” of tasks, no a priori
assumptions about the relationship of tasks needs to be made. This is a highly desirable
aspect of any method of learning to learn, and we shall retain it in our work.

1.2.4 A machine vision approach

All of these approaches are interesting, but are not necessarily well adapted to the domain
of machine vision. As noted above, hierarchical Bayesian methods work well for simple
parametric modeling, but are not practical for more complex distributions. Neural network
approaches and the supra-classifier architecture, on the other hand, are so general that they
fail to take advantage of the specific structure in machine vision problems. The methods of
learning to learn proposed in this thesis are designed specifically to work with images (or
other continuous signals). By implicitly taking advantage of the properties of images, we
are able to make greater progress in learning to learn in this narrower domain.

1.3 Models of images vs. models of image change

It has been observed that the distribution of “natural” images, meaning images of common
scenes and objects, is very different from the distribution of purely random independent pixel
images. Machine vision researchers have tried to incorporate knowledge of natural images
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in machine vision problems by producing universal models of natural images. Models of the
principal components of natural images (Baddeley and Hancock, 1992), the independent
components of natural images (Bell and Sejnowski, 1997), and many other properties of
natural images have been proposed. These models, however, have proven very weak in
providing a bias for specific image class models: there is simply too much variability in
natural images to produce a powerful model in such a direct fashion. While it is true,
for example, that many images exhibit a characteristic distribution of spatial frequencies
(approximately), many other images do not. At best, we can put a weak prior on such
generic features as spatial frequency distributions in a single image.

Implicitly, these natural image models seem to suggest that objects are somehow similar
in appearance. In this thesis, we take a different viewpoint, as suggested by the work of
Black, Fleet, and Yacoob (Black et al., 2000; Black et al., 1998; Black et al., 1997a). We
suggest that the ways objects change appearance are similar. We hypothesize that people’s
success in object recognition is possible partly because a wide variety of objects tend to

change appearance in similar ways. This property has been described and exploited in
the domain of face recognition by Lando and Edelman(Lando and Edelman, 1995) and by
Edelman and O’Toole (Edelman and O’Toole, 2001).

An almost trivial and yet essential example of a common mode of image change is the
common spatial transformations that objects undergo from image to image. In different
photographs of the same object, the object will appear in different positions, orientations,
and sizes in the image. While this type of variability is hardly even noticed by human
beings, it causes severe problems for machine vision programs.

It is well known in the machine vision community that a good object recognizer will have
to address spatial and other types of variability. Many researchers deal with this variability
by requiring the user to produce large numbers of training examples which include examples
of this variability. Some have artificially created large training data sets by perturbing each
training image according to known modes of variability (Simard et al., 1993; Beymer and
Poggio, 1995). However, this approach has difficulty as the number of modes of variability
grows large. In particular, the number of examples needed to model a class well tends to
grow exponentially with the number of modes of variation one is trying to model.

In this work, we model common modes of change explicitly, rather than merely providing
samples of that change. By representing typical image changes in certain ways, our models
of image change can be shared among many different types of objects. Then, if we develop
a good model of image change for one object, we can transfer it to a new object for which
we may only have a single example image. This scheme is illustrated in Figure 1-2. As we
shall see, the success of such a scheme depends critically upon the right representation of
change.

1.4 Representations of image change

Suppose we wish to represent the difference between two images of an object that are the
same except for a small rotation and magnification. The first row of Figure 1-3 shows two
images of the digit “2” and then two representations of the change between the images.

1.4.1 Flow fields

The first representation of change is simply the pixelwise difference between the two images.
The second representation of change (far right of first row in Figure 1-3) shows the change
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Figure 1-3: Two methods for representing spatial differences between images. In the first
column are samples of various handwritten digits. In the second column are slight spatial
distortions of those digits. In particular, they have been slightly rotated and magnified. In
the third column is the result of subtracting the image in the second column from the image
in the first column. Learning what such differences for one object look like tell us very little
about what they might look like for other objects. In the fourth column is the flow field
representation of the change. The fact that these have the same form for different classes
enables us to share models of image change when they are represented in this fashion.

between the images of “two”s as an optical flow field. Each arrow in the optical flow field
shows how a pixel should be transported in order to produce the new image. Thus taking
the original image and the optical flow field, we can recover the second image. The key
feature of this representation is that, unlike the difference image representation, it also
works for any other type of image, namely, the “3” images. This suggests one of the guiding
principles of this thesis: Certain representations of change can be easily transferred among

objects; others cannot.

We use a similar idea to model lighting changes in a way that can be shared across
objects. This will allow us to predict the appearance of a new object even when we have
seen that object under only a single illumination.

Consider Figure 1-4 which has a structure parallel to that of Figure 1-3. Again, pairs of
images are shown, but in this case it is the lighting that has changed, rather than the spatial
positioning of the object. Again, a simple image difference (shown in the third column) is
only meaningful for a single object. However, the representation in the fourth column is
the same for both pairs of images. These color flow fields are to be interpreted as follows.
The three-dimensional volume in which the vectors sit represents all possible colors, with
axes of hue, brightness, and saturation. Each vector thus starts at one color and ends at
another. When applied to a particular image, then, these vector fields describe how each
color in one image is mapped to a color in the next image. By leveraging the fact that color

changes have similar structure for different objects, we can develop a more general model
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Figure 1-4: Two methods for representing lighting differences between images. Each image
pair (in the first two columns) represents the same object but under different simulated
lighting conditions. Representing these lighting changes as image differences (third column)
shows no similarity between the changes. However, representing them as color flow fields
(fourth column) reveals that they represent the same mapping of colors in one image to
colors in the new image (see text). Such generic models of color change can be applied to
a wide variety of object recognition problems (Miller and Tieu, 2001a).

of color change by using this type of representation.
Optical flow fields and color flow fields are both examples of what we call feature flow

fields, collections of change vectors for features, represented in an appropriate space. Proba-
bility densities over feature flow fields will constitute the primary form of shared knowledge
in this work.

1.4.2 Tangent vectors

Before describing models of change based on feature flow fields, we make a few more ob-
servations about difference image representations. Such representations have been used to
model invariance in classes of digits, as in (Simard et al., 1993). While such a representation
tells us how to create the second “2” image in Figure 1-3 from the first “2” image, (namely
add the “2” difference image to the first image), the “2” difference image tells us little or
nothing about how to change the image of the “3” to create another “3”. Even for images
of the same class, it is an accurate representation of the difference image only for a small
portion of the image class.

Images as vectors

This difficulty with the difference image representation of image change can be understood
by viewing the image as a vector in a high-dimensional space, where each component of
the vector is the value of a particular pixel. This image representation is ubiquitous in the
machine vision literature.
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Figure 1-5: A one-dimensional image manifold parameterized by rotation. The three-axes
represent the high-dimensional image space. A set of images parameterized by a single
variable such as rotation defines a one-dimensional manifold in image space. Tangent spaces
are not good approximations to a highly curved manifold. A manifold of an image with
edges, under rotation or translation, has curvature too great to be well-represented by a
small number of tangent spaces.

Consider the one-dimensional set of images created by changing an imaging parameter
such as the rotation of the camera. Such a variation traces a one-dimensional manifold in
the image vector space. This one-dimensional manifold of the rotation of an image can be
schematically “visualized,” as the curve C in Figure 1-5. The difference image then gives us
an approximation to the tangents to the curve (shown as arrows in the figure). The ability
to model another image on the manifold (Q for example) from an image P and the tangent
at P is related to the curvature of the manifold. If the curvature is high, the approximation
will be poor. If it is low, i.e. if the manifold is locally flat, the approximation will be good.

To determine over what range the manifold of a “2” image as it is rotated can be
approximated as flat, we can examine the inner product between two nearby unit tangent
vectors. If the inner product is near 1, the two tangent vectors point in nearly the same
direction and the manifold is fairly flat, whereas if the inner product is near 0, the two
tangents are nearly orthogonal and that the curve is rapidly curving away from its previous
direction. For sample images such as those shown in Figure 1-3, the inner product between
a tangent vector taken at the 0 rotation angle (represented abstractly by the point P in
the Figure 1-5) versus a tangent vector taken at the 5 degree rotation angle (point Q)
was only 0.0675. This means that even over the relatively small rotation of 5 degrees,
the tangent vectors are almost completely orthogonal. This in turn suggests that tangent
vector representations of change are not valid over a very large range of the relevant spatial
parameters like rotation and translation.

This severe curvature can be reduced by blurring images. That is, the “rotation” mani-
fold of a blurred image typically has lower average curvature than the rotation manifold of
the original image. Blurring eliminates sharp edges, which in turn, reduces the curvature
in manifolds parameterized by simple spatial transformations like translation, rotation, and
scaling.
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Figure 1-6: Diagram of our method for sharing models of affine variability. A support set
(shown as a set of “A”s) is given to the learner. From this support set, a general model of
affine variability is derived. Combining the model of affine variability with a single example
of a handwritten digit, a model is made for the digit that incorporates the spatial variability.

This blurring approach is taken by Simard et al. in their use of tangent approxima-
tions of transformation manifolds (Simard et al., 1993). Such blurred image manifolds are
represented much better by a small number of points and their tangents than are non-
blurred image manifolds. However, since blurring destroys information about the original
images, we favor an alternative approach to representing image change that preserves the
information, feature flow fields.

1.5 Models of change from flow field data

The bulk of this thesis is about developing shareable models of change from flow field data.
In this work, we focus on change due to spatial transformations and change due to lighting
variability.

1.5.1 Models of spatial change

The first major application of shareable models is in developing a handwritten digit recog-
nizer from one example of each digit class. In addition to the one example of each digit
class, the classifier is provided with support sets consisting of large sets of handwritten
letters.

The basic approach is to use the handwritten letter support sets to form models of
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spatial variability, which are then combined with the single example of a digit to produce a
probabilistic model for each digit class. This scheme is shown in Figure 1-6.

A classifier built using this scheme attains accuracy of about 75% on handwritten digits
taken from the NIST database. This accuracy was improved to 88.6% by hand-picking
the single training example to be “prototypical,” emulating a teaching scenario. We are
not aware of any reported performance on single training character classifiers, presumably
because the performance is too low to be of interest.

1.5.2 Models of color change

The second major application of shareable models is in modeling color changes in images
due to lighting changes and non-geometric camera parameters. In this part of the thesis, a
statistical model of color changes is developed using one object, and transferred to a single
example of a new object. This approach is diagrammed in Figure 1-7.

This technique can be used in a variety of useful vision tasks. It can be used to infer that
two images do or do not represent the same scene or object, to identify shadows in images
and remove them, and to synthesize new examples of an object for a variety of purposes.
Examples of all of these applications are presented.

1.6 Reader’s Guide

This thesis addresses a wide range of topics. Some readers may be interested in specific
portions of the work, and not others. The first part of the thesis (Chapters 2, 3, and 4)
focuses on developing a classifier for handwritten digits using only a single training example
for each class and support sets consisting of handwritten letters. The classifier is built by
forming a probabilistic model of spatial changes in images using the support sets. This
model is then transferred to each handwritten digit example to form models for each digit
class.

Specifically, Chapter 2 provides a brief introduction to supervised learning and the prob-
lem of handwritten digit recognition. It examines common criteria for evaluating classifier
performance, and suggests that other criteria, such as maximizing performance on a small
amount of training data, may be more appropriate in certain real-world scenarios. For
the reader familiar with supervised learning, Chapter 2 can be skipped without loss of
continuity.

Chapter 3 presents a factorized model for handwritten digits, where one factor represents
the variability that can be represented with affine transformations and the other factor
represents the remaining variability. A new algorithm for the joint alignment of images,
congealing, is presented. The output of the congealing algorithm can easily be used to
create a factorized model of images. It is argued that such factored representations, while
not asymptotically optimal, may perform better in classification tasks than non-factored
models for small amounts of data. Experimental results are reported for fully probabilistic
classifiers and for variations on these classifiers based on the Hausdorff distance.

Chapter 4 is the culmination of the first half of the thesis. It shows how one of the
factors in the models from the previous chapter can be borrowed from the model for a
support set. That is, since modes of spatial variation tend to be the same from character to
character, the probability density over spatial transformations for letters is similar to the
probability density over spatial transformations for digits. After verifying the similarity of
these distributions via certain statistical tests, models for handwritten digits are created by

25



Figure 1-7: Diagram of method for sharing models of joint color variability. By representing
typical joint color changes of a test object (upper left of figure), a general model of joint
color change is developed. This model, combined with a single example of a new object
(a face in this case) produces a model of the new object under common lighting changes
(lower right).

borrowing transform densities from handwritten letter support sets. Classification results
on a variety of experiments are reported, including 88.6% accuracy on a hand-picked single
training example classifier.

Chapter 5 can be thought of as an appendix to the first part of thesis. It provides
substantial additional detail about the joint alignment algorithm, congealing. It discusses
the algorithm’s robustness to noise, convergence properties, algorithmic complexity, and
applicability to other types of signals such as EEG data and three-dimensional brain volumes
of magnetic resonance images. This chapter is not directly related to the main theme of
learning to learn, except that this technique is central to the implementations in the first half
of the thesis. It can also be skipped without missing the main points in the thesis. However,
it may be of interest to vision researchers interested in issues of invariance, correspondence,
and alignment of images to models.

The second major part of the thesis, contained completely in Chapter 6, discusses color
flow fields and probability densities over them. These models of joint color changes in images
are acquired from video data of a natural setting as the lighting changes. The models are
then transferred to new objects. Applications in synthesis, image matching, and shadow
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detection are discussed. This chapter may be of particular interest to those interested in
color constancy and lighting invariance issues.

Chapter 7 is a short chapter whose goal is to unify spatial change models and color
change models under the framework of feature flow fields. It discusses common properties
of feature flow fields and possible extensions of them to other domains.
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Chapter 2

Background for Classification

There has been such great progress in the development of classifiers for problems such as
handwritten digit recognition that many researchers consider the problem solved. Classifiers
such as Belongie, Malik and Puzicha’s shape matching method (Belongie et al., 2001) and
LeCun et al.’s convolutional networks (LeCun et al., 1995) achieve performance very close
to that of human test subjects, a commonly assumed benchmark of “optimal” performance.
It seems that performance cannot get much better. However, these methods require large
amounts of training data. For example, LeCun et al. use 6,000 samples of each character in
training. This leaves open the question of whether these methods are appropriate in cases
for which large amounts of training data are not available.

In this short chapter, we introduce the general problem of supervised learning and one
of the most common instantiations of it in the field of pattern recognition: handwritten
digit classification. We consider alternatives to the common criterion of judging a classifier
by the minimization of test error in the presence of large training sets. We explore four
criteria for evaluating the performance of handwritten digit classifiers: asymptotic expected
error, error rates using large training sets, robustness to assumptions, and error rates using
small training sets. Each of these criteria is important in certain domains, and may be
unimportant or even entirely irrelevant in other domains. If we examine the performance
of classifiers using only a few examples per class, there is still a large gap between the
capabilities of machines and humans. This is particularly pronounced in visual pattern
recognition, where adult human beings have a vast amount of prior experience. We argue
that learning to classify from a small number of examples is both highly relevant as a general
issue in artificial intelligence and that it is relatively unexplored by the machine learning
community.

2.1 The classical problem of handwritten digit recognition

The recognition of handwritten digits produced by different writers has become a standard
problem in the field of visual pattern recognition.1 This is probably because the problem
is easy to understand, data is readily available (there are standard training and testing
databases), humans perform the task almost without error (on the standard databases),
and there are clear applications (sorting mail, reading checks (LeCun et al., 1997)).

1There is some disagreement as to whether handwritten digit recognition constitutes a problem in machine

vision.
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Figure 2-1: Typical samples of handwritten digits from the NIST database.

2.1.1 Supervised learning

Handwritten digit recognition can be cast as a supervised learning problem. The standard
supervised learning problem is commonly formulated as follows. During a training phase,
the learner is given a set of labeled examples {(x1, y1), ..., (xn, yn)} with xi ∈ X , the set of
possible examples, and yi ∈ Y, the set of labels. The goal is to learn a mapping f : X 7→ Y
from examples to labels so as to minimize the sum (or integral) of some loss function
l(y, f(x)) over some unknown test set of corresponding pairs also drawn from X × Y.

In a typical case of handwritten digit recognition, the training data are a collection
of labeled digits, usually represented as binary or gray-scale images. The test data are a
set of unlabeled digits, disjoint from the training set. And the loss function is simply 1 if
the learner’s guess of the digit is incorrect and 0 if the learner’s guess is correct. (This is
known as the symmetric loss function, since all types of errors are penalized equally.) Many
algorithms have been developed and used for handwritten digit recognition (see (LeCun
et al., 1995) for a comparison of several common algorithms). Figure 2-1 shows a typical
sample of handwritten digits from the National Institutes of Standards and Technology
(NIST) Special Database 19 (Grother, 1995).

2.2 What is a “good” recognition algorithm?

While it may seem straightforward to define the “best” character recognition algorithm
corresponding to a particular loss function, the issue is not as simple as it first appears.
For the symmetric loss function, the intuitive desire is to have an algorithm that correctly
classifies as many characters as possible from an unknown test set. This leads researchers to
simply try to produce a classifier that has minimum expected error on a test distribution,
using all available training data. The vast majority of research on the handwritten digit
recognition problem uses this criterion.

However, upon looking closer, we see that there is a wide range of potentially appropriate
criteria for the problem in different settings, even given the same loss function. We examine
four quite different criteria below, assuming the symmetric loss function in each case.

2.2.1 Criterion 1: Asymptotic expected error

A commonly evaluated theoretical criterion of classifier performance is whether the ex-
pectation of the error approaches the minimum possible value as the number of training
examples approaches infinity. Suppose that the probability distribution of each class j,
1 ≤ j ≤ K, in a classification problem is given by the class conditional probability density
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pj(I) = Prob(I|C = j), where C is the class label.2 If these class densities have overlap-
ping support (of non-zero measure) and each class has non-zero prior probability, then it
is impossible to produce a classifier with 0 expected error. The Bayes error rate, or simply
the Bayes rate, is the minimum achievable expected error rate for a classification problem,
where the expectation is taken with respect to the joint density over examples and class
labels px,y(x, y). If we are seeking a classifier that achieves the Bayes error rate as the
training set size goes to infinity, then we need look no further. There are many examples
of such classification schemes.

The k-nearest-neighbor classifier

For example, the k-nearest-neighbor rule approaches the Bayes error rate as the training set
size N approaches infinity, provided that we let k, the number of neighbors examined, also
grow at a rate slower than the rate at which the data set grows, for example, at k = N

1

2

(Duda and Hart, 1973; Devroye et al., 1996).

An optimal maximum a posteriori classifier

Another well-known approach to producing an asymptotically minimum error rate classifier,
assuming that the densities from which the characters are drawn obey certain smoothness
conditions, is to estimate pj(I) and p(C = j) and build a maximum a posteriori classifier
using

c∗(I) = arg max
c∈C

p(I|c)p(c). (2.1)

To do this, simply estimate the class conditional image densities pj(I) using a convergent
non-parametric density estimator, such as the Parzen kernel estimator (see (Parzen, 1962)).
To do this, we simply estimate each probability density as

p̂j(I) =
1

N

N
∑

i=1

K(Ii, I), (2.2)

where K(Ii, I) is a unit-mass kernel. A common kernel is the spherical P−dimensional
Gaussian density N (I; Ii, σ

2), with mean Ii and variance σ2. Here, and throughout the
thesis, P is the number of pixels in the image. As the number of data points gets large, we
can afford to make the kernel variance σ2 smaller and smaller. In the limit of infinite data
and a kernel which approaches a delta function, the estimate p̂j(I) converges to the true
probability density pj(I).

Since the density estimates will converge to the true class conditional densities, we can
classify any test sample with minimum probability of error by simply selecting the class with
maximum likelihood (ML). That is, a classifier based upon these estimates will converge to
a “perfect” classifier asymptotically in the sense of Bayes minimum error.

Of course, from a practical point of view, this asymptotic optimality may not help us
produce a good classifier3 for a particular task since it is often impractical or impossible

2When discussing supervised learning and other learning scenarios in a general context, we will use (x, y)
to refer to the (sample,label) pair. In the context of visual pattern recognition, we use the alternative
variables (I, c) to denote the (image,class) pair for their heuristic value.

3There are many ways to define the “goodness” of a classifier. We can define an ε−good classifier as a
classifier whose expected error is within ε of the Bayes rate.
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to collect enough training examples to reduce our error probability to within some ε of
the smallest possible value. In fact, in most visual pattern recognition problems, the class
conditional densities are too high-dimensional and complex to be represented in such a
general form in any current digital computer, even if enough training data were available to
estimate these densities well. Hence, while asymptotic optimality is a desirable property of
a classifier, it is certainly not a sufficient property to satisfy practical requirements in most
cases.

2.2.2 Criterion 2: Error rate for large training sets

Rather than focusing on theoretical properties of classifiers, the most common approach in
building handwritten digit classifiers has been to optimize performance on a test distribution
using large training sets. Typically, when classification results are reported for standard
data sets, a fixed number of training samples are available, and all of the samples are used.
While there are some exceptions, particularly recently as in (Simard et al., 1998), most
papers report results only for the full training set.

For the problem of handwritten digit recognition, several standard databases of hand-
written digits have been created. They contain standard training sets and test sets. Three
of the most common databases for digit recognition are the United States Postal Service
(USPS) Database, the NIST database, and the Modified NIST (MNIST) database. The
total number of training samples available in these three data sets (summed over all digits)
is 7291, 344307, and 60000 respectively. These are the training sets for which results are
most commonly reported.

There are many scenarios in which Criterion 2 is the appropriate criterion with which
to evaluate a classifier. Suppose that one is engineering a system for use in real world
applications, and that furthermore, one can make a reasonable argument that the training
data, test data, and the data on which the system is to be applied in the field all come from
the same distribution. In this scenario, it makes sense to gather training data until the cost
of acquiring it outweighs the additional benefit derived from it. For many classifiers, the
more training data we gather, the closer we can get to the Bayes error rate in our real world
application. When this data is inexpensive to gather, the task may warrant collecting large
training sets. These are the conditions under which Criterion 2 should be used.

However, the goal of building a classifier based on a standard data set is not always to
discriminate among the points in a test distribution. Often the goal is to compare one’s
own classifier to other classifiers that have been developed. That is, often the goal is to
discriminate between the performance of different classification schemes. This is especially
true if we plan to use the classifier we are studying in a new, but related scenario in which
we may not have as much training data.

Suppose that we are comparing two classifiers, each of which is known to converge to
the Bayes rate as the number of training samples goes to infinity. We know a priori that the
classifiers cannot be distinguished if the training data sets are very large. Thus, if our goal is
to compare classifiers, we should choose a training set size that maximizes the performance
difference rather than training set sizes that maximize performance of each classifier, which
may in fact minimize the performance difference. Many classifier comparisons now take
place with the aforementioned large data sets, and classifiers can only distinguish themselves
by reducing error by a tenth of a percent or less. This slim margin makes it difficult to
understand performance differences between various techniques.

We stress that building classifiers with large training sets has important applications,
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among which is the deployment of working handwriting recognition systems. However,
for distinguishing between general approaches to building classifiers, there may be more
information at the other end of the spectrum of training set sizes. Recently, some researchers
(Simard et al., 1998) have begun looking at smaller training sets to better discriminate
among classification methods. We believe this trend should continue.

2.2.3 Criterion 3: Robustness to assumptions and adaptability

Our ultimate aim in this work is to investigate classification and other learning problems
based upon small training sets. However, before addressing the criterion of performance on
small training sets, we briefly mention one other set of issues in the evaluation of classifiers:
the sensitivity to assumptions about the training and test sets. Traditional cost functions
for supervised learning typically do not include such a sensitivity analysis.

“Non-stationarity” of distributions

Suppose that the distribution of each class that a classifier was trained on is perturbed
slightly after classifier deployment. Alternatively, suppose that data is drawn from a non-
stationary distribution, i.e. one which is changing as a function of time. For example, this
can arise in handwriting recognition systems when data is collected from one user, but the
system is used by another user. One type of model (e.g. generative models) may be easier
to adapt quickly than another type of model (e.g. discriminative models). While we will
not delve into this issue in this thesis, it is an important issue to consider in evaluating
classifiers.

Changing the set of classes to be distinguished

Another simple example of adaptability is the addition or subtraction of new classes to a
current classifier, which amounts to a change in the task to be performed. For example,
a check reader in the United States might be required to read the “$” symbol, whereas in
Great Britain, the “£” symbol would need to be recognized. We may wish to evaluate how
easily the classifier is adapted from one environment to the next. A fine-tuned discriminative
classifier that has only modeled the border between classes may exhibit terrible performance
when a class is added or removed from the set of possible classes. On the other hand,
a minimum expected error ML classifier based on perfect probability density estimates
remains a minimum expected error ML classifier when any subset of classes are removed
from the model. Hence, such a classifier exhibits a particular type of robustness not seen
in all classifiers. This suggests yet another axis along which classifiers can be compared.

2.2.4 Criterion 4: Best performance on small training sets

The particulars of the task at hand may bias us heavily in our evaluation of classifiers. From
an artificial intelligence viewpoint, one can argue that decisions based upon only a single
example are often critical. Certainly, a classification scheme whose performance evaluation
depends upon N training examples may be irrelevant if that many training examples are
never available.
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Being eaten

Consider the following scenario. Suppose squirrel A knows nothing about cats until it
witnesses a cat eating squirrel B. It would behoove squirrel A to recognize the class of cats
from this single example, rather than waiting to see 1000 examples of such an event. The
nature of survival suggests that learning from one example is often very important.

In addition, whenever learning is a competitive endeavor, the efficiency of learning from
a small number of examples is important. Learning to locate food or shelter from a single
stimulus may result in an agent winning out over another less efficient learner. Recent results
(Ng and Jordan, 2002) show interesting cases in which classifiers with inferior asymptotic
performance may nevertheless give lower error rates if the training sets are small.

2.3 Conclusions

We therefore suggest that learning from a single example is more relevant in many scenarios
than asymptotic learning rates or learning from large data sets. However, we can infer very
little from a single example4 without prior knowledge. In Chapter 3, we describe a factorized
image distribution that will enable us to share knowledge from previous tasks. This shared
knowledge allows us to build the one training example classifier described in Chapter 4.

4Bounds on the probability of error in supervised learning scenarios such as the Vapnik-Chervonenkis
(VC) bounds have been developed that are a function of the training set size. However, these bounds are
usually uninformative for small training set sizes. They tend to be of the form Prob(error) < γ, where
γ > 1, so they provide no new information. See (Vapnik, 1998) for detailed discussion of such bounds.
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Chapter 3

Factored Density Estimation for

Robust Classification

3.1 Introduction

This chapter describes a variety of handwritten digit classification algorithms.1 In particu-
lar, it describes classifiers built from factorized probability models for images. Generative
factorized probability models make the assumption that an observation was generated by
at least two statistically independent processes. Since such an assumption represents an
approximation to the true generative process, factorized probability densities cannot be
perfectly accurate even with infinite data for estimation. Nevertheless, if the independence
assumption holds approximately, then it may be possible to estimate a “good” factorized
probability model much more rapidly (based upon a smaller sample) than a general non-
factorized model. This can result in better classifiers when the amount of training data is
limited.

The chapter begins with a description of a generative image model for handwritten
characters. It models each observed character as having two unseen parts (factors): a
character in a canonical form (the latent image), and a deformation away from this canonical
form. One can think of the deformation as a type of spatial “noise” that has been added
to an otherwise “centered” character. In the next section (3.3), we describe how classifiers
can be built either directly from observed training images, or from estimates of these parts
of the training images. We discuss the possible benefits of building classifiers from these
constituent parts.

In Section 3.4, we then describe a new algorithm for generating these image factors from
a set of training images for each class. This congealing algorithm simultaneously aligns a
set of images of a class, producing a set of latent images and the transforms that would
produce the observed images from these latent images.

With these “image parts” in hand, Section 3.5 describes probability density estimators
for latent images and transforms. Then in Section 3.6, we report experimental results
for the three classification algorithms described in Section 3.3 using the density estimates
of Section 3.5. We confirm that a classifier based on a factorized model of the images
outperforms a classifier that models the observed images directly.

Finally, in Section 3.7, we modify the classifiers to use an implicit rather than explicit

1Much of the content of Chapters 3, 4, and 5 appeared in (Miller et al., 2000).
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Figure 3-1: Images of “2”s that are the same up to an affine transformation. One of these
is arbitrarily picked to represent the “latent image”.

probability density over images. We adopt the Hausdorff measure as a distance between
images, and use a nearest neighbor scheme to define a new set of classifiers. These classifiers
substantially improve upon the results from Section 3.6, but still show the same relative
performance. That is, the classifier based on the factorized model still outperforms the
classifier based directly on the observed images.

3.2 A generative image model

We start with a few simple observations about handwritten characters. Suppose one is
presented with the image of a single handwritten character such as a “2”. A small rotation
of that image is still likely to be considered a “2”. A small magnification, shift, or shear of the
image (i.e. any affine transformation) is also likely to be identified as a “2”.2 Consider the
set of “2”s shown in Figure 3-1. These images are equivalent up to an affine transformation.
If we choose one such image arbitrarily and call it the latent image associated with this set,

2Many researchers in machine vision and machine learning interpret this quality to be an invariant

of handwritten characters. That is, it is said that handwritten characters are invariant to some set of
affine transformations. There are at least two problems with this terminology. First, not every character
can undergo the same transformations without changing identity. For example, an upright “6” can easily
undergo 50 degrees of rotation in either direction and still be identified as a “6”. However, a “6” that is
already oriented at 45 degrees cannot undergo such major transformations without starting to be confused
with a “9”. Thus it is not clear with respect to which set of transformations invariance should be defined.
Second, and perhaps more importantly, even a small transformation of a character that does not necessarily
change the outcome of a simple classifier may alter the likelihood of each class label for that character, under
a particular generative model (like the one presented in this chapter). This can have critical implications
when contextual effects are taken into account. Thus, we believe the term invariant is misleading in that
it suggests that there is essentially no effect whatsoever to affine transforming a character, which is not the
case.
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a b c

Figure 3-2: An illustration of a typical latent image (a), an affine transformation represented
as a vector field (b), and the resulting observed image (c).

then every other image in the set can be created by transforming the latent image according
to some affine transformation.

These observations suggest that we can build a compact model of the set of all hand-
written “2”s by defining a set of different latent images and then describing each “2” as a
pair consisting of a latent image and a transform away from that latent image. We adopt a
generative image model similar to those used in papers on deformable templates as in (Amit
et al., 1991). As described above, the basic idea is that the image be understood as texture

and shape as described in (Vetter et al., 1997), or as a latent image that has undergone a
transformation, as presented in (Frey and Jojic, 1999a). We adopt the latter terminology
in this work.

Figure 3-2 shows a typical latent image (a), a transformation represented as a vector
field (b), and the observed image (c) resulting from the action of the transformation on the
latent image. Other researchers have recently had successes in using similar models to handle
spatial variability (Frey and Jojic, 1999a; Vetter et al., 1997). While such factorizations
are interesting and useful in their own right, the primary motivation for using them in
this thesis is that they will enable the development of classifiers from a single example. In
particular, they will provide a vehicle for us to share information learned from previous
tasks.

Figure 3-3 represents the image model as a directed graph.3 Let IL be the set of possible
latent images and T the set of possible transforms. The graph shows that we expect the
latent image IL ∈ IL and transform T ∈ T to be dependent upon the character class.
In addition the graph indicates our assumption that the transform and latent image are
conditionally independent given the class. That is,

p(IL, T |C) = p(IL|C)p(T |C). (3.1)

An additional assumption is made that the observed image I is a deterministic function
of the transform T and the latent image IL. Since the transform can be thought of as acting

3For a discussion of directed graphical models, or Bayesian networks, see the introduction in (Jensen,
1996).
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Class

TransformLatent Image

Observed Image

Figure 3-3: A directed graphical model representing a general generative image model.
The latent image and transform are both dependent on class, and they are conditionally
independent given the class.

on the latent image, we write
I = T (IL). (3.2)

We shall assume that the transformation is a one-to-one mapping between images and is
hence invertible, so we may also write

IL = T−1(I). (3.3)

Given an observed image I, however, we cannot uniquely determine a corresponding latent
image-transform pair. This follows since for each transform T ∈ T , there exists a latent
image-transform pair (T−1(I), T ) that explains the observed image. Below, we shall try to
find the transform that converts an observed image back into the most likely latent image,
where the likelihood is defined relative to other images in the same class. Hence, from an
observed image, we will try to estimate T−1, which for convenience we will denote U . In the
most general setting, T (·) could be any smooth and invertible map from the coordinates of
one image (values in R2) to the coordinates in the new image. For our initial development,
however, we will assume that the transforms are affine.4 Extensions to other transform
families are discussed in Chapter 5.

3.3 Classification

We now consider three classifiers based upon the generative model from the previous section.
The first is based upon the observed image density, the second upon the latent image density,
and the third upon both the latent image and transform densities. Let C be the set of class

4To handle boundary effects (parts of the image being transformed beyond the boundaries of the image)
we assume that the constant 0-valued background of the image extends infinitely in all directions, so that
transformations of backgrounds pixels onto and off of the image have no effect. The transformation of
foreground pixels off of the image is explicitly disallowed in the program implementation.
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labels and let K be the size of this set. It will be assumed for simplicity that the prior
probability distribution over class labels is uniform.

3.3.1 Maximum likelihood classification based on the factored image model

Suppose we have a set of training images for each class. Let the set of N training images
for a single class be denoted Ij , 1 ≤ j ≤ N . Assume for the moment that we are able to
convert this set of observed training images for a class into a set of estimated latent image-
transform pairs (Îj

L, T̂ j). (The method for doing this is discussed in the next section.) This
section addresses the question of how such a decomposition could be used to improve over
a handwritten digit classifier that did not use such a decomposition.

Classifier 1: The observed image classifier

In the first classifier, a probability density pI|C(I|c) is estimated directly from the training
examples Ij for a class. A maximum likelihood classifier for a test image I is then defined
by:

c∗(I) = arg max
c∈C

pI|C(I|c). (3.4)

This is the simplest classifier as it makes no assumptions about independent processes in
the generative process. It shall be referred to as the observed image classifier.

Classifier 2: The latent image classifier

The second type of classifier we wish to consider is one that maximizes the probability of
the latent image. Hence, a probability density pIL|C (IL|c) for latent images needs to be

developed for each class. It is built from the set of estimated latent images Î
j
L from the

training data for each class. Again, we defer until the next section the discussion of how
these latent image estimates are obtained.

To evaluate a test image I using this classifier, we also need to estimate a latent image
for the test image. We assume again that we have a method for estimating a latent image
from the test image, conditioned on the class label. Note that in this case, however, the
class label for a test image is unknown. Because the latent image distribution is dependent
upon the class, there will be a different latent image estimate for each possible class label.
For example, if an observed test image looked like this: “9”, then the latent image estimate
under the nine model would be very similar to the observed image (“9”), whereas the latent
image estimate under the six model would be the observed image rotated 180 degrees (“6”).
Since there are K possible class labels for each test image, there will be K latent image
estimates for every test image.

To estimate the “best” latent image ILMAX
for a test image I, under a particular class

c, we maximize the probability of the latent image under pIL|C(·|c), that is

ILMAX
(I, c) = arg max

T∈T
pIL|C

(

T−1(I)|c
)

. (3.5)

Maximizing over the complete set T of transforms considers all possible latent images for a
given observed image I.

The classifier then maximizes the likelihood of the class for each latent image:

c∗(I) = arg max
c∈C

pIL|C (ILMAX
(I, c)|c) . (3.6)
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Figure 3-4: A set of latent image estimates for an observed “8” image. The eight is aligned
with each model in turn. Notice that alignment to the “1” model produces a latent image
that is a plausible “1”. Rejecting this model will depend upon penalizing the highly unlikely
transformation that would be paired with such a latent image to produce the observed image.

This classifier is similar in spirit to many classifiers that “preprocess” data by trying to
remove variability before classifying. However, it differs in that it removes the variability
in a different manner for each class. We shall refer to this classifier as the latent image

classifier.

Classifier 3: The LT classifier

The third classifier is based upon the conditional probability of the latent image estimate
for a test image and the conditional probability of the paired transform estimate:

c∗(I) = arg max
c∈C

pIL|C (ILMAX
(I, c)|c) pT|C (TMAX(I, c)|c) . (3.7)

ILMAX
is computed as for the latent image classifier. However, we define TMAX as the trans-

form such that TMAX(ILMAX
) = I. In particular, TMAX is not the most likely transform

in T , which would often be approximately equal to the identity matrix.5 We shall refer to
this classifier as the latent image-transform classifier, or the LT classifier, for short.

The behavior of the LT classifier is illustrated in Figure 3-4. The figure shows ten
examples of a test digit “8” as it is aligned to each of the ten handwritten digit models.
Thus, these ten images represent the latent image estimates of the observed image, one for
each class. The number above each image denotes the class to which the observed image
was aligned. It is easy to see that under the “1” model, the image of the eight has been
squashed in the x−direction to match the model, i.e. to try to take on the shape of the
typical “1” latent image. While the latent image estimate for the “8” in this case is a good
match to the latent image model for the “1”s, the probability of the (unlikely) transform
should be low enough to cause this model to be rejected.

The latent image under the “2” model has the opposite problem. While the transfor-
mation of the original test image is a common transformation, the latent image in this case
represents a poor match to the “2” model. In fact, the only class for which the test image
has a latent image and transform that match the model well is the class of eights, so in this
case, the classifier should work correctly.

5It is possible that p(ILMAX
)p(TMAX) is not the highest probability latent-image transform pair for a

particular class, since it is defined only in terms of the maximum probability latent image. However, since
the latent image probability dominates this product, we assume that it is a good approximation of the
maximum of the product.
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3.3.2 Asymptotic behavior

We start our analysis of the three classifiers by considering their relative performance in
the limit as the amount of training data tends to infinity. With infinite training data for
each class and appropriate density estimates, the observed image classifier will converge to
the Bayes error rate6 for this problem under mild assumptions.

Note that the probability density of the observed image given the class can be rewritten
as follows:

pI(I) =

∫

T∈T
pI,T(I, T ) dT (3.8)

=

∫

T∈T
pI|T(I|T )pT(T ) dT (3.9)

=

∫

T∈T
pIL

(IL(I, T ))pT(T ) dT, (3.10)

where we have omitted the conditioning on the class variable for clarity. The last step
follows from our earlier assumption that the latent image IL is a deterministic function
of the observed image I and the transform T (Equation 3.3).7 Hence, maximizing the
likelihood of the observed image I is equivalent to maximizing the integral of the likelihood
of latent image-transform pairs that could explain the observed image.

If we compare the quantity being maximized in (3.7) to (3.10), we see that the LT
classifier is not optimizing the correct quantity with respect to the generative model.8 It
maximizes the likelihood of the class based upon a single latent image-transform pair,
ignoring all other possible combinations corresponding to the observed image. Even if we
were given the true distributions over the latent image and transforms for each class instead
of having to estimate them, in general we cannot achieve the Bayes rate using this method
since it evaluates only part of the total probability of the observed image. The latent image
classifier is even worse, since it has the same problem as the LT classifier, and also ignores
the probability of the transform. Hence, in the limit of infinite training data, the observed
image classifier will, on average, perform better than or equally to the other two.

We note, however, that the difference in the asymptotic classification performance be-
tween the observed image classifier and the LT classifier may be small in many cases. The
class with maximum likelihood for a single latent image-transform pair is often the same
as the class with the greatest integrated likelihood for all such pairs (the observed image
classifier), since for distributions with a “peaky” shape, most of the mass from the integral
in Equation 3.10 comes from a small neighborhood around the pair (ILMAX

, TMAX). If the
class likelihoods are all similarly shaped, then Prob(ILMAX

, TMAX) multiplied by some fixed
constant will make a good surrogate for the integrated likelihood of Equation 3.10.

In fact, from here forward, it is assumed that with high probability

arg max
c∈C

pI|C(I|c) = arg max
c∈C

pIL|C (ILMAX
(I, c)|c) pT|C (TMAX(I, c)|c) . (3.11)

6The Bayes error rate is the minimum possible error rate for a classifier given a set of distributions from
which test samples are drawn. See (Duda and Hart, 1973) for a discussion.

7We also assume that pI|T(·|·) and pIL
(·) are densities with respect to the same measure.

8The exception to this is the degenerate case in which we can uniquely recover the latent image-transform
pair from the observed image.
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For the reason described above, this will be referred to as the peakiness assumption. Some-
times this assumption is justified; other times it is not. However, for the moment, we
suggest that other factors in choosing a classifier are more important than the often small
differences between the asymptotic performance of the observed image classifier and the LT
classifier.

3.3.3 Efficiency

Since we do not have infinite training data, we may want to examine aspects of classifier
performance other than asymptotic behavior. In particular, each of the classifiers above
depends upon some density estimation process in the training phase. The quality of these
density estimates for finite data directly affects the error rates of each classifier.

Under the assumption of 3.11, our new goal is to analyze which probability estimate
converges to a good approximation of the true distribution faster, pI(·) or the product
distribution pIL

(·)pT(·). Our claim is that estimates of the second distribution converge
much more rapidly, albeit to an approximation of the true distribution, than estimates of
the first distribution do. This appears to be true based upon experiments (described below).
While we cannot prove that this should be the case, we offer a series of intuitions why this
may hold.

Consider estimating a joint distribution over two independent variables X and Y given
a number of pairs (xj , yj) drawn iid from their joint density.. Two scenarios are addressed.
In the first, it is known that the variables are independent. In the second, it is not known
whether the variables are independent, and it must be assumed that we have a general
non-factorizable joint distribution pX,Y (x, y).

The case where independence is known in advance has a great advantage in performing
density estimates. This is because we can use all of the data pairs to estimate the two
marginals pX(·) and pY (·). In the case where independence is not known, it is not safe to
assume that pX|Y =y1

equals pX|Y =y2
, so each conditional distribution should be estimated

separately. If X and Y are discrete random variables that take M possible values, then in
the independent case, we have to estimate only 2M values, whereas in the agnostic case,
we must estimate M2 separate values. Of course, the convergence rates depend upon the
specifics of the distribution and the particular estimator used, so this discussion is merely
meant to provide intuition.

From the above discussion we may predict that the knowledge of approximate indepen-
dence of pIL

(·) and pT(·) will help us converge quickly to an estimate of their joint distri-
bution. But how does this help us in comparing the estimation of this joint, pIL

(·)pT(·) =
pIL,T(·, ·), with the estimation of pI(·)?

From the equivalence of 3.8 and 3.10, we see that pI(·) can also be viewed as a sort
of marginal, where the integral is over all latent image-transform pairs that generate the
same observed image. Since it too is a marginal, we may be tempted to assume that it
can be approximated as rapidly as the latent image distribution, pIL

(·), especially since
the sample spaces of these two distributions have the same dimensionality. However, the

benefit of marginalization is often due to the reduction of the number of states with significant

probability mass. That is, in the product distribution pX(·)pY (·) described above, the benefit
of marginalization stems from reducing the number of states with significant probability
mass from O(M2) to O(M). When interpreting pI(·) as a marginal, however, our peakiness
assumption from Section 3.3.2 suggests that there are not a great number of latent image-
transform pairs that are condensed into a particular observed image. We claim that the
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number of “plausible” (non-negligible probability) observed images is much higher than
the number of plausible latent images, since, loosely speaking, most latent image-transform
pairs with high probability generate a unique observed image. If the cardinality of the
transform set is NT and the cardinality of the latent image set is NIL

, then our claim is
that the cardinality of the observed image distribution is on the order of NT × NIL

. This
larger size for the observed image set makes it more difficult to estimate (without factoring)
than the latent image or the transform distribution.

This analysis is clearly not rigorous, but hopefully provides some insight as to the
reasons that the latent image-transform distribution can be estimated more efficiently than
the observed image distribution. If this is true, then the LT classifier would be expected to
have an advantage in the non-asymptotic range, which is supported by empirical findings
described below.

3.3.4 Summary

To summarize the discussion of the three classifiers, the observed image classifier and the
LT classifier are assumed to have comparable asymptotic performance by the peakiness
assumption, but the latent image classifier is expected to perform less well asymptotically
since it does not use information about the transform density. However, the LT classifier
may outperform the observed image classifier for data sets in the non-asymptotic range,
since the factorization of the distribution gives us an advantage in the estimation process,
as long as reasonably good estimates of the latent image-transform pairs can be obtained
for both the training and test images.

3.4 Congealing

To produce a factorized model as described above from the training data for each digit class,
we must somehow estimate the latent image and transform associated with each training
image.9 We do this by developing a procedure to simultaneously align a set of images from
the same class using affine transformations, as illustrated in Figure 3-5.10

Vetter et al. coined the term vectorization for the process of aligning (bringing into
correspondence) an image with a reference image or a model. This can be thought of as
trying to separate an observed image I (as in Figure 3-2c) into its constituent latent image
IL (Figure 3-2a) and transform T (Figure 3-2b). We introduce the term congealing which
we define as the simultaneous alignment of a set of images to each other. Thus, congealing
can be seen as the simultaneous vectorization of a set of images from a class. This is similar
in spirit to Vetter et al.’s bootstrap vectorization procedure (Vetter et al., 1997) and Jojic
and Frey’s Transformed Mixtures of Gaussians (Frey and Jojic, 1999a), although it differs
in several details, discussed in Chapter 5.

Figure 3-5 shows a set of handwritten zeroes and a set of handwritten twos, both before
and after congealing. Roughly speaking, given a set of training images for a particular
class, the process of congealing transforms each image through an iterative process so as

9Since there are multiple latent image-transform pairs that can produce a given observed image, this is
an ill-posed problem without further constraints.

10The congealing algorithm was partly inspired by previous information theoretic methods of image align-
ment (Viola and Wells III., 1997).
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a b

c d

Figure 3-5: (a) Samples of zeroes from the NIST database. (b) Samples of twos from the
NIST database. (c) The zeroes after congealing. (d) The twos after congealing.

to minimize the summed pixelwise entropies of the resulting images. The result is a set of
estimated latent images and the transforms which produced them from the observed images.

3.4.1 Transform parameterization

Congealing is defined with respect to a set of transformations. In this work, we congeal
using affine transformations. Before we can describe the algorithm in detail, we need to
define our parameterization of affine transforms.

The affine transformation of a coordinate pair (x, y) may be represented as a linear
transformation with an additional translational offset as in

[

x′

y′

]

=

[

a11 a12

a21 a22

] [

x

y

]

+

[

a13

a23

]

, (3.12)

44



or alternatively in homogeneous coordinates as





x′

y′

1



 =





a11 a12 a13

a21 a22 a23

0 0 1









x

y

1



 . (3.13)

This second representation has the advantage of making the composition of two affine oper-
ations equivalent to a simple matrix multiplication transformations using the homogeneous
representation. We further require of the component transformations. In this work we
represent affine that the transformations be non-singular and non-reflecting (i.e. that they
have positive determinants).11

We parameterize this set of transforms T by composing a transform from the following
component transforms: x-translation, y-translation, rotation, x-log-scale, y-log-scale, x-
shear, and y-shear. Thus, given a parameter vector (tx, ty, θ, sx, sy, hx, hy), a transformation
matrix U is formed by multiplying the constituent matrices in a fixed order (needed to
ensure a unique mapping between parameter vectors and the resulting matrices, since matrix
multiplication is non-commutative):

U = F (tx, ty, θ, sx, sy, hx, hy)

=





1 0 tx
0 1 0
0 0 1









1 0 0
0 1 ty
0 0 1









cos θ − sin θ 0
sin θ cos θ 0

0 0 1



×





esx 0 0
0 1 0
0 0 1









1 0 0
0 esy 0
0 0 1









1 hx 0
0 1 0
0 0 1









1 0 0
hy 1 0
0 0 1



 . (3.14)

Note that this is an overcomplete parameterization, since there are seven parameters and
only six degrees of freedom in the set of transforms. The reason for using an overcomplete
parameterization concerns efficiency and will be addressed in Chapter 5. The current goal
is to investigate how to make a set of images more similar to each other by independently
transforming each one of them in an affine manner. We now describe an objective function
that allows us to achieve this goal.

3.4.2 Entropy estimation

Consider a set of N observed binary images of a particular class, each image having P pixels.
Let the value of the ith pixel in the jth image be denoted x

j
i . Let the image created by

the transformation of the jth image by transform U j be denoted Ij ′. We assume for the
moment that this new image is still binary. Let the ith pixel in this transformed image be

denoted x
j
i

′
. Consider the set of N pixels at a particular image location after each image

11This set of transformations arises naturally in vision problems from the orthogonal projections of one
flat surface onto another. Reflections (negativity of the matrix determinant) cannot occur unless we allow
projection “through” a surface, as in a projection through a transparent object like a window. However, the
vast majority of transformations due to viewing angle do not include reflections. Our congealing algorithm is
parameterized so that it cannot produce a reflecting transformation. Although perspective transformations
are a better approximation to the set of transformations actually seen by human beings and video cameras,
affine transformations make a good approximation of common distortions for flat objects viewed from a
distance and have better computational properties.
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Figure 3-6: A pixel stack is a collection of pixels drawn from the same location in each of a
set of N images. Here, the ith pixel from each of six images forms a pixel stack. Since half of
the pixels are black and half are white, this corresponds to a Bernoulli random variable with
parameter p = 0.5. The entropy of such a random variable is −(0.5 log2 0.5+0.5 log2 0.5) = 1
bit.

has undergone some transformation: {x1
i
′
, x2

i
′
, x3

i
′
, ..., xN

i
′
}. We call this set of N pixels

across all of the images a pixel stack.12 We denote the ith pixel stack of the original image
set xi and the ith pixel stack of a transformed image set x′

i. A pixel stack is illustrated in
Figure 3-6.

This pixel stack can be viewed as a sample from a random variable or pixel process. We
can estimate the entropy, or disorder, of this pixel process by calculating the entropy of the
empirical distribution of values in the pixel stack. This is also referred to as the empirical

entropy (see (Cover and Thomas, 1991), page 195) of the set of values in the pixel stack.
For brevity, we shall refer to this quantity as simply the entropy of the pixel stack:13

H(xi) = −

(

N0

N
log2

N0

N
+

N1

N
log2

N1

N

)

, (3.15)

where N0 and N1 are the number of occurrences of 0 (black) and 1 (white) in the binary-
valued pixel stack.14 The entropy of the pixel stack shown in Figure 3-6 is H(x′

i) = 1 bit,
since there are equal numbers of black and white pixels in the stack. We also refer to pixel
stack entropies as pixelwise entropies.

3.4.3 Congealing for model formation

Congealing simply minimizes the quantity

E =
P

∑

i=1

H(x′
i) +

N
∑

j=1

|vj |. (3.16)

12This term was coined by Kinh Tieu in the MIT Artificial Intelligence Laboratory.
13In this formula, 0 log

2
0 is interpreted to have value 0.

14A pixel whose value is between 0 and 1 is interpreted as a mixture of underlying 0 and 1 “subpixels”. To
extend Equation 3.15 to handle these pixels, we merely increment each count by the fraction of background
and foreground in the mixture. For example, for a 50% gray value pixel, we would increment both N0 and
N1 by 0.5.
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by transforming the training images for a class. The vj ’s are vectors of transformation
parameters for each image and | · | is some norm on these vectors. This norm keeps the
images from shrinking to size zero or undergoing other extreme transformations.15 We shall
refer to this quantity as the penalized pixelwise entropy.

There are two major applications of congealing in this work. The first is estimating a
set of latent-image transform pairs for a training set of a known class. We refer to this
process as congealing for model formation. A second somewhat different application is in
determining the best latent image-transform pair for a test image of unknown class relative
to a class model. We refer to this as test congealing.

The basic congealing for model formation algorithm proceeds as follows. It takes as
input a set of N binary images of the same class. It makes small adjustments in the
affine transforms applied to each image to reduce the penalized pixelwise entropy defined
in Equation 3.16. More formally we have:

Algorithm 1: congealing for model formation

1. Maintain a transform parameter vector vj = (tx, ty, θ, sx, sy, hx, hy), 1 ≤ j ≤ N for
each image. Each parameter vector will specify a transformation matrix Û j = F (vj)
according to Equation 3.14. Initialize all vj to zero vectors. This has the effect of
initializing all of the transformation matrices Û j to the identity matrix.

2. Compute the penalized pixelwise entropy E for the current set of images from Equa-
tion 3.16.

3. Repeat until convergence:

(a) For each image Ij ,

i. For each affine parameter (x-translation, y-translation, rotation, x-log-scale,
y-log-scale, x-shear, and y-shear)

A. Increment the current affine parameter for the current image by some
small amount ε which may depend upon the parameter. This creates a
new transform parameter vector v

j
new for the current image.

B. Let Û
j
new = F (vj

new).

C. Let I
j
new = Û

j
new(Ij).

D. Recompute the penalized pixelwise entropy E of the entire image set
according to Equation 3.16.

E. If E has been reduced, accept the new parameter vector vj ← v
j
new and

return to step 3.a.i. Otherwise:

F. Decrement the current affine parameter for the current image by ε, re-
compute Û

j
new, I

j
new, and E. If E has been reduced, accept the new

parameter vector: vj ← v
j
new. Otherwise revert to the original parame-

ter vector for that image vj .

15Although the congealing algorithm itself is simple, its analysis is complicated by the fact that images
must be spatially discretized to be represented in a digital computer. This discretization allows the affine
transformations, which continuously deform an image rather than merely permuting the pixels, to reduce
the summed pixelwise entropies without necessarily aligning the images, for example by shrinking all of the
images simultaneously. This detail, however, will not prevent us from understanding the basic congealing
algorithm while temporarily ignoring this issue. We shall fully address it at the beginning of Chapter 5.
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a b c d

Figure 3-7: Mean images during the congealing process. a. The initial mean image for
the set of zeroes. The blurriness is due to the misalignment of the images. b. The final
mean image for the set of zeroes. The coherence of the aligned images is indicated by the
increased sharpness of the image. c. The initial mean image for the set of twos. d. The
final mean image for the set of twos.

(b) After each cycle through the image set, compute the mean parameter vector
v̄ = 1

N

∑N
j=1 vj , and subtract it from each parameter vector: vj ← vj − v̄.

(c) After each cycle through the image set, store the current mean image, Mk =
1
N

∑N
j=1 Ij ′, for later use with test character congealing.

4. At convergence, the algorithm terminates.

Congealing does coordinate descent of the entropy function. To visualize the entropy of
the transformed image set for a class after each iteration of the algorithm, one can construct
an image in which each pixel is the mean of its corresponding pixel stack. Such images are
shown in Figure 3-7. Images a and c show the mean “0” and mean “2” image at the
beginning of the algorithm. The relative abundance of intermediate gray values indicates
that many pixel stacks have high entropy, since a middle gray value represents a pixel stack
composed of half white and half black pixels, with maximum possible entropy. Images b

and d show the pixel stack mean images at the end of the algorithm. Here, we can see
that the pixels have distributions that are skewed much more heavily to pure black or pure
white, and hence are of lower entropy. Notice that there is greater entropy represented in
the final mean “2” image than in the “0” image due to the fact that zeroes can be better
aligned through affine transforms than twos can. Actual numerical values of the entropies
will be discussed in Chapter 5 in the context of other alignment algorithms.

After convergence to a minimum value of the summed pixel entropies, our hope is that
each of the Û j is the transform such that

Ij ′ = Û j(Ij) ≈ I
j
L. (3.17)

That is, Û j is our best guess of the transformation that maps the observed image into the
corresponding latent image. Hence, we can identify the final transforms Û j from congealing
as approximate samples of T−1 from Equation 3.3. Alternatively, we can recover estimates
of the original T j ’s, since

T j = U j−1
. (3.18)

These estimated samples of T , T̂ j = (Û j)−1, will be used below to form a density on
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transforms.

Interpretation of pixel values for entropy computations

Our functions of pixel values, such as the entropy function discussed below, will depend
upon our interpretation of these values. We shall start by assuming that images are binary
valued functions (either 0 or 1) over some region of R2, and that each pixel represents the
mean value of the function over the region defined by the pixel. If two pixels are combined
during a transformation (for example, by a translation of half of a pixel,16) then some
pixels may be given values between 0 and 1. These are to be interpreted as pixels that are a
(convex) mixture of foreground and background, rather than as a single scalar value. This
has implications for our entropy computations below. In particular, we shall still treat the
images as the result of an underlying binary process rather than as a process that generates
scalars between 0 and 1.

3.4.4 Test congealing

To make a classifier based upon latent images, we also need a method for estimating a latent
image from a test character. In Section 3.3, the optimal latent image for a test image was
defined as the latent image with maximum probability over all inverse transformations of
the observed image (Equation 3.5). But the practical question of how to find this maximum
remains.

There are many possible ways to find the ILMAX
of Equation 3.5. When dealing with

only a finite number of transforms as in (Frey and Jojic, 1999a), this becomes just an
iterative computation, linear in the number of allowed transformations. An enumeration of
all possible transforms is not possible when they are continuously parameterized, as in this
work.

One option is to perform gradient ascent on the probability of the latent image in the
space of transforms, effectively maximizing the probability of the latent image with respect
to the latent image density defined by the congealed training images. The problem with
doing this directly is that the probability function may have local minima or areas of zero
gradient that cannot be circumvented easily, especially if the congealing process produced a
low entropy model, as represented by Figures 3-7(b) and (d). That is, we may end up with
local minima or zero-gradient problems, making traditional gradient ascent difficult. This
is exactly the problem that occurs in trying to align a pair of images via gradient descent
of an objective function, a ubiquitous difficulty in machine vision.

However, elements of the training ensemble rarely get stuck in local minima during the
congealing process for the training set. (Statistics on the number of images reaching local
minima are given in Chapter 5.) This fact can be leveraged in the alignment of test images
to models. In order to improve convergence of a test example, it can be inserted into the

original training ensemble. Congealing can then be performed as before. This shall be
referred to as test congealing. If the test sample was drawn from the same distribution as
a particular training class (e.g. congealing a test “2” with the training “2”s), then the test
sample should also successfully reach a local minimum which is, on average, as good as the
local minimum achieved by the training data for that class. If the test sample is drawn
from a different distribution than the current congealing ensemble (e.g. congealing a test

16This is implemented with simple bilinear interpolation.
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“2” with the training “5”s), the test character may not reach a good local minimum of
the probability function. But this is exactly what is desired, since the test “2” should not
match the “5”s anyway.

Of course, recongealing all of the training data for each class, for each test character
presented to the system, would represent a great deal of redundant computation. Two
insights allow for a significant reduction in computation. First, if the number of training
examples in a class is large, then the addition of one image to an ensemble of characters
for congealing should, with high probability, have a negligible impact on the convergence
of the ensemble. Second, the intermediate state of the congealing training ensemble can
be summarized sufficiently (for the purposes of entropy computations) by the mean image,
which is stored after each iteration of Algorithm 1 during model formation. As a result
the convergence behavior of a new example added to the ensemble is only a function of the
sequence of mean training images (Mk), and the behavior of the entire ensemble need not
be saved. Alignment of a new test example to a model proceeds by reducing the change in
entropy of the test example with respect to a sequence of probabilistic models (represented
as mean images), which are saved during step 3.c of Algorithm 1.

The following algorithm congeals a test image I to a particular set of training images
for a class. The class of the training images does not necessarily match the class of the test
image I.

Algorithm 2: test congealing

1. Maintain a transform parameter vector v = (tx, ty, θ, sx, sy, hx, hy) for the test image.
As in Algorithm 1, the parameter vector will specify a transformation matrix Û = F (v)
according to Equation 3.14. Initialize v to the zero vector. This initializes Û to the
identity matrix.

2. Using mean image M0 saved in step 3.c of Algorithm 1 as a sufficient statistic for the
original training images, compute the penalized pixelwise entropy E for the training
set from Equation 3.16.

3. Set k = 0. While k < iter, the number of iterations required to congeal the training
set for this class:

(a) For each affine parameter (x-translation, y-translation, rotation, x-log-scale, y-
log-scale, x-shear, and y-shear)

i. Increment the current affine parameter for the test image by some small
amount ε which may depend upon the parameter. This creates a new trans-
form parameter vector vnew.

ii. Let Ûnew = F (vnew).

iii. Let Inew = Ûnew(I).

iv. Using the mean image Mk as a sufficient representation of the partially
congealed training set, recompute the penalized pixelwise entropy E of the
entire image set, including the test image, according to Equation 3.16.

v. If E has been reduced, accept the new parameter vector v ← vnew and return
to step 3.a.i. Otherwise:

vi. Decrement the current affine parameter for the current image by ε, recom-
pute Ûnew, Inew, and E. If E has been reduced, accept the new parameter
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vector: v ← vnew. Otherwise revert to the original parameter vector for that
image v.

(b) Increment k.

(c) Load the next mean image Mk for use in the next iteration.

3.4.5 Summary

This section has described how congealing can be used to separate a set of images of a class
into latent images and transforms, a process referred to as congealing for model formation.
It has also described how, by saving intermediate results from congealing for model for-
mation, a test image may be brought into correspondence with a model as though it were
congealed with the original training images. This process is called test congealing. Next we
describe the other half of the model formation process: estimating probability densities on
images, using observed images or the latent image estimates resulting from congealing, and
probability densities on the transforms resulting from congealing.

3.5 Density estimation for classification

In this section we describe the density estimators used for images (both latent images and
observed images) and for transformations. Armed with these density estimates, we can
implement each of the maximum likelihood classifiers described in Section 3.3.

3.5.1 Densities on images

For the first set of experiments performed, the probability of a test image with P pixels is
evaluated simply as the product of the pixel probabilities in the image. That is,

p(I) =
P

∏

i=1

p(xi), (3.19)

where xi is the ith pixel in the image I.

The probability mass function for the ith pixel is treated as a Bernoulli random variable
with the parameter ai estimated from a set of N training images I j , 1 ≤ j ≤ N as

ai =
N0 + 1

N0 + N1 + 2
, (3.20)

where N0 and N1 represent the number of black and white pixels in the ith pixel stack. The
addition of one in the numerator and two in the denominator smooths the probability mass
function so that subsequent pixels (from test images) are never assigned zero probability.
Thus, pixel i in a test image is assigned probability ai if black and (1 − ai) if white. The
probabilities for gray pixels are linearly interpolated between these two values. Densities for
latent images are computed in an identical fashion except that the latent image estimates
derived from congealing, rather than the original observed images, are used as training data.

This method for estimating probability densities on images makes the implicit assump-
tion that the pixels are independent given the class, and it shall be referred to as the
independent pixel model for images. It is a crude model, and hence results in relatively poor
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density estimates. In Section 3.7, we replace this density estimate with an implicit one by
adopting a nearest neighbor scheme using the Hausdorff distance.

3.5.2 Densities on transforms

It remains only to produce probability density estimates for affine transformations, given a
set of transformations from congealing. (The reader interested only in implementation may
wish to skip this subsection, referring to the formulas for generating densities (up-to-scale)
for affine transformations. These formulas are given in Equation 3.49 and Equation 3.47.)

We would like to produce a probability density for an affine transformation T that is a
function of its “closeness” to the training transforms Ti from congealing. In particular, if T

is close, according to some measure, to many of the training transforms, then it should be
assigned a relatively high probability density and if it is far from all of them it should be
assigned a low probability density.

Suppose one treats the six components of an affine transformation matrix as a vector.
Let v be the vector representation of the affine matrix T and let vi be the vector repre-
sentation of the N matrices Ti. A Gaussian kernel based probability density17 can then be
defined

p(v) =

N
∑

i=1

1

(2π)3
exp(−

1

2
(v − vi)

T (v − vi)), (3.21)

or with a non-spherical Gaussian kernel, as in

p(v) =
N

∑

i=1

1

(2π|Σ|)3
exp(−

1

2
(v − vi)

T Σ−1(v − vi)). (3.22)

There is a serious problem with these estimators, however, that can be seen with an
example. Suppose for a moment that

T =





10 0 0
0 10 0
0 0 1



 (3.23)

and that

T1 =





7.07 7.07 0
−7.07 7.07 0

0 0 1



 . (3.24)

Here, T1 and T are related by a rotation matrix of 45 degrees. That is, if they each represent
the transformation of the same object, then the only “difference” between them is that T1

represents an additional transformation by a rotation of 45 degrees.

We ask the question, what is the contribution to the probability of T due to T1? In Equa-
tion 3.21, the contribution is a function of the summed squared differences in components,
which in this case has a value of about 117.

17See (Duda and Hart, 1973) for a discussion of kernel estimators.
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Now consider a similar scenario in which

T =





0.1 0 0
0 0.1 0
0 0 1



 (3.25)

and

T1 =





0.0707 0.0707 0
−0.0707 0.0707 0

0 0 1



 . (3.26)

In this case again, the matrices “differ” only by the multiplication of a 45 degree rotation
matrix. Yet the contribution to the probability of T based on Equation 3.21 will be only
0.0117, a factor of 10,000 less than in the previous example.

The implication of this analysis is that matrices that represent shrinking transforms
(the second example) will be considered to be closer together than matrices that represent
magnifying transforms (the first example) even if they have the same transformational rela-
tionship. This will bias our estimators toward assigning higher probabilities to transforms
with small components, since they will tend to be closer, in the vector difference sense, to
other transforms. This analysis suggests searching for a density over transformations that
does not have such a bias, or at least finding one with a smaller bias.

In a Lie group18 such as the set of affine transforms, one frequently defines the “differ-
ence” between two elements A and B as

A−1B, (3.27)

where multiplication here represents the group operation. For affine matrices, this has the
nice property that biases such as those described above are eliminated. In the two examples
above, the product T−1Ti gives the same numerical result in both cases. It would be nice
to define a probability density that is a function of this group difference operation, rather
than the vector difference operation of Equations 3.21 and 3.22.

Another way to state this problem is that we would like to create a density function f

with the training transforms acting as parameters T1, T2, ..., TN , that has the property

f(T ; T1, T2, ..., TN ) = f(AT ; AT1, AT2, ..., ATN ). (3.28)

Such a function is called affine invariant (see (Amari, 1998) for a discussion).

Unfortunately, while general affine invariant functions may be easily produced, affine
invariant probability densities cannot be produced in general. To see this, assume that we
have two functions f1 and f2 such that for all T , f1(T ) = f2(AT ) for a fixed matrix A. For
example, f1 could be the function f above but with fixed parameters T1, T2, ..., TN , and f2

could be the function f but with parameters AT1, AT2, ..., ATN . Let U = AT . We show

18See (Spivak, 1999a), Volume 1, for a discussion of Lie groups.
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that f1 and f2 cannot both be probability densities.

∫

f1(T ) dT =

∫

f2(AT ) dT (3.29)

=

∫

f2(U)
1

|A|
dU (3.30)

=
1

|A|

∫

f2(U) dU (3.31)

=
1

|A|

∫

f2(T ) dT. (3.32)

Since the integrals
∫

f1(T )dT and
∫

f2(T )dT differ by a factor of 1
|A| , they cannot both be

equal to one in general. Thus, they cannot both be probability densities.

We choose instead to construct true probability densities that are affine invariant up to
scale, or pseudo-affine invariant. By this we mean that p(T ; T1, T2, ..., TN ) = C(A)p(AT ; AT1, AT2, ..., ATN )
for all affine matrices A. In other words, while the probability density assigned to any two
matrices may not be equivalent for a transformation of the samples by a matrix A, the ratio

of these densities is guaranteed to be the same.

To define such a pseudo-affine invariant density from a set of sample transforms T1, T2, ..., TN ,
one may proceed as follows. Define a kernel function, parameterized by a training transform
Ti, that does not integrate to one19, as

K(T ; Ti) = e
− 1

2σ2
‖T−1

i T−I‖2

F , (3.33)

where ‖·‖F is the Frobenius norm and I is the identity matrix. The square of the Frobenius
norm merely sums the squared components of a matrix. Note that 3.33 has maximum value
for a fixed Ti when T = Ti. This satisfies the criterion described above that the estimator
have higher value when T is close to a training sample. Also, when Ti = I, the identity
matrix, the resulting density-up-to-scale over T is proportional to a Gaussian distribution
in the matrix component space, centered at the identity matrix.

We then define a probability density p(·) based upon this kernel to be

p(T ) =

∑N
i=1 K(T ; Ti)

∑N
i=1

∫

K(T ; Ti) dT
. (3.34)

First we note that p(T ) is a valid density since it integrates to 1. Second, note that
Equation 3.33 is invariant to the application of the same affine transform to both arguments:

K(AT ; ATi) = e
− 1

2σ2
‖(ATi)

−1AT−I‖2

F (3.35)

= e
− 1

2σ2
‖T−1

i T−I‖2

F . (3.36)

Hence, the numerator in Equation 3.34 is also invariant to such affine transforms. Thus,
the density is invariant up to scale as desired.

Finally, to evaluate the density one must evaluate the integrals in the denominator of
Equation 3.34 for arbitrary Ti. Taking v again as the vector of the components in T ,
Iv the vector of corresponding components in an identity matrix I, letting A be the 6x6

19In fact, normalizing this kernel would break the desired invariance property.
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matrix representation of T−1
i that acts on the vector v, and setting u = Av − Iv, we have

du = |detA|dv. Then, letting d be the dimension of the set of transforms, we have

1 =
1

(2πσ2)
d
2

∫

e
− 1

2σ2
uT u

du (3.37)

=
1

(2πσ2)
d
2

∫

e
− 1

2σ2
(Av−Iv)T (Av−Iv)

du (3.38)

=
1

(2πσ2)
d
2

∫

e
− 1

2σ2
(Av−Iv)T (Av−Iv)|detA| dv. (3.39)

Therefore
∫

K(T ; Ti) dT (3.40)

=

∫

e
− 1

2σ2
(Av−Iv)T (Av−Iv)

dv (3.41)

=
(2πσ2)

d
2

|detA|
(3.42)

=
(2πσ2)

d
2

(det(T−1
i ))2

(3.43)

= (2πσ2)
d
2 (detTi)

2. (3.44)

This allows us to compute the denominator of Equation 3.34 in time linear in the number
of training transforms.

In summary, we have exhibited the construction of a probability density on affine trans-
formations that is invariant up to scale. It has the desirable property that the maximum
contribution to the probability density of a transform T is made when it matches one of the
training transforms, and that the amount of this contribution is dependent not upon where
T and Ti are in the space of transforms, but only on their group difference T−1

i T . This is
the property desired of the pseudo-affine-invariant estimate.

There is still a problem however. There is a second type of bias in the function p. The
view adopted in this work is that a transform that shrinks by some factor should be the
same distance from the origin (the identity matrix) as one that expands by the same factor.
The kernel defined in Equation 3.33, however, does not obey this property. For example, if
we let

Tdouble =





2 0 0
0 2 0
0 0 1



 (3.45)

and

Thalf =





0.5 0 0
0 0.5 0
0 0 1



 , (3.46)

then K(Tdouble, I) 6= K(Thalf , I). The kernel given in Equation 3.33 will tend to give
lower probabilities to matrices with large components (expanding matrices) and higher
probabilities to the inverses of those matrices. To mitigate this effect, we alter the kernel
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by approximately symmetrizing it in the following way:

KSym(T ; Ti) = exp

(

−
1

2σ2

‖T−1
i T − I‖2F + ‖T−1Ti − I‖2F

2

)

. (3.47)

This is achieved without losing the pseudo-invariance property, as can be easily verified.

Equation 3.47 represents a close approximation to the final form used for the unnor-
malized kernel in our experiments.20 Unfortunately, unlike the kernel in Equation 3.33, it
is not clear how to find the correct normalization constant for this kernel in closed form.
It turns out that this will not be of concern, since we will be adjusting this unnormalized
density with a scalar when combining it with the image density.

Our final form for the unnormalized density on affine transforms is thus

p̃(T ) =
N

∑

i=1

KSym(T ; Ti). (3.49)

The tilde notation indicates that p̃ is not a true density, but only a density up to scale.
With a probability density for images (Equation 5.12), and an unnormalized probability
density for affine transformations (Equation 3.49), experiments can be performed.

3.6 Experimental results

In the first experiment, the observed image classifier was implemented using the independent
pixel model. 1000 training images, randomly selected from the NIST database, were used
to estimate a density for each class as described in Section 3.5.1. 100 test samples of each
class, also from the training portion of the NIST database, but distinct from the training

examples,21 were classified. The full resolution (128x128) binary NIST images were used
for both training and testing. The confusion matrix is shown in Table 3.1. The accuracy
was 59.7%.

Using the same training data (and the congealing algorithm), the latent image classifier
was run. The accuracy dropped precipitously, to 48.4%. Results are shown in Table 3.2.
The number of characters misclassified as “1”s can be explained by the fact that many
characters can be well matched to the one model by severely squashing them horizontally,
as illustrated in Figure 3-4. Since the likelihood of such an unlikely transform does not
affect the probability density estimate in this classifier, many characters are confused with
“1”s.

For the LT classifier, two additional parameters were optimized before evaluating the

20Due to a programming error, the experiments reported used a kernel with a slightly different form:

K(T ; Ti) = exp

(

−
1

2σ2

‖T−1

i T − I‖2

F + ‖TT−1

i − I‖2

F

2

)

. (3.48)

We believe that for practical purposes, the difference between this form and Equation 3.47 is minimal.
21The reason that elements of the training set from the NIST database were used as test data is as follows.

The test portion of the NIST database contains writing from a different class of writers than the training
data, and we did not wish to model this type of variability here. While the MNIST database of AT&T
addresses this issue by mixing the training and testing portions of the NIST database to create a new
database, we wanted the higher resolution available with the original NIST database, and so did not use the
MNIST data.
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Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 77 2 4 1 1 7 5 2 1 0

1 11 82 0 0 0 0 3 1 3 0

2 4 3 73 5 2 9 2 1 1 0

3 7 1 5 74 0 5 4 1 2 1

4 0 1 3 1 60 3 2 4 7 19

5 13 3 1 16 1 59 3 2 2 0

6 8 2 4 2 6 21 49 0 8 0

7 3 14 15 14 3 1 1 37 9 3

8 7 3 5 12 0 13 2 0 53 5

9 1 6 0 16 3 0 0 8 33 33

Table 3.1: Confusion matrix for the observed image classifier using the independent pixel
model. Accuracy was 59.7%.

Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 76 15 7 0 0 0 2 0 0 0

1 1 87 0 3 2 5 0 0 0 2

2 18 13 54 1 1 0 0 7 4 2

3 9 16 3 61 0 4 0 1 1 5

4 11 26 0 0 53 3 1 0 3 3

5 21 17 0 2 0 56 3 0 1 0

6 30 17 2 1 1 4 34 3 7 1

7 14 50 5 3 5 4 7 11 1 0

8 14 33 3 10 0 1 2 0 37 0

9 23 22 5 8 8 0 6 5 8 15

Table 3.2: Confusion matrix for the latent image classifier using the independent pixel
model. Accuracy was 48.4%.
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Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 77 2 4 1 1 7 5 2 1 0

1 11 82 0 0 0 0 3 1 3 0

2 4 3 73 5 2 9 2 1 1 0

3 7 1 5 74 0 5 4 1 2 1

4 0 1 3 1 60 3 2 4 7 19

5 13 3 1 16 1 59 3 2 2 0

6 8 2 4 2 6 21 49 0 8 0

7 3 14 15 14 3 1 1 37 9 3

8 7 3 5 12 0 13 2 0 53 5

9 1 6 0 16 3 0 0 8 33 33

Table 3.3: Results for the independent pixel density and the LT classifier. This classifier
outperformed the other two classifiers, as predicted. Accuracy was 64.0%.

test examples. The first parameter σ2 is the variance of the kernel used in the transform
density estimate (Equation 3.47). In addition, the logarithm of the transform density and
the logarithm of the image density were combined using a weight λ according to

log(pfinal(IL, T )) = log(p(IL)) + λ ∗ log(p(T )). (3.50)

The weight λ compensates for two factors: a) that p(T ) is not a true probability density
since it is unnormalized, and b) that the independent pixel model typically causes p(IL)
to be a gross underestimate of the true probability of the latent image, since many pixels
effectively represent the same information. Thus the λ balances the transform density to
better match the image density. These parameters were adjusted to maximize classification
accuracy on the training data. Because there were so few parameters relative to the size of
the training set, overfitting was not a significant issue. Ultimately, then, Equation 3.50 was
used to evaluated log likelihoods in the “maximum likelihood” LT classifier.

The results for the LT classifier were better, as predicted, than for either of the other
classifiers. The accuracy rate for this classifier was 64.0%. The results for this classifier are
reported in Table 3.3.

3.7 Improving recognition with the Hausdorff distance

While the principles of factorized classifiers were upheld by the results in the previous
section, the results were not spectacular to say the least. This is probably because the
independent pixel probability model for both observed images and latent images is a very
poor model.

There are many schemes in machine vision that implicitly model the dependencies be-
tween neighboring pixels in the same image. One such technique is the Hausdorff distance
measure for computing the similarity of two binary images. In this section, we briefly ex-
plain how the Hausdorff measure, when used in a nearest neighbor scheme, can be thought
of as putting an implicit probability distribution over a set of images. We then use this
scheme to improve all three classifiers from the previous section. We shall see that while
the classifiers maintain the same relative performance, they all improve in accuracy.
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3.7.1 Nearest neighbor as an ML classifier

The simple Euclidean nearest neighbor classifier can be thought of as defining an implicit
probability density over classes in the following sense. The nearest-neighbor rule (Duda and
Hart, 1973), using a Euclidean distance between images,

D(I1, I2) =

√

√

√

√

P
∑

i=1

(I1
i − I2

i )2, (3.51)

is equivalent to a limiting case of an ML classifier in which the densities have been estimated
by a non-parametric kernel estimator (and the class prior is uniform). As the (spherical
and unimodal) kernel shrinks to a delta function, the likelihood of a test sample being in a
particular class is dominated, and in the limit solely determined, by the nearest element of
that class. Under this type of probability density, the likelihood ratio between the nearest
class and all other classes goes to infinity.22 Hence, the class with maximum likelihood is
the class with a sample nearest to the test sample.

3.7.2 The Hausdorff distance: a robust distance measure for binary im-

ages

However, the Euclidean distance function for describing the distance between binary images
is highly sensitive to many types of changes that people (which we cite as examples of good
classifiers) consider to be nearly irrelevant. Among these are small affine transformations of
one of the images. These will be addressed by our generative model, which explicitly models
affine deformations. But there are other changes, such as the thickness of the strokes in the
character, that can dramatically affect distance measurements between images and are not
modeled by our generative process. To mitigate the effects of this variability on distance
estimates, and hence on the implicit probability densities, we adopt a distance measure,
the Hausdorff distance(Huttenlocher et al., 1993), which is designed to reduce the effect of
local dilations and erosions (as caused, for example, by line thickness) in binary images.
This is a simple change from the standard Euclidean distance that substantially improves
the performance of all three classifiers relative to a Euclidean nearest neighbor scheme and
to the independent pixel model.

The Hausdorff distance gives a measure of the difference between two binary images.
Let A be the set of two-dimensional points defined by the pixel centers of the foreground
pixels of image I1. Let B be the set of points defined by the foreground pixels of image I2.
Then the (asymmetric) Hausdorff distance is given by

D(I1, I2) = max
a∈A

min
b∈B
‖a− b‖. (3.52)

In other words, the Hausdorff distance between two point sets is the maximum distance
from any point in the first set to its closest neighbor in the second set.

This can also be thought of as the number of single pixel dilations necessary for image
I1 to completely “cover” image I2. That is, considering the 1-valued pixels as foreground
and the 0-valued pixels as background, the foreground of image I1 is dilated one pixel at

22This assumes the nearest neighbor is unique, i.e. that images from two different classes are not the exact

same distance from the test image.
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a time until the foreground in image I2 is a subset of the foreground in image I1. This
can be thought of as a modified template match, where the dilation is an effort to discount
slight misalignments due to stroke thickness and local variations in curvature, etc. It is
substantially more robust for handwritten character recognition than a simple template
matching approach.

There are many common variations of the Hausdorff distance. One such variation,
sometimes referred to as the Hausdorff fraction, is the fraction of foreground pixels in
image I1 that are within a distance δ of any foreground pixel in I2. By increasing the
tolerance δ, the measure becomes more robust to spurious pixels and distortions of the two
images. Of course, the “distance” is also reduced for non-matching images as δ is increased.
We denote the Hausdorff fraction with tolerance δ by Hδ(I

1, I2). In this work we use a
symmetric version of the Hausdorff fraction with δ = 1, namely

DS(I1, I2) = D1(I
1, I2) + D1(I

2, I1). (3.53)

To classify a test character J using the Hausdorff nearest neighbor method, one finds
the element of the training set that maximizes this measure and assigns the corresponding
label:

c∗ = arg max
c∈C

[

max
I∈Ic

DS(I, J)

]

. (3.54)

Here Ic represents the training set for class c. This is just a nearest neighbor classifier using
the symmetric Hausdorff fraction instead of the traditional Euclidean distance. Note that
a nearest neighbor classifier based upon the Hausdorff distance is also equivalent to an ML
classifier for some probability mass functions on each class.23 In particular, interpreting the
maximum Hausdorff fraction for a set of images as a negative log likelihood will enable us
to combine such a measure with a transform probability estimate in a principled fashion.

3.7.3 Hausdorff experiments

While the Hausdorff distance is robust to small perturbations of a character, it does not
handle larger distortions well. In particular, translations, rotations, shears, and scales of
more than a pixel in any direction substantially affect the distance from one character to
another using this distance measure. Hence, such a classifier would not be expected to
exhibit very good performance unless there were enough characters in the training data for
each class to represent the spatial variability due to random distortion in addition to the
variability in latent images.

To test the Hausdorff nearest neighbor classifier in the observed image classification
framework, we again used 1000 training examples of each class, selected at random but
without replacement, from the NIST handwritten digit database. As reported in Table 3.4,
this classifier correctly classified 94.6% from a (disjoint) test set of 1000 examples of the
same database. We shall see that even with such large training sets, it is easy to improve
upon the performance of this classifier by using the previously described factorized model
to more efficiently model the latent images and transforms.

23For any deterministic classification rule acting on a finite sized input space, there exists some set of
probability mass functions (one for each class) that reproduce the same result as an ML classifier using those
probability functions. Such probability mass functions can be easily constructed (in theory) by collecting
the Nj elements of the input space that are classified as class j and assigning them probability 1

Nj
in class

j and probability 0 in the other classes.
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Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 98 0 0 0 0 0 1 0 1 0

1 0 99 0 0 0 0 0 0 1 0

2 6 0 89 1 0 0 1 2 1 0

3 1 0 0 92 0 1 0 0 5 1

4 0 1 0 0 96 0 0 0 0 3

5 2 0 0 5 0 91 1 0 1 0

6 1 0 0 0 0 0 99 0 0 0

7 0 2 0 0 2 0 0 95 0 1

8 1 2 0 4 0 0 0 2 89 2

9 1 0 0 0 0 0 0 1 0 98

Table 3.4: Results of using the Hausdorff nearest neighbor method on observed images.
The accuracy was 94.6%. The results are dramatically better than for the independent
pixel model, but still inferior to the factorized classifier using the Hausdorff distance.

We next used the Hausdorff nearest neighbor scheme within the latent image classifi-
cation framework. That is, we applied the Hausdorff nearest neighbor scheme to a set of
estimated latent images from congealing and each estimated latent image for a test charac-
ter. Here the accuracy again decreased relative to the observed image classifier, this time
to 89.4%. The confusion matrix is shown in Table 3.5. This can again be explained by
inappropriate alignment to the “1” model and similar effects.

With a probability density for affine transformations in hand, the Hausdorff fraction
can be combined with information from the transform density to improve performance.24

By combining a scaled estimate of a transform’s log-probability density (p(T̂J)) with the
Hausdorff fraction obtained from the latent image,

c∗ = arg min
c∈C

[

min
I∈Ic

(

1−DS(ÎL, ĴL)
)

+ λ log p(T̂J)

]

. (3.55)

performance was increased to 97.4%. Again, the parameter λ was estimated by maximizing
the classification accuracy on the training data. The confusion matrix for this experiment
is shown in Table 3.6.

The fact that these experiments exhibited the same relative performance as the indepen-
dent pixel model classifiers strengthens are qualitative analysis of the benefits of a factorized
model. While the observed image classifier would be expected to asymptotically overtake
the LT classifier in both the independent pixel case and the Hausdorff nearest neighbor
case, for data sets of moderate size (1000 training examples), the latent-image transform
decomposition appears to have an advantage.

24It is assumed that the 1−DS , one less the Hausdorff fraction, is a quantity that behaves like a negative
log probability density. Thus, it makes sense to add this quantity to the negative log probability density of
the transform to obtain a final score for the match between a test image and a particular training image.
Because the Hausdorff fraction varies with image resolution, the Hausdorff fraction was modified by a scalar
adjustment factor γ before being added to the transform probability density. This γ was optimized manually
for each image resolution on a small hold out set.
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Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 86 14 0 0 0 0 0 0 0 0

1 0 100 0 0 0 0 0 0 0 0

2 1 13 82 0 1 0 0 2 1 0

3 0 8 0 92 0 0 0 0 0 0

4 0 9 0 0 90 0 0 0 0 1

5 0 4 0 1 0 92 3 0 0 0

6 0 2 0 0 0 1 97 0 0 0

7 0 4 0 0 0 0 0 95 0 1

8 0 34 0 0 0 0 0 0 66 0

9 0 6 0 0 0 0 0 0 0 94

Table 3.5: Results for the latent image classifier using the Hausdorff nearest neighbor
method. The performance (89.4%) is again worse than for either the observed image clas-
sifier or the LT classifier using the Hausdorff distance, as predicted. Notice again the large
number of characters misclassified as “1”s. This is due to the fact that most characters,
under arbitrary affine transformation, can be made to look like a one. Without a penalty
on such severe squashing functions, confusion is likely to occur.

Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 97 1 0 0 0 0 2 0 0 0

1 0 100 0 0 0 0 0 0 0 0

2 2 1 93 1 1 0 0 1 1 0

3 1 0 0 97 0 1 0 0 1 0

4 0 0 0 0 99 0 0 0 0 1

5 0 1 0 1 0 95 3 0 0 0

6 0 0 0 0 0 0 100 0 0 0

7 0 0 0 0 1 0 0 97 1 1

8 1 1 0 1 0 0 0 0 97 0

9 0 0 0 0 0 0 0 0 1 99

Table 3.6: Classification results for the LT classifier using the Hausdorff distance on images.
The accuracy was 97.4%.
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Image density Observed Img. Latent Img. Latent Img.-Transform

Independent pixels 59.7% 48.4% 64.0%

Hausdorff 94.6% 89.4% 97.4%

Table 3.7: Summary of classification results for 1000 training example experiments. All
experiments in the table used 1000 training examples of each digit class. The first row of
the table shows experiments using the independent pixel image models. The second row
shows experiments using the Hausdorff distance measure and a nearest neighbor scheme.
Notice that the relative performance of the three classifiers in each row is the same for the
independent pixel model and for the Hausdorff classifiers.

3.8 Summary

This chapter has presented a generative image process which models the image as a canonical
“latent image” and a transform away from that latent image. By taking advantage of
the approximate independence of these parts, classifiers can be improved, whether they
are based on simple probabilistic models of images (independent pixel models) or implicit
probability densities (Hausdorff nearest neighbor).

Table 3.7 summarizes the results of this chapter. The point of these results is not to
compete with the best classifiers available for handwritten digits. Rather, it is to establish
a technique that can be adapted to cases in which we have only a single training example
per class. In the next chapter, we will be comparing similar classifiers, but this time using
only a single training example per digit class. Other information about the classifier will
be drawn from support sets consisting of handwritten letters.
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Chapter 4

A One Example Classifier

4.1 Introduction

In the previous chapter, several handwritten digit classifiers based on 1000 training examples
of each class were explored. We saw that by treating the latent images as independent from
the affine variability in a set of digits, we could form a factorization that allowed efficient
density estimation of each class. The question posed in this thesis is, “Can knowledge
learned in developing such factorized densities be used in new tasks to improve the efficiency
of learning?”

The key insight of this chapter, and of the first half of the thesis, is that because
distributions over spatial transformations in handwritten characters are similar from class
to class, a transform distribution estimated for one class makes a good surrogate for the
true distribution from another class.

This chapter uses this insight to develop handwritten digit classifiers from a single
training example of each digit. It achieves this by using support sets, in the form of sets of
handwritten letters, to model densities over affine transformations. These densities are then
used in place of the actual handwritten digit transformation densities. These techniques are
used to produce the best single example classifiers reported to date. We start the chapter
by revisiting the generative image model introduced in Chapter 3.

4.2 A change to the image model

Suppose we consider a slight change to the generative model proposed in Section 3.2. In
particular, we consider the modified model shown in Figure 4-1, in which the transformation
variable no longer depends upon the class variable.

In this scenario, the density over transformations is the same for every class. If the
model is interpreted to be valid for all handwritten characters, then it is clear that the
densities over transforms for any handwritten digit can be learned by looking at transform
densities for handwritten letters. This is the idea used in this section. (The validity of this
assumption is discussed below.)

4.3 Similarity of distributions

Until now, we have claimed without evidence that the densities over affine transforms for
characters were “close enough” to warrant borrowing the densities from letters as estimates
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Class

TransformLatent Image

Observed Image

Figure 4-1: [A revised generative image model in which the transformation density does
not depend upon the character class. This allows us to estimate this density with one class
and share it with another class.

of densities on transforms for digits. In this section, we present experimental evidence in
support of this claim. We compare the similarity of estimated distributions over transforms
across different types of characters. The goal is not to show that distributions over trans-
formations are exactly the same across all characters. Most likely, they are not. Instead, we
show that distributions over transforms of letters and digits are closer to each other than
they are to various “straw man” distributions that might well be chosen as ad hoc densities
over transformations, in the absence of other prior knowledge. We conclude that borrowing
digit transform densities from letters is superior to several other densities that one might
craft by hand.

We defined the following straw man, or ad hoc, distributions:

• A 4-dimensional distribution1 with each coordinate uniformly distributed between -1
and 1.

• A 4-dimensional Gaussian distribution centered at the origin, with diagonal covariance
equal to 1.

• A 4-dimensional Gaussian distribution centered at the identity matrix (that is, at the
vector vT = [1 0 0 1]) with diagonal unit covariance.

From a learning-to-learn point of view, the specification of ad hoc distributions already rep-
resents “cheating,” since we are incorporating our own prior knowledge into the transform
density, rather than using a more uninformative prior, such as an (improper) uniform dis-
tribution. Nevertheless, we will show that in the KL-divergence sense, letter transforms and
digit transforms are closer to each other than they are to any of these ad hoc distributions.

1To simplify these experiments the translational component of the affine transform was ignored, and
densities over the set of non-singular 2x2 matrices, representing the set of two-dimensional linear transforms,
were considered. Hence, the estimated densities had four coordinates.
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A sufficient condition for justifying the lending of transform densities from letters to
digits is that the densities over transforms for all characters be “similar enough.” Here, we
take similar enough to mean, more similar than to our straw-man transform distributions.
Of course, in a true application scenario, if we had densities over all of the digits in order to
verify this claim, then there would be no need to borrow densities in the first place. Thus,
for the purposes of simulating a true learning-to-learn scenario, we assume that we have
no knowledge of digit transform densities. Instead, we must take the similarity of letter
transform densities as an approximation to the similarity between various letter and digit
transform densities. If the letter transform densities are more similar to each other than to
the straw-man distributions, then we shall make the assumption that the letter distributions
are also similar to the digit distributions, since letters and digits are both subsets of the
general class of handwritten characters, and share a common generative source.

Ten sets of 100 letters (a-j) from the NIST database were congealed. The derived
transforms were used to compute pseudo-probabilities according to Equation 3.49 (but
without the translational component of the transforms). A discrete approximation to the
distribution was then computed by computing the unnormalized density at a large number
of grid points. This also enabled approximate normalization of the distributions.

This process produced a discrete approximation to a transform distribution for each
letter (a-j). The straw-man distributions were discretized at the same resolution. We then
computed the KL-divergences, defined as

D(p‖q) ≡
∑

x∈X

p(x) log
p(x)

q(x)
, (4.1)

for all density pairs p and q, and in both orderings.

The matrices in Figure 4-2 show KL-divergences between various transformation den-
sities. The upper left matrix in the figure shows similarities between the letter transform
densities with each other (rows 1-10 and columns 1-10), the third straw-man density with
each of the letters (bottom row and rightmost column), and the straw-man distribution
with itself (bottom right element of the matrix).

The matrix has been normalized so that the lowest value of the KL-divergence is black
and the highest value is white. It is easy to see that the letter transform densities are much
more similar to each other than they are to the straw-man density. The difference was even
more pronounced for the other straw-man densities. That is, the third straw-man density
provided the best approximation to the letter transform densities. However, even the best
straw-man distribution was a poor approximation to the letter distributions. In fact, the
minimum KL-divergence between a letter distribution and the straw-man distribution was
more than twice as large as the maximum KL-divergence between any two letter distribu-
tions. From this we conclude that sharing transform distributions among letters is superior,
in the KL-divergence sense, to hand crafting transform distributions.

Using the assumption that similarity in letter transform distributions implies similarity
in all character transform distributions, we adopt approximations to digit distributions by
borrowing from the letters. Since in reality, we do have access to digit transform distribu-
tions, we can check the validity of this assumption.

The matrix at the bottom of Figure 4-2 shows KL-divergences among the digits (upper
10 rows and leftmost 10 columns), letters(rows 10-20 and columns 10-20), and the straw-
man distribution (single bottom row and rightmost column). Once again, we see that all of
the digit and letter distributions are significantly closer to each other than they are to the
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straw man distribution. The matrix in the upper right of the figure shows the digit-to-digit
and digit-to-straw-man KL-divergences.

Thus, while we had to make an assumption that the similarity of the letter distribu-
tions was representative of the similarity of character transform distributions in general, we
did not have to blindly share information between distributions. If the transform distribu-
tions over letters were very different across classes, it would suggest that such a density-
borrowing scheme, as discussed below, would not be appropriate. Hence, like Bollacker and
Ghosh’s supraclassifier architecture described in Section 1.2.3, we have some protection in
our method against having performance degrade in a new task by making inappropriate
assumptions about the relationship between old tasks and new tasks. Next, armed with
evidence that densities are sharable across characters, we describe the construction of a
one-example classifier.

4.4 Building the one example classifier

The basic sequence of steps for building a one example classifier using support sets from
other classes is as follows:

1. Obtain a set of training examples for each support class.

2. Run the congealing algorithm for each of the support sets, producing a set of latent
images and transforms for each support class.

3. Estimate a density for the latent images and for the transforms, as was done in
Chapter 3.

4. Build an ML classifier for the support classes using these densities.

5. Optimize the transform density kernel parameter σ2 and latent image-transform weight-
ing parameter λ by maximizing the accuracy of the classifier on the training support
sets.

6. Borrow a set of transforms for the one example classifier. This can be done by com-
bining transform densities from the support classes in some way, or just using the
transform density from a single support class.

7. Obtain one example of each target class.

8. Estimate a latent image density for each class from the single example. For the inde-
pendent pixel model, this is done according to the method described in Section 3.5.1.
For the Hausdorff nearest neighbor scheme, the example itself is the entire model.

9. Using the latent image density from the single example and the borrowed transform
density, we have all the components of a classifier.

The specifics of the implementation were as follows. In the first experiment, we imple-
mented a one sample classifier using handwritten letters from the NIST database as support
sets. The independent pixel model (Section 3.5.1) was used to estimate probability densities
for latent images. Ten letter data sets (a-j), each consisting of 100 examples of a particular
letter, were congealed. Ten transforms were taken randomly from each congealed letter data
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Figure 4-2: Measures of variation for probability densities over spatial transformations.
The figure in the upper left shows graphically the KL-divergences for probability densities
over transforms for the letters a-j and for an alternative “strawman” distribution. All KL-
divergences are relatively low (black) except for those between the strawman and the digit
distributions (light gray at right and bottom). This implies that the letter distributions
are closer (in the KL sense) to each other than they are to the straw man. The upper
right figure shows the relationship of the distribution on transformations of digits to the
strawman. Finally, the large figure at the bottom shows all pairwise KL divergences between
the digits 0-9 (top rows and left-side columns), the letters a-j (rows 11-20 and columns 11-
20), and the strawman (bottom row and rightmost column). The diagonals of all of the
plots show the KL-divergence between two densities estimated from different samples of the
same distribution.
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set and combined into a set of 100 transforms which constituted the “borrowed” transform
set TB.

A letter classifier based on the factorized probability model described above was built.
Test letters were classified according to Equation 3.50. Several iterations of the classifier
were run in order to optimize two parameters of the classifier: the λ of Equation 3.50 and
the σ2 parameter of Equation 3.47. If one wants principled estimates of these parameters,
then the only option is to optimize them for the letter classification problem and then
borrow their values for the digit classifier, since with only a single example of each digit, it
will be impossible to create a hold-out set for parameter optimization in our digit classifier.
Because the parameters λ and σ2 control generic quantities that are not directly related to
the form of each latent image distribution, we hope that their optimal values for the letter
classifier will provide effective values for the digit classifier.

Next, a single example of each digit class was drawn randomly from the NIST database
as a training example. Figure 4-3 shows the example of each character used in the first
experiment. This single example was used to define the latent image density for the class.
The transform density was built from the borrowed transform set TB according to the
density estimator described above. This completes the definition of our handwritten digit
models from a single example.

4.4.1 Aligning a test sample with a single-image model

But another major challenge that has not been discussed is bringing a test example of
unknown class into correspondence with the single training example of each digit so that
the factorized probability can be evaluated, i.e. congealing a test example with a one-
example model. Previously, when test congealing was implemented, it was assumed that
there were enough training examples of each class to benefit from the natural blurring of the
training examples. When the training set for each class consists of only a single example,
this blurring does not occur, and problems of local minima in image alignment can arise.
The problem is circumvented in the following way:

1. A synthetic image set is created for a digit class j from the single training example
by operating on the example with each of the transforms Ti ∈ TB.

2. Test congealing is performed with the synthetic image set exactly as if there were a
real training set for each digit.

A subset of such a synthetic data set is shown in Figure 3-1. Notice that there is only a
single latent image. That is, all of the images in the figure are equivalent up to an affine
transformation.

Although convergence rates for test examples are not quite as good when congealing
with such artificial data sets as when congealing with real training sets, this method is still
good enough for alignment in most cases, especially if the one example of each digit set
is typical, which we can interpret to mean “not too different” from other members of the
class. With this final problem solved, the one-example classifier is ready to be applied.

Since these experiments were based upon only a single example of each class, the results
would be expected to vary greatly. If the training set contains a typical example of each
class, the results would tend to be much better. If one or more of the single examples of
a class is atypical, then performance for that class is likely to be very poor.2 Thus, the

2This corresponds nicely to learning in humans as well.
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Image density Observed Img. Latent Img. Latent Img.-Transform

Independent pixels 35.2/3.6 15.2/4.1 41.9/5.1

Hausdorff 32.6/4.6 63.6/3.9 74.7/3.6

Table 4.1: Summary of results for experiments with one randomly selected training example
per class. The first row of the table shows experiments using the independent pixel image
models. The second row shows experiments using the Hausdorff distance measure and a
nearest neighbor scheme. The left number in each cell is the mean percent correct across
10 experiments and the right number is the standard deviation of these values.

Figure 4-3: A randomly chosen training set for one of the one-example classifier experiments.
Note the poor quality of the digits five and nine. This led to poor performance on these
digits, as shown in Table 4.2.

experiments were repeated for 10 different (random) training sets to get a measure of the
variability in performance.

4.4.2 Results

The experiments were run using both the independent pixel models and the Hausdorff
nearest neighbor implicit density. For comparison, the observed image and latent image
classifiers (in addition to the LT classifier described above) were also run. The results are
summarized in Table 4.1.

We make just a few comments. Once, again the relative performance of the three types
of classifiers is shown. Of course, in this case, the LT classifier has an extra advantage in
that it is using a density estimated from a large number of letters.

The main point of interest however, is that the mean classification accuracy for the
Hausdorff-based LT classifier was 74.7%, with a standard deviation of approximately 3.6%.
This is better than any previously reported result for such a task.

It is instructive to look at the confusion matrix for one of the Hausdorff-based LT
classifier experiments (there were 10 in all), shown in Table 4.2. The set of training examples
for this classifier is shown in Figure 4-3.

In the figure, note the rather unusual sample of the digit five that was used for training.
As seen in the corresponding table entry (the sixth row), the classifier was essentially unable
to learn anything from this example, correctly identifying only 12 of the 100 test fives
correctly, which is approximately equal to chance behavior. The flatness of the nine also
gave the system trouble as can be seen from the confusion matrix.
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Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 100 0 0 0 0 0 0 0 0 0

1 3 96 0 0 0 0 0 0 0 1

2 26 0 55 0 2 0 0 8 7 2

3 25 1 1 52 1 0 0 0 12 8

4 1 0 0 0 95 0 0 1 0 3

5 55 0 1 8 5 12 1 2 14 2

6 27 0 0 0 0 0 73 0 0 0

7 1 2 0 0 0 0 0 95 1 1

8 12 1 0 1 2 0 0 2 75 7

9 5 0 0 0 47 0 0 0 0 48

Table 4.2: A confusion matrix for the one-example classifier with randomly chosen training
digits. Note the very poor performance on the digit five, due to the low quality of the training
sample. The accuracy for this individual experiment was 70.1%. The mean accuracy for
the Hausdorff LT classifier was 74.7%.

Image density Observed Img. Latent Img. Latent Img.-Transform

Independent pixels 41.1% 16.2% 64.7%

Hausdorff 48.2% 79.2% 88.6%

Table 4.3: Results of experiments with one hand-picked training example per class. The
first row of the table shows experiments using the independent pixel image models. The
second row shows experiments using the Hausdorff distance measure and a nearest neighbor
scheme.

4.5 Hand-picking the training example

Another set of experiments was run to simulate an active teaching scenario in which a
teacher cooperates with the learner by providing an example of each character to be as
“typical” as possible. In these experiments, the single example of each digit was selected
manually to be generally representative of the NIST database characters for that class.
Results from these experiments are summarized in Table 4.3.

For this experiment, the performance increased dramatically to 88.6%. In compari-
son, the simple Hausdorff nearest neighbor classifier, applied to the single training example
case gave a recognition rate of only 48.2%. The affine adjusted Hausdorff nearest neigh-
bor achieved a recognition accuracy of 79.2%. Adding the previously learned density on
transforms thus made a dramatic difference in this sparse data setting.

The achievement of almost 90% accuracy for a single example classifier is among the
significant achievements of this thesis. While this number does not compete with top
classification results for large training sample classifiers (accuracy > 99%), it represents a
significant first step in a new domain, trying to get the most out of a single example. By
further factorizing distributions for character support sets, it is likely that these numbers
can be improved and extended to other data types.

In addition it strongly suggests that most of the information about a character is con-
tained in a single image of that character. Along with prior knowledge, a single example
gives us most of the information we need to make a classifier with non-trivial performance.

72



Figure 4-4: The training set for the hand-picked one-example classifier experiment. Each
digit was selected from the first 100 examples in the training set, chosen subjectively as
a “canonical” example of each digit. The confusion matrix for the classifier is given in
Table 4.4.

Assigned label

True Label 0 1 2 3 4 5 6 7 8 9

0 97 0 0 0 0 0 3 0 0 0

1 0 100 0 0 0 0 0 0 0 0

2 3 0 81 4 0 1 3 3 3 2

3 1 0 1 73 0 17 0 0 6 2

4 0 0 0 0 88 0 3 0 5 4

5 0 0 0 0 0 75 15 0 10 0

6 2 0 0 0 0 0 98 0 0 0

7 1 1 0 0 0 0 0 88 1 9

8 2 0 0 3 0 2 1 0 92 0

9 3 0 0 0 0 0 0 1 2 94

Table 4.4: The confusion matrix for the hand-picked one-example classifier. Unlike the
randomly chosen digits, the worst classification rate for any digit is 73% (for the digit 3).
The overall accuracy for this test was 88.6%
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4.6 New questions

Since the success of these methods is heavily dependent upon the effectiveness of the con-
gealing alignment algorithm, this type of approach raises a host of questions. How robust is
congealing? How computationally expensive is it? How does it compare to other methods of
preprocessing images? How can it be generalized? These questions and other quantitative
details about congealing are addressed in the next chapter.
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Chapter 5

A Detailed Look at Congealing

In the last chapter, we presented a framework for developing densities on a set of trans-
forms and then using these densities in a new learning problem to achieve a highly efficient
classifier. Congealing, a process of jointly aligning a set of images, was at the center of this
method.

In this chapter, we take a more detailed look at congealing. Our aim is to address, and
give at least partial answers to the following questions.

• Under what conditions is the congealing objective function the optimal one? What
specific model is associated with this objective function?

• Under this model, how does congealing compare to traditional forms of preprocessing
such as centroiding and deshearing for the purposes of alignment or correspondence?

• How sensitive is congealing to evenly distributed noise? What about highly structured
noise?

• How does congealing relate to traditional preprocessing methods when the goal is
developing a model or probability density estimate of a class?

• How does congealing relate to other methods, such as the “tangent distance” method,
for addressing spatial variability in image data sets?

• How often does congealing get stuck in local minima of the objective function?

• What is the computational complexity of congealing?

• How can congealing be generalized? Under what circumstances is it applicable?

A variety of experimental results are presented to support comparisons to other methods.
In addition, generalizations of several aspects of congealing are presented, and preliminary
results for several data types are presented.

5.1 Congealing and maximum likelihood

In this section, we present several properties of entropy and probability in order to better
understand congealing. Most of these analyses require strong assumptions such as pixel
independence. They nevertheless provide insight into the workings of the algorithm.
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5.1.1 Random transformations increase entropy

Consider again the generative model of Figure 3-3, but with a new restriction on the set of
transformations. For the following argument, we consider only permuting transformations,
i.e. transformations that only shuffle pixels around in the image rather than combining,
mixing, or eliminating them. Note that if a single such transformation T is applied to
every sample of the latent image random variable IL, the entropy of the new image random
variable T (IL) ≡ I will be the same, since no information is gained or lost. That is,

pIL
(IL) = pT (IL)(T (IL)) ≡ pI(I), (5.1)

so
H(IL) = H(T (IL)) ≡ H(I), (5.2)

when T is fixed.
However, if each latent image is transformed randomly and independently, then the

distribution over transformed images I can be written

pI(I) =
∑

T∈T

pT(T ) ∗ pI(I) (5.3)

=
∑

T∈T

pT(T ) ∗ pT (T−1(I))(I) (5.4)

=
∑

T∈T

pT(T ) ∗ pT (IL)(I) (5.5)

=
∑

T∈T

pT(T ) ∗ pIL(I,T )(IL(I, T )). (5.6)

pT (IL)(I) assigns a probability to I based upon its unique latent image associated with
a transform T . Thus, pI(·) is a probability distribution that is a convex combination of
probability distributions pT (IL)(·), each of which has the same entropy as the original latent
image distribution (by Equation 5.2).

By the concavity of entropy as a function of probability distributions,

H(I) ≥ H(IL). (5.7)

See (Cover and Thomas, 1991), page 30, for a proof of the concavity of entropy as a function
of the distribution.

Undoing the entropy increase

Since the observed image distribution has higher entropy than the latent image distribution
for all possible independent permuting transform distributions, we attempt to recover the
set of latent images from the observed image by minimizing the entropy of the observed
images.

If a completely arbitrary set of possible permuting transforms were allowed, it would
be trivial to reduce the entropy of the observed image set using permuting transforms: one
could simply transfer all of the black pixels in each image to the left side of the image
and transfer the remaining white pixels to the right side. For images with equal numbers
of black and white pixels, this would produce a zero entropy configuration. However, this
procedure is unlikely to reproduce the original latent image set.
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However, for a small set of transforms, say translations, the probability is low that
any of the transforms, acting upon a latent image in its original position, will increase the
probability of this image.

We conclude that for most latent images, the maximum probability position is in the
original position rather than some transformed position. The greater the number of trans-
formations allowed, the less likely this is to be true, since there is almost always some

transformation that will make a set of pixels more likely under a generative model. The
set of affine transformations is a small enough set so that the probability of being able to
increase the probability of an image from the original latent position is small, although it
can occur (especially in the case of zeroes, whose density is approximately invariant under
rotation). From here forward, we assume that the maximum probability transformation of
an image is, with high probability, the original latent image.1

If only one latent image were perturbed from its original position, then recovering the one
missing latent image would be straightforward. We could estimate the latent image density
from the set of unperturbed latent images and maximize the probability of the perturbed
image under the set of transformations. However, since typically all of the images have been
perturbed, we can only recover the latent images up to a global transformation of all of the
images. But under the assumption of permuting transformations, all of these latent image
configurations assign the same probability to each image, and so serve essentially the same
purpose for classification.

5.1.2 Upper bound on image entropy

If we accept that minimizing H(I) is a good way to recover the latent images from a data
set, then we need a procedure for doing this. Note that the summed pixelwise entropies are
an upper bound on the entropy of an image process:

H(I) = H(x1, x2, ..., xP ) (5.8)

= H(x1) + H(x2|x1) + ... + H(xP |x1, x2, ..., xP−1) (5.9)

≤ H(x1) + H(x2) + ... + H(xP ). (5.10)

The last step follows since conditioning always reduces entropy or leaves it unchanged (Cover
and Thomas, 1991). By reducing this upper bound on the image entropy (through trans-
formations), we hope to reduce the entropy of the distribution itself. Next it is shown that
for an image process with independent pixels, illustrated by the graphical model in Fig-
ure 5-1, there is equality in the final step, and the pixelwise entropy minimization becomes
equivalent to a maximum likelihood method.

5.1.3 An independent pixel model

We now turn to a brief analysis of congealing under the assumption that the pixels in the
latent image are generated independently given their class, as shown in Figure 5-1. We
continue to assume that transformations only permute pixels, rather than mixing pixels or
discarding them off the edge of the image.

1Such an analysis suggests a method for setting the number of transformations in a factorized model. If
we wish to be able to recover the latent image with probability 1− ε, then we cannot allow more than some
number of transformations as determined by ε.
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Figure 5-1: An independent pixel model.

Recall that the quantity to be minimized by the congealing algorithm, ignoring the
penalty on transform parameters, is

P
∑

i=1

H(xi), (5.11)

the sum of the pixel stack entropies. We wish to show that this corresponds to maximizing
the joint probability of a set of images under a set of permuting transformations. From
the assumed class conditional independence of the pixels, the probability of image I j is the
product of the pixel probabilities:

p(Ij) =
P

∏

i=1

pi(x
j
i ). (5.12)

Then the probability of a set I of N images is just

p(I) =
N
∏

j=1

P
∏

i=1

pi(x
j
i ). (5.13)

Let N0
i be the number of 0-valued pixels in pixel stack i. Let N 1

i be the number of
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1-valued pixels in pixel stack i. Starting with the logarithm of 5.13, we have

log2 p(I) =
N

∑

j=1

P
∑

i=1

log2 pi(x
j
i ) (5.14)

=
P

∑

i=1

N
∑

j=1

log2 pi(x
j
i ) (5.15)

=
P

∑

i=1







∑

j|xj
i =0

log2 pi(x
j
i ) +

∑

j|xj
i =1

log2 pi(x
j
i )






(5.16)

≈
P

∑

i=1

(

N0
i log2

N0
i

N
+ N1

i log2

N1
i

N

)

(5.17)

= N

P
∑

i=1

(

N0
i

N
log2

N0
i

N
+

N1
i

N
log2

N1
i

N

)

(5.18)

= −N

P
∑

i=1

H(xi). (5.19)

Hence, the logarithm of the joint probability of a set of images as defined above is ap-
proximately equal to a positive constant times the negative of the sum of the pixelwise
entropies. Hence, minimizing the summed pixelwise entropies is approximately equivalent
to maximizing the image probabilities under this model.

5.1.4 An important detail

Note that the probabilities pi(·) are estimated in the fourth step (5.17) by the pixel stacks
themselves, and hence change with the permutations of the image pixels. By the equivalence
established above, we are maximizing the estimated probabilities of the pixels in each pixel
stack. These probabilities are computed as

pi(x
k
i ) =

∑

j δ(xj
i − xk

i )

N
, (5.20)

where δ(·) is an indicator function. That is, the probability of a particular value occurring
is estimated as its empirical frequency within the pixel stack.

According to this formula, the value of a pixel is being used in the computation of its
own probability. This may seem inappropriate in an optimization setting, where such a
method may lead to bias of the probabilities. In particular, one might choose to remove a
particular pixel from its own probability calculation by considering a computation such as

Prob(xk
i ) =

∑

j 6=k δ(xj
i − xk

i )

N − 1
, (5.21)

where the sum is taken over all pixels except the one being evaluated. This is akin to a
cross validation procedure for evaluating the probability of a pixel in its own pixel stack.

However, adopting such an estimate would substantially change the behavior of the
congealing algorithm. In particular, using such an estimate, no image could ever “move
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through” a position such that it had a unique pixel value in a particular location. That is,
every foreground pixel in an image would be forced to stay within the limits defined by the
support of the foreground pixels in the other images. Any image with a foreground pixel
straying outside this support region would be assigned zero probability, which could not
possibly be a step up in the probability function, and hence would not be chosen by the
algorithm. The same restriction would apply to background pixels.

Alternatively, this “boxing in” of images in the congealing process could be resolved by
introducing a noise process into the generative model to explain pixels that would have zero
probability under the noise free model. We did not investigate this path, but other authors
have used this type of approach in similar problems (Frey and Jojic, 1999a).

5.1.5 Smooth transformations

Until now in these analyses, the assumption has been made that the generative transfor-
mations were simple permutations of the pixels in an image. But congealing was initially
defined in terms of smooth affine transformations that can shrink, enlarge, or mix pixels
with each other. In fact, if we seek the maximum probability solution when allowing affine
transforms, all of the images are shrunk to zero size, a state that gives all of the pixel stacks
zero entropy. So, while the maximum likelihood interpretation gives us some intuition for
what congealing does, it is not a perfect explanation.

However, the penalized minimum entropy solution of Equation 3.16 gives us a non-
degenerate solution that is intuitively more appealing. Is there some principle which justifies
the penalty on the affine parameter magnitudes introduced in Equation 3.16? We suggest
a geometric interpretation of congealing which answers this question in the affirmative.
It fits particularly well with the algorithm and suggests a new interpretation of what the
algorithm is doing. It also suggests that the congealing algorithm is actually consistent with
a maximum likelihood interpretation in a certain sense that will be described below.

Congealing as a measure of central tendency

The penalty on the affine transform parameter magnitudes can be justified in the following
sense. Suppose that we had a set of images that shared a single latent image. Let the
manifold of images associated with a particular latent image be M. One interpretation
of congealing is to find a measure of the central tendency or “pseudo-mean” of this set of
images on the manifold, i.e. with respect to the affine family of transforms. But the usual
definition of a mean,

Ī =
1

N

N
∑

j=1

Ij , (5.22)

requires that addition and scalar multiplication be defined on the space. The set of images
M is not closed with respect to addition and scalar multiplication, so it is not immediately
obvious how to define the notion of the mean on such a space. Is there a potential substitute
for the common definition of mean? Many generalizations of the mean to Riemannian
manifolds2 have been developed (see for example (Grenander, 1963; Pennec, 1996)).

2Some terminology from differential geometry has been used in this section. A brief introduction to
differential geometry can be found in (Schutz, 1980). A more extensive treatment can be found in (Spivak,
1999b).
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Figure 5-2: The result of congealing without the parameter magnitude penalty. Note the
longer length (relative to Figure 5-3) of the geodesic paths from the original images (A, B,
C) to the recovered latent image estimates (A′′, B′′, C ′′).

We suggest that a reasonable way to generalize the mean in this problem is to define it
as

Ī = arg min
I∈M

N
∑

j=1

D(I, Ij)2, (5.23)

that is, the point Ī in the latent image manifoldM such that the sum of squared (minimum
geodesic) distances to that point, from each of the points in the data sample, is minimized.
That is, the pseudo-mean is defined to be the point on the manifold closest to all of the
other points in terms of the manifold’s metric.3 Notice that this definition recovers the
traditional mean for a Euclidean space.

Thus in this restricted case of a set of images with a fixed latent image, we can view
congealing as an attempt to solve the above quadratic minimization problem, where the
entropy minimization term would cause the images to move to the same point (image), and
the coordinate penalty causes this point (image) to be approximately in the “middle” of
the original set of points.

To solve this problem precisely as stated in Equation 5.23, one would need to define a
metric for the Riemannian manifold, and to solve a variational problem to compute each
distance in the sum. Iterating, one could then compute the true minimum point Ī. Rather
than attempting to solve this difficult optimization problem, we allow our minimization of
the penalty on the transform coordinates to act as an approximation.

In general, random images from a set of characters do not share the same latent image.
Figures 5-2 and 5-3 illustrate a foliated space of images, in which each submanifold (a leaf

3It is not always the case that such a point will be unique, or even that it will exist. For example, the
mean of a set of points symmetrically distributed on the equator of a sphere could be viewed as either pole,
since each pole achieves the minimum of Equation 5.23.
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Figure 5-3: The result of congealing after having added the parameter magnitude penalty.
Note the shorter length (relative to Figure 5-2) of the geodesic paths from the original
images (A, B, C) to the recovered latent image estimates (A′, B′, C ′).

of the foliation) represents a manifold of images with a common latent image. When images
are shrunk to have zero size, they converge to the same point irrespective of their latent
image. This is shown as a singular region (which would be more properly shown as a single
singular point) at the bottom of the figures.

Figure 5-2 illustrates the congealing of three images or points (A, B, and C), one on
each latent image submanifold. In this illustration, no parameter magnitude penalty was
included, and the images all shrank to size zero, converging at the singularity. In Figure 5-3,
a parameter magnitude penalty is included, causing the images to converge at the pseudo-
mean discussed above. Notice that the geodesic arc lengths are shorter in the constrained
case than in the unconstrained case.

The pixel stack entropy term of the minimization can be seen as a constraint that the
final congealed images are all “close to each other” in the sense that the perturbation of
any image, while the others are held constant, will only increase their entropy. It is in this
sense that congealing can be still be seen as a maximum likelihood method. Under this
constraint, the parameter magnitude penalty causes the images to end up in the “middle”
of the original set of images rather than at a singularity or other non-central point.

5.2 Comparison to traditional preprocessing methods

Congealing has been presented as one method for dealing with the affine variability of im-
ages. It is both a method for creating probabilistic models from data, and for aligning
test examples to those models. It differs from traditional preprocessing techniques such as
centroiding and deshearing, which are also designed to remove affine variability, in several
important respects. One of the major differences between congealing and other methods
of eliminating affine variability is that congealing is a function of a class model. That is,
congealing (of a test sample) is done differently depending upon whether we are comparing
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Preprocessing Sum of Pixelwise Entropies

Method 0 1 2 3 4 5 6 7 8 9

None 1160 687 1293 1316 1326 1410 1518 1215 1422 1373

Centroiding 1153 569 1216 1267 1265 1393 1444 1101 1387 1358

Scale norm. 894 542 963 810 829 861 763 732 926 791

Deshearing 1184 452 1212 1234 1240 1273 1364 953 1436 1182

Congealing 558 354 834 733 721 873 780 700 923 842

Table 5.1: Comparison via pixel entropies of preprocessing alignment algorithms. Congeal-
ing produces lower entropy image alignments for all ten digit sets relative to every other
algorithm tested.

to a model of “2”s, or “3”s, or to something completely different, like faces. To a certain ex-
tent, then, congealing is not directly comparable to traditional preprocessing methods, since
the former produces many possible outputs for a given input, while the latter algorithms
produce a single output.

Nevertheless, there are certain comparisons which are informative. This section com-
pares preprocessing methods and congealing using a variety of measures which provide
insight into the differences between these approaches. First, congealing is analyzed relative
to other algorithms as a method of joint alignment. Various properties of this alignment
are discussed, including accuracy, sensitivity to noise in the images, and computational
complexity. Classification experiments using a variety of preprocessing algorithms are then
reported.

5.2.1 Preprocessing algorithms evaluated

The following preprocessing and alignment algorithms are compared to congealing.

Centroiding

In centroiding, the image centroid is first computed. The image is then shifted so that its
centroid matches the center of the image. Centroiding requires that the image be segmented,
and that a weight be given to each pixel value. It does not tend to work well for images
other than binary images.

Scale normalization

The image is first centroided. Then it is scaled uniformly in x and y so that max(width, height)
has some fixed value.

Deshearing

There are many deshearing algorithms. The deshearing algorithm implemented in this work
also starts with centroiding. Then the axes of least and greatest second moments are found.
For whichever of these is closer to vertical, the image is sheared so that the moment is
vertical.
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Figure 5-4: An example of two images that will not congeal to the global minimum of
the correspondence fitness function. This problem can usually be alleviated in practice by
congealing a large number of samples simultaneously.

Exhaustive search over alignments to a model

This technique is very similar to congealing, but assumes a fixed set of allowable transforms
as in (Frey and Jojic, 1999a). While it is not implemented in these experiments, we make
some qualitative comments about its advantages and disadvantages relative to congealing.

5.2.2 Precision of alignment

To measure the quality of the preprocessing method, we simply compute the mean entropy
per pixel in the aligned image set. (The images are rescaled so that the average logarithm
of the transform determinant is 1, insuring that the mean pixel entropy is not artificially in-
creased or decreased.) Since congealing explicitly minimizes this quantity (plus the penalty
term), it might be expected to have the lowest value. This does not necessarily imply that
congealing will produce a superior classifier, but it does give insight into how close other
algorithms come to minimizing the pixelwise entropies, or reducing the complexity of a
model.

Ten samples of each digit were randomly chosen and run through each preprocessing
algorithm. The results of these experiments are reported in Table 5.1 for each digit. Not

only does congealing produce lower entropy models in every case, but it avoids throwing out

information by keeping track of the transformation that created the better image.

5.2.3 Local minima

One problem with iterative methods such as congealing is that an image may fail to achieve
the global minimum of the objective function. This can be caused by the so-called “zero-
gradient” problem or the existence of local minima in the objective function. An example of
the zero-gradient problem is shown in Figure 5-4. Note that the gray “X” and the white “X”
do not overlap at all, despite the fact that their centroids are aligned. Thus a differential
change in relative rotation of the two characters will not improve alignment according to
the minimum entropy cost function. The figure illustrates a local minimum problem as well.
It arises when one leg of an “X” overlaps a leg of the other “X”, while the other legs do not
overlap. In such a scenario, any perturbation of the rotation parameter would only increase
the entropy. This scenario thus represents a local minimum of the entropy function.

The congealing process has a serendipitous advantage in that it often circumvents these
two types of optimization problems. Because the alignment process is done over an ensemble
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Number Percent trapped in local minimum

of Images 0 1 2 3 4 5 6 7 8 9

2 50 0 0 0 0 0 50 0 0 0

10 0 0 10 0 0 0 0 0 10 0

100 0 0 0 1 0 4 1 1 4 1

1000 0.6 0 0.9 0.7 0.3 1.1 0.3 0.0 0.0 0.6

Table 5.2: Percentages of images that do not reach global minimum of the probability
function.

of images which has a data-dependent smoothing effect, these two issues arise infrequently.
This can be understood by re-examining the average observed images of Figure 3-7, which
show the relatively smooth “landscape” for hill-climbing in the congealing setting.

We note that for aligning a pair of images, a strategy of blurring one of the images is
commonly used (Simard et al., 1993; Vasconcelos and Lippman, 1998). This can be thought
of as a type of implicit congealing over horizontal and vertical translations, since convolving
an image with a circular Gaussian distribution is equivalent to averaging a set of equivalent
latent images that have been shifted horizontally and vertically according to a Gaussian
distribution. Congealing improves upon this method by using the true distribution over
transforms as a “convolution kernel”. A limitation, however, is that enough images must
be present to form a good approximation of the distribution.

Alignment experiment 1

To study the problems of local minima and zero gradients, the following experiments were
performed. Training sets of four different sizes were congealed for each digit. The number
of characters which failed to converge to the best alignment was evaluated. This judgment
was made subjectively, based upon whether a human observer (the author) could find a
better alignment of the character. The results are reported in Table 5.2. When a small
number of examples are used in congealing, the lack of sufficient smoothing causes a greater
number of local minima problems, as shown in the first two rows of the table.

Alignment experiment 2

Another phenomenon may occur when the observed data points are spread widely apart. In
this case, congealing may produce multiple convergence centers rather than a single center.
The following experiment was done to examine this issue more systematically. Starting with
a single image of a “4” from the NIST database, we generated a sequence of 100 images
rotated at uniform intervals from − θ

2 to θ
2 . For θ < 68 degrees, the images congealed to

a unique position, but when θ > 68 degrees, two “centers” emerged. This is due to a
local minimum in the congealing process, as illustrated in Figure 5-5. Although this lack
of convergence to a single global “center” is not ideal, it does not preclude us from using
the resulting density model, which has relatively low entropy. That is, even in the presence
of multiple convergent “centers” we are performing an important dimensionality reduction
in the data by congealing. The key property is that a test character will be congealed to a
predictable location for comparison with the model, without losing information about the
character. Such multiple convergence centers were seen in the actual training data in the
case of the class of eights. An example of each latent image is shown in Figures 5-5(c) and

85



a b c d

Figure 5-5: a,b. Two distinct centers of convergence for a set of rotated “4” images. The
algorithm aligned the horizontal part of some fours with the vertical part of others and
got stuck in this local minimum. However, since any test character which happens to be
a four should rotate to one of these two positions, this can still make a good model for
classification. c,d. Two centers for different “8” images.

(d).

5.2.4 Sensitivity to noise

Another important property of an alignment algorithm is its sensitivity to various types of
noise in the input data. Congealing proved to be fairly robust to independent pixelwise noise,
or shot noise. Experiments were done in which a fixed percentage of pixels, chosen randomly
in the image, were replaced with either black or white pixels with equal probability. Figure 5-
6 shows a “0” with 40% noise added and a “2” with 20% noise.

While the congealing algorithm worked without modification in many of the experi-
ments, there were some changes in the algorithm’s performance. For low levels of noise
(0-10%), there was no discernible difference in the algorithm. For higher levels of noise
and a small congealing set, the algorithm gets trapped in local minima. For example, with
40% noise and only 10 training examples, the zeroes were unable to congeal. That is, the
algorithm converged to a local minimum after only very minor changes in the images. How-
ever, by raising the number of training examples to 20, the data set congealed with 100%
convergence.

Even when most of the images converged to their correct positions, high levels of noise
affected the number of examples converging properly. While at a 10% noise rate the twos
converged as with no noise, at a 20% noise rate, 4% failed to converge, and at a 30% noise
rate, only 74% of the twos in a set of 50 converged.

Except for the Exhaustive Search technique, the other methods for alignment depend
upon segmenting the image automatically. This is a major drawback for such methods, since
segmentation is a difficult and ill-posed problem itself. The Exhaustive Search technique
will not suffer from the local minimum problems of congealing, but will not achieve as
accurate an alignment as congealing when congealing converges.

Shot noise is just one of many types of variations that can be added to images. Rather
than attempting a systematic study of a large number of other noise types, we offer examples
of unusual characters in the training set that either successfully converged, or did not, in
order to point out various properties of the congealing method and how it works in practice
when spurious features have been added to images, or when certain features of characters
have been occluded or omitted.

86



Figure 5-6: Congealing with noisy images. On the left is the image of a zero in which 40%
of the pixels have been randomly assigned values of 0 or 1. On the right, a two in which
20% of the values have been reassigned.

Figure 5-7 shows a variety of examples of unusual characters that successfully congealed
with their models. The figure shows the congealed versions, rather than the original observed
images. The algorithm exhibits good robustness to spurious strokes (first, second, third and
sixth frames) and to occlusions and omissions (fourth, fifth, and last frames). There were
few cases in which congealing failed due to spurious strokes. Most failures seemed to be due
to extreme transformations, however. Examples of such failures are shown in Figure 5-8.

5.2.5 Computational complexity

Centroiding, scale normalization, and deshearing can all be performed for one image in
time O(P ), where P is the number of pixels in an image. Each cycle of the algorithm for
congealing a test character takes time O(PK), where K is the number of parameters of the
transformation set. There is no analytic form for the number of steps to convergence, but
in our digit experiments, the number averaged about 10 steps. If we take this number of
steps as a constant, then the order of congealing with a one-parameter set of transforms is
equivalent to the other algorithms, i.e. it is linear in the number of pixels. This complexity
grows linearly with the number of parameters, while the number of steps to convergence,
based upon informal observations, appears to remain approximately constant.

Similar methods (Frey and Jojic, 1999a) which use a fixed set of transformations are
linear in the number of allowed transformations. This particular algorithm, Transform-
Invariant Clustering, iterates using an Expectation-Maximization (EM) approach, so it also
contains an unpredictable iterative time element. Each step of this algorithm is of order
O(LP ), where L is the number of transformations allowed. However, adding another dimen-

sion to the set of the transformations, e.g. rotation, increases the computation geometrically.
Thus doubling the number of parameters in the set of transformations squares the complex-
ity, whereas in congealing it only doubles the complexity. In this respect, then, congealing
has a major advantage for representing complex deformations that are parameterized by
more than a few parameters. Additional differences between the two algorithms, and addi-
tional details of Transform-Invariant Clustering, are discussed below in Section 5.3.3.

As a side note, the reader may have noticed that the number of affine parameters given
in Algorithm 1 (7) is actually greater than the number of degrees of freedom in a two-
dimensional affine transform (6). That is, the set of parameters overspecifies the transform.
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Figure 5-7: Difficult cases that congealing handled well. These are the images after con-
gealing has aligned them to the model as well as possible. The first two cases are “1”s with
unusual or spurious strokes. The third frame shows a “2” with an unusual tail. The algo-
rithm essentially ignored the tail and aligned the rest of the character. The fourth frame
shows a “2” that has been clipped, but the algorithm puts the remainder of the character
in correspondence with the model. The last three cases are all “3”s, with missing pixels,
spurious stroke, and clipped bottom respectively.

The extra parameters have been used since there is no simple orthogonal coordinate system
for affine transformations. Because of this fact, any parameterization tends to have regions
in which there is no coordinate pointing close to the direction of the gradient. This can cause
slow convergence of coordinate descent procedures. To alleviate this problem, we simply
add an additional coordinate to the coordinate descent procedure by overparameterizing the
manifold of transformations. This allows the algorithm to move faster in the appropriate
direction (near the gradient) at certain points on the manifold, with only a small incremental
cost to the complexity of each step of the algorithm.4

5.3 Related work in modeling spatial transformations

There have been numerous other efforts to address shape variability in images. These include
(Amit et al., 1991; Frey and Jojic, 1999a; Vetter et al., 1997). This section discusses prior
work in which the latent image-transform factorization was used to model shape variability
in sets of images.

5.3.1 Active appearance models

In (Cootes et al., 2001), the authors describe a system which models observed images as
a combination of “shape” variations and “appearance” variations. These terms correspond
to the transform and latent image components of the model we use. While these models
have a number of interesting potential applications in face recognition, tracking, and other
vision tasks, the models are built upon manually identified correspondences. We shall focus
our attention on models that can be learned automatically.

5.3.2 Vectorization

Jones and Poggio have presented models for images that consist of separate “texture” and
“shape” components (Jones and Poggio, 1995). These parts correspond to the latent image
and transform components used in this thesis. The shape components in these models are
linear models. That is, deformation vector fields are combined linearly to produce variations

4For an illustrated discussion of coordinate system degeneracies and singularities, the reader may wish
to consult (Misner et al., 1973).
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in the shape of latent images. Separating an observed image into its shape and texture parts
is termed vectorization by the authors.

These models were initially developed for images of faces by manually identifying corre-
spondences among all of the prototype faces. The “flows” that put these faces in correspon-
dence then provide the model of deformation with which one can do synthesis, analysis, and
other tasks.

In (Vetter et al., 1997), the authors introduce a technique for “bootstrapping” these
correspondences by iteratively estimating more and more refined models of texture and
shape with the aid of an optical flow algorithm. The joint nature of this optimization
makes it quite similar to congealing. There are several important differences as well. Unlike
in congealing, the deformation model is unconstrained. That is, virtually any flow field can
arise from the algorithm. This makes the procedure both more flexible, and more difficult
to get working correctly. Another difference is that the authors do not explicitly define an
optimization criterion other than the subjective one of good visual alignment. Nevertheless,
the algorithm is ultimately very similar to one which minimizes the entropies of the final
latent images, like congealing.

5.3.3 Transform invariant clustering

The work of Jojic and Frey (Frey and Jojic, 1999a; Frey and Jojic, 1999b) has the greatest
similarity to congealing. In these papers and in more recent work, the authors use the
generative latent image-transform model of image production. They produce models of
latent images by simultaneously maximizing the posterior likelihood of a set of latent images
under a fixed set of transformations.

The authors use the EM algorithm to maximize the likelihood of the latent images
simultaneously under a set of models. One key difference with our own work is that the
authors entertain a finite set of transformations rather than a continuous set. This allows
the authors to perform a full Bayesian analysis at each step, calculating the likelihood of
an observed image under a particular model by integrating over all possible latent images
and transforms. Hence, they do not need to resort to using the “peakiness assumption” of
Equation 3.11.

However, with a fixed set of transforms, the number of modes of spatial deformations
that can be modeled is limited. The complexity of their algorithm is linear in the number of
possible transformations, whereas congealing is linear in the number of types of parameters.
This means congealing can be used with much larger sets of transforms, and with unbounded
resolution within each parameter. This means that congealing can achieve potentially more
accurate alignments.

Another nice feature of these papers is that the authors incorporate an explicit noise
model, which has not been done for congealing. This effectively allows the authors to
weigh certain parts of the image more heavily than others in the alignment procedure.
Incorporating such a noise model into the congealing procedure would be a straightforward
improvement for future work.

5.4 Generalizations

Congealing has been defined so far as a fairly specific algorithm: the alignment through
affine transformation of binary images by minimization of an entropy-like objective function.
Congealing can easily be extended to non-binary images, to non-affine transformations, and
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Figure 5-8: Cases that congealing got wrong. The figure shows the latent image estimates,
not the original characters. The actual characters are, from left to right, “5”, “A”, “B”,
“H”, “V”, “m”, and “x”. With the possible exception of the “A”, none of these are in the
maximum probability alignment with the model.

even to non-images. This section presents a variety of extensions to congealing, gives some
experimental results, and discusses the essential features that make congealing different
than a generic joint optimization procedure.

5.4.1 Multi-valued data

Perhaps the most obvious extension of congealing is to non-binary images.

n-ary images

We start by considering a simple extension to images with n-ary valued pixels, which we
shall call n-ary images for short. Such images arise whenever all of the pixels in an image
are assigned a discrete label from a finite set of n labels. For example, medical images like
magnetic resonance (MR) images are often segmented by tissue type. An example of such
a segmented image is shown in Figure 5-9a.

Since the binary entropy function is just a special case of the general discrete entropy
function

H(X) = −
∑

x∈X

p(x) log2 p(x), (5.24)

no change in the objective function is required. However, one implementation detail must
be addressed. The distribution of values in each pixel stack must be maintained by the
algorithm so that it may be determined whether an adjustment of an image raises or lowers
the objective function. Hence, a histogram of values must be maintained for each pixel
stack, rather than just a mean value, as with binary images.5 As n gets large, this histogram
maintenance can represent a substantial storage requirement, especially when congealing
3-D volumes, as discussed below.

Gray valued images

Congealing can also be extended to gray-valued images. By gray-valued images, we mean
images that represent an approximation to a continuous value at each pixel. In particular,
the values in each pixel are not merely labels, but have a quantitative meaning. This is

5Actually, one bin in the histogram need not be maintained since it can be recovered from the other bins
using the sum constraint. However, other than for the binary case, simplicity of coding and diminishing
returns usually dictates that we ignore this possible savings and simply store the entire histogram at each
pixel location.
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a b

Figure 5-9: a. A segmented brain image. The four distinct image values represent back-
ground (black), cerebrospinal fluid (dark gray), gray matter (light gray), and white matter
(white). b. The original magnetic resonance brain image from which the segmented im-
age was derived. The pixels in this image represent the scalar strength of the magnetic
resonance signal at each pixel.

a significantly different case for generalization than the n-ary image case, since it has an
impact on how we compute the entropy of a pixel stack.

Take again the case of MR images, but this time raw (rather than segmented) images,
as shown in Figure 5-9b. Here, the value of a pixel is a function of some physical parameter,
such as the proton density of the brain tissue. It would be nice to generalize congealing to
use the differential entropy function in this case:

h(X) = −

∫ ∞

−∞
p(x) log p(x)dx. (5.25)

However, since the density in general may have no parametric form, we must compute the
entropy using a discrete approximation. We may do this by using a histogram representation
of p(X). Unfortunately, the bin size in such a histogram representation has a significant
impact on the entropy estimates. To mitigate this effect, we perform a kernel estimate
of each pixel stack distribution at each step in the algorithm and then use a fine-grained
histogram entropy estimate of the resulting approximate distribution’s entropy.

A simple test was performed to evaluate the basic plausibility of gray-scale congealing.
A single gray-scale image was perturbed using a set of random affine transforms, as shown
in Figure 5-10. The images were then congealed. The goal was to recover the original latent
image.

Unlike the case of binary digits, the background is not constant, and more to the point,
is non-zero. This means that the image set has a natural tendency to want to move away
from the center, since the replacement of image pixels by constant off-image pixels tends
to reduce the entropy of the data set. To combat this problem, a scalar Gaussian weight
mask was introduced to emphasize the central pixels in the image more than the border
pixels. The Gaussian mask was adjusted to have a standard deviation equal to about one
third of the total image width. This gave the border pixels approximately zero weight while
allowing a large group of pixels near the center of the image to have a significant impact
on the congealing. With such a modification, the gray-scale images congealed as shown in
Figure 5-10b.
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Figure 5-10: Gray scale congealing. On the left are images which have been randomly
perturbed in an affine manner. On the right are the congealed versions of the images. The
fact that all latent images are the same makes this congealing task artificially easy.

Limitations of congealing

This problem is artificially simple in that the latent images are all identical. One would
like to apply congealing methods to distributions with variable latent images. Here we see
one of the major limitations of congealing. Congealing works by assuming that, on average,
pixels of a particular value should be put in correspondence as often as possible. However,
in a set of images of faces, if one face in the distribution is lit from the left, and another is
lit from the right, an algorithm (like congealing) that matches pixel brightnesses will not
put the images in correspondence correctly.

To alleviate this problem, the idea of forming edge images before congealing, and then
congealing these edge images, was attempted. We computed edge images for each image in
a standard face database. We then ran the congealing algorithm on the set of edge images.
While the entropy was substantially reduced, the resulting model was not of sufficient
quality to use in a classifier. Congealing such a set of images thus remains a goal for future
research. Using similarity template representations of images (Stauffer and Grimson, 2001),
and congealing these (Stauffer et al., 2002), appears to be a promising new direction for
solving this problem.

5.4.2 Other transformations

Another way to generalize congealing is to consider sets of transformations other than the
affine transformations considered previously. Other sets of transformations, such as vector
fields that are linear combinations of sinusoidally varying basis fields have been used in
other applications, such as medical image registration (Christensen, 1999).

The congealing software was modified to accept as a transform basis any set of trans-
formations that could be represented as vector fields over pixel space. The transforms were
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Figure 5-11: Means of vector field clusters derived from video sequences. These vector fields
were used as a basis for congealing in place of affine transforms.

then applied by iterative application to the observed image in order to congeal to latent
images. This process is substantially more computationally expensive than congealing with
affine transforms, since a sequence of arbitrary transformations does not form a group (as
in the affine case). The lack of group structure means that every change in a transform
parameter required the reapplication of a sequence of transformations in order to achieve
the final result. This introduced another slowdown, linear in the number of coordinate steps
per basis vector field, into the algorithm. Nevertheless, several experiments were completed.

Perhaps the most interesting experiment involved using a set of learned transformation
bases. As described in (Black et al., 1997b), a set of statistically common motion flow fields
can be learned from video data. The set of learned vector fields shown in Figure 5-11, which
we learned simply by clustering a large set of optical flow fields taken from video data, was
adopted as a transform basis for congealing.

We congealed a set of zeroes and a set of twos using this basis. The starting and ending
final images for this process are shown in Figure 5-12. Comparing this figure to the final
mean images obtained from congealing with affine transforms (Figure 3-7), we can see that
the entropy was not reduced as much. However, the algorithm still reduced the entropy
further than did the common centroiding algorithm. The zeroes were reduced to a total
pixel entropy of 998 (vs. 1153 for centroiding), and the twos were reduced to a total pixel
entropy of 1115 (vs. 1216 for centroiding). Thus, with a set of transforms learned from data,
we were able to outperform, according to this measure, a standard alignment technique.

5.4.3 Non-images

Another way to extend congealing is to apply it to data types other than pixels in images.
There is a large number of potential application areas, a few of which we explore here. We
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Figure 5-12: Mean images during the congealing process using a learned vector field basis.
The reader may wish to compare these images to those in Figure 3-7. a. The initial mean
image for the set of zeroes. b. The final mean image for the set of zeroes. c. The initial
mean image for the set of twos. d. The final mean image for the set of twos.

can characterize data sources as discrete valued, scalar valued, or vector valued functions
over Rd, where d could take on values of 1, 2, 3, or more. Here we shall consider congealing
the following data types:

• Scalar valued functions in one dimension (electroencephalograms).

• Vector valued functions of one dimension (on-line handwriting).

• Binary, n-ary, and continuous valued functions of two dimensions (as already dis-
cussed).

• Discrete valued functions of three dimensions (segmented medical imaging volumes).

• Scalar valued functions of four dimensions (image similarity templates).

One-dimensional signals

There are a variety of one-dimensional signals that are appropriate for congealing. Whenever
we have a collection of signals that have undergone a one-dimensional transformation in
addition to additive noise, we can apply the technique. Time sequences of a process that
has variable duration and starting times are an example of such a process.

Event Related Potentials (ERPs) are a type of electroencephalogram signal that is well-
suited to congealing. Methods similar to congealing, but that use correlation rather than
an entropy measure, and that do not scale the data in time, have been developed (Woody,
1967). We propose application of congealing to these signals as a direction for future
research.

Another type of one-dimensional data that is amenable to congealing is on-line hand-
writing.6 By on-line handwriting, we mean handwriting data that is collected as an ordered
sequence of two-dimensional points from a pointing device such as a mouse or electronic
pen, as illustrated in Figure 5-13. That is, as a particular letter is drawn, the position of
the pointer is sampled as regular time intervals. Hence the signal is a sequence of two-
dimensional points, parameterized by time.

6The experiments with on-line handwriting described here were done in collaboration with Nick Matsakis
in the MIT Artificial Intelligence Laboratory.

94



Figure 5-13: A handwritten two drawn with a pointing device like a mouse.

A common approach to modeling such on-line handwriting characters is to form linear
Gaussian models of corresponding coordinate positions for each class of characters (see,
e.g. (Matsakis, 2000)). The upper left image in Figure 5-14 shows the mean position of
the n-th sample point in a set of handwritten “3”s. It is the character obtained by simply
averaging the set of coordinates of the first points from each “3”, the set of second points, and
so on, and then connecting the points in order. The principal components of deformation
away from this mean (the modes explaining the greatest variation in the training set) are
shown in the other eight components by adding these deformations to the mean “3”.

Such models are useful for recognition and synthesis of on-line handwriting data, and
have been used for recognizers such as the handheld device character recognition systems.
However, these models lose some fidelity due to the misalignment of features in different
versions of the same character. For example, if the central vertex of a “3” is the tenth
sampled point in one character but the eighth sampled point in another character, then
a linear model of character coordinates will be corrupted, since these points are out of
correspondence. This is similar to the difficulty in producing accurate image models from
non-registered images, as in (Turk and Pentland, 1991), when image pixel brightness values
from non-corresponding points are assumed to be in correspondence.

Congealing can reduce the complexity and improve the accuracy of these on-line hand-
writing models by putting sampled points into correspondence without changing their co-
ordinates. This is done by applying shifts and scalings to the time parameter with which
these curves are parameterized. For example, the vertex point of one “3” may not align
with the vertex point of another “3” simply because they occurred at different latencies
after the character was started. By reparameterizing the character with a “warped time”
parameter to get better alignment without changing the shape of the character at all, we
can reduce the number of significant principal components in the model. This is done by
smoothly shifting and scaling the time variable for each character curve individually, a type
of one-dimensional congealing. This can be thought of as reparameterizing the curve with-
out changing the points that make it up. If we can put corresponding features of a digit
class, like the vertex in the middle of the “3” character, into better correspondence with
each other, then we can produce a lower entropy model of the characters. We refer to this
process as congealing because it is a process of joint alignment achieved through continuous,
smooth, and independent warping of continuous signals.
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Figure 5-14: Principal modes of variation of a set of on-line handwritten “3”s. Each image
shows the mean “3” plus a distortion caused by the nth eigenvector.

To illustrate the complexity reduction achieved by this time-based congealing, we plot
the eigenvalues of the singular value decomposition for a set of “3” characters, both before
and after congealing. The plot is shown in Figure 5-15. The top curve shows the eigenvalues
before congealing, and the bottom curve after congealing. On average, the eigenvalues were
reduced by approximately 50%, simply by reparameterizing the on-line character curves.
The reduced eigenvalues indicate that the model has less variance in coordinate space than
it did before the congealing. We emphasize again that this is done without changing the

shape or appearance of the character. This has many potential applications in improving
on-line character recognition.

Three-dimensional signals

We have applied congealing to the problem of aligning segmented three-dimensional medical
image volumes as well. This has great appeal for the formation of atlases, since one may
find a notion of the pseudo-mean, as defined in Section 5.1.5, of a set of brains under a set
of transformations. Finding such a natural notion of the mean would allow construction of
a brain atlas that was not biased toward any particular individual’s brain.

A set of 30 such neonatal brains were aligned by congealing. The neonatal brain volume
data were generously provided by Dr. Petra Hüppi. The acquisition protocol for these MR
studies is detailed in (Hüppi et al., 1998). In order to reduce the number of steps needed
by the algorithm in the full resolution scenario, the brains were successively aligned at four
different resolutions, so that only the last part of the alignment needed to take place at the
full resolution.

Figure 5-16 shows two unaligned neonatal brains (segmented as binary volumes) as series
of slices. Figure 5-17 shows two brains after alignment using congealing. Each subfigure
contains nine coronal (face-parallel) slices through a brain volume, ordered sequentially
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Figure 5-15: Reduction in variability of on-line handwriting data.

from left to right and top to bottom (as text on a page). Consider the unaligned brains in
Figure 5-16. Notice that while there is substantial tissue in the second image (top middle)
of the top figure, no tissue appears in the bottom figure until the third image. Also, in the
top figure, the descending temporal lobes are clearly visible in the middle image, while no
such structures are visible at this slice in the lower figure until two slices later. These and
a variety of other differences indicate that the volumes are not well aligned.

On the other hand, the features of the two brains shown in Figure 5-17 match well.
The brains have been transformed to match as well as possible. While there are still minor
differences between corresponding images, these are not differences that can be eliminated
by the simple set of transformations used.

In addition to being an exciting new possibility for defining brain atlases, the mini-
mum entropy criterion has been proposed as a general tool for evaluating other alignment
algorithms and the quality of brain atlases, as reported in (Warfield et al., 2001).

Four-dimensional signals

Finally, recent models of images based on pixel co-occurrences have been found to be ef-
fective in representing image structure for recognition, segmentation, and other common
vision tasks (Stauffer and Grimson, 2001). A similarity template as described in this work
is a representation of similarities between every pair of pixels in an image. Thus a single
entry in a similarity template is indexed by a quadruple (x1, y1, x2, y2), the coordinates of
the two image pixels whose similarity is described. Such models can be made more robust
with respect to spatial deformations in the original images via congealing, as described in
(Stauffer et al., 2002). This represents an interesting case in which each example is a four-
dimensional array computed from an image, but in which the spatial transformations to
align these four-dimensional objects are performed in the original (two-dimensional) image
space. This suggests the use of congealing in a wide range of scenarios in which the goal is
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Figure 5-16: Two of the thirty unaligned brains. Notice the differences between correspond-
ing slices in the upper and lower figures.
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Figure 5-17: Two of the thirty aligned brains aligned with 3-D congealing. Notice the
similar structures in corresponding slices between the upper and lower figures.
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the reduction of the entropy of feature measurements, but the transformations are done on
the original image data.

5.4.4 Conclusions

Congealing is differentiated from other joint optimization procedures such as that described
in (Frey and Jojic, 1999a) in that it performs a joint coordinate descent, rather than per-
forming an exhaustive search over possible transforms for each image or other signal. It
can be applied to any signal over a field where there is a notion of local movement or defor-
mation. William Wells and John Fisher (personal communication) have suggested that its
applicability could be characterized by an autoentropy function of a typical latent image.
The autoentropy function can be defined as the mutual information of an image with itself
under varying amounts of translation, rotation, etc., very much like an autocorrelation func-
tion. A wider peak in the the autoentropy function would imply a greater capture range for
the algorithm with a small number of examples. Such an analysis is left for future work.

This concludes the part of the thesis on modeling spatial changes in images. Next, we
consider the modeling of image color changes.
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Chapter 6

Color Flow Fields

6.1 Introduction

This chapter introduces the second major topic area in this thesis, modeling of image
variations due to lighting change and certain non-linear camera effects.1 While the topics
of spatial variability and variability due to lighting are typically treated very differently in
machine vision, it turns out that there is a great deal they have in common. Many of the
ideas presented in the first chapters will be relevant for this seemingly different topic area.

After exploring a representation and model of color change in this chapter, we provide
a unifying framework for color changes and spatial changes in Chapter 7. The material in
this chapter has appeared in similar forms in the (Miller and Tieu, 2001a) and (Miller and
Tieu, 2001b). (Since the topics of this chapter and Chapter 7 are so different from previous
chapters, and to maintain consistency with previous publications, some slight notation
changes are made relative to previous chapters. For example, image indices appear from
here forward as subscripts rather than superscripts. However, these are not so signficant
that they should cause trouble for the reader.)

The number of possible images of an object or scene, even when taken from a single
viewpoint with a fixed camera, is very large. Light sources, shadows, camera aperture,
exposure time, transducer non-linearities, and camera processing (such as auto-gain-control
and color balancing) can all affect the final image of a scene (Horn, 1986). Humans seem to
have no trouble at all compensating for these effects when they occur in small or moderate
amounts. However, these effects have a significant impact on the digital images obtained
with cameras and hence on image processing algorithms, often hampering or eliminating
our ability to produce reliable recognition algorithms.

Addressing the variability of images due to these photic parameters has been an impor-
tant problem in machine vision. We distinguish photic parameters from geometric parame-

ters, such as camera orientation or blurring, that affect which parts of the scene a particular
pixel represents. We also note that photic parameters are more general than “lighting pa-
rameters” that would typically only refer to light sources and shadowing. We include in
photic parameters anything which affects the final RGB values in an image given that the
geometric parameters and the objects in the scene have been fixed.

In this chapter, we develop a statistical linear model of color change space, by observing

1Much of the work on color flow fields was done in collaboration with Kinh Tieu in the Artificial Intelli-
gence Laboratory at MIT.
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how the colors in static images change under naturally occurring lighting changes. This
model describes how colors change jointly under typical (statistically common) photic pa-
rameter changes. Such a model can be used for a number of tasks, including synthesis
of images of new objects under different lighting conditions, image matching, and shadow
detection. Results for each of these tasks will be reported.

Several aspects of our model merit discussion. First, it is obtained from video data in a
completely unsupervised fashion. The model uses no prior knowledge of lighting conditions,
surface reflectances, or other parameters during data collection and modeling. It also has
no built-in knowledge of the physics of image acquisition or “typical” image color changes,
such as brightness changes. It is completely data driven. Second, it is a single global model.
That is, it does not need to be re-estimated for new objects or scenes. While it may not
apply to all scenes equally well, it is a model of frequently occurring joint color changes,
which is meant to apply to all scenes. Third, while our model is linear in color change space,
each joint color change that we model (a 3-D vector field) is completely arbitrary, and is
not itself restricted to being linear. That is, we define a linear space whose basis elements
are vector fields that represent nonlinear color changes. This gives us great modeling power,
while capacity is controlled through the number of basis fields allowed.

After discussing previous work in Section 4.2, we describe the form of the statistical
model and how it is obtained from observations in Section 4.3. In Section 4.4, we show how
our color change model and a single observed image can be used to generate a large family
of related images. We also give an efficient procedure for finding the best fit of the model
to the difference between two images, allowing us to determine how much of the difference
between the images can be explained by typical joint color changes. In Section 4.5 we give
preliminary results for image matching (object recognition) and shadow detection.

6.2 Previous work

The color constancy literature contains a large body of work for estimating surface re-
flectances and various photic parameters from images. A common approach is to use linear
models of reflectance and illuminant spectra (often, the illuminant matrix absorbs an as-
sumed linear camera transfer function) (Marimont and Wandell, 1992). A surface reflectance
(as a function of wavelength λ) can be written as S(λ) ≈

∑n
i=1 αiSi(λ). Similarly, illumi-

nants can be represented with a fixed basis as E(λ) ≈
∑m

i=1 βiEi(λ). The basis functions
for these models can be estimated, for example, by performing PCA on color measurements
with known surface reflectances or illuminants. Given a large enough set of camera re-
sponses or RGB values, the surface reflectance coefficients can be recovered by solving a
set of linear equations if the illuminant is known, again assuming no other non-linearities
in the image formation.

A variety of algorithms have been developed to estimate the illuminant from a sin-
gle image. This can be done if some part of the image has a known surface reflectance.
Making strong assumptions about the distribution of reflectances in a typical image leads
to two simple methods. Gray world algorithms (Buchsbaum, 1980) assume that the av-
erage reflectance of all the surfaces in a scene is gray. White world algorithms (McCann
et al., 1977) assume that the brightest pixel corresponds to a scene point with maximal
reflectance. Brainard and Freeman attacked this problem probabilistically (Brainard and
Freeman, 1997) by defining prior distributions on particular illuminants and surfaces types.
They then used Bayes rule and a new estimator (the maximum local mass estimator) to
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choose a single best estimate of the illuminant and surface.
Some researchers have redefined the problem to one of finding the relative illuminant

(a mapping of colors under an unknown illuminant to a canonical one). Color gamut
mapping (Forsyth, 1990) models an illuminant using a “canonical gamut” or convex hull
of all achievable image RGB values under the illuminant. Each pixel in an image under
an unknown illuminant may require a separate mapping to move it within the “canonical
gamut”. Since each such mapping defines a convex hull, the intersection of all such hulls
may provide enough constraints to specify a “best” mapping. (Cardei et al., 1997) trained
a multi-layer neural network using back-propagation to estimate the parameters of a linear
color mapping. The method was shown to outperform simpler methods such as gray/white
world algorithms when trained and tested on artificially generated scenes from a database
of surface reflectances and illuminants. A third approach by (Lenz and Meer, 1997) works
in the log color spectra space. In this space, the effect of a relative illuminant is a set of
constant shifts in the scalar coefficients of linear models for the image colors and illuminant.
The shifts are computed as differences between the modes of the distribution of coefficients
of randomly selected pixels of some set of representative colors.

Note that in these approaches, illumination is assumed to be constant across the image
plane. The mapping of RGB values from an unknown illuminant to a canonical one is
assumed to be linear in color space. A diagonal linear operator is commonly used to adjust
each of the R, G, and B channels independently. Not surprisingly, the gray world and
white world assumptions are often violated. Moreover, a purely linear mapping will not
adequately model non-linear variations such as camera auto-gain-control.

(Belhumeur and Kriegman, 1998) bypasses the need to predict specific scene properties
by proving statements about the sets of all images of a particular object as certain conditions
change. They show that the set of images of a gray Lambertian convex object under all
lighting conditions form a convex cone.2 Only three non-degenerate samples from this cone
are required to generate the set of images from this space. Nowhere in this process do they
need to explicitly calculate surface angles or reflectances.

One aspect of this approach that we hoped to improve upon was the need to use several
examples (in this case, three) to apply the geometry of the analysis to a particular scene.
That is, we wanted a model which, based upon a single image, could make useful predictions
about other images of the same scene. This work is in the same spirit, although we use a
statistical method rather than a geometric one.

6.3 Color flows

In the following, let C = {(r, g, b)T ∈ R
3 : 0 ≤ r ≤ 255, 0 ≤ g ≤ 255, 0 ≤ b ≤ 255} be the

set of all possible observable image color 3-vectors. Let the vector-valued color of an image
pixel p be denoted by c(p) ∈ C.

Suppose we are given two P -pixel RGB color images I1 and I2 of the same scene taken
under two different sets of photic parameters θ1 and θ2 (the images are registered). Each
pair of corresponding image pixels pk

1 and pk
2, 1 ≤ k ≤ P , in the two images represents a

mapping c(pk
1) 7→ c(pk

2). That is, it tells us how a particular pixel’s color changed from

2This result depends upon the important assumption that the camera, including the transducers, the
aperture, and the lens introduce no non-linearities into the system. The authors’ results on color images
also do not address the issue of metamers, and assume that light is composed of only the wavelengths red,
green, and blue.
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Figure 6-1: Color flows as vector fields in color space. a. A (synthetic) partially observed
color flow obtained from a pair of images under different lighting conditions. An arrow
appears at each point in color space where a color was observed. b. The interpolated
completion of this color flow.

image I1 to image I2. This single-color mapping is conveniently represented simply by the
vector difference between the two pixel colors:

d(pk
1, p

k
2) = c(pk

2)− c(pk
1). (6.1)

By computing P of these vector differences (one for each pair of pixels) and placing each
vector difference at the point c(pk

1) in the color space C, we have created a vector field that
is defined at all points in C for which there are colors in image I1.

That is, we are defining a vector field Φ′ over C via

Φ′(c(pk
1)) = d(pk

1, p
k
2), 1 ≤ k ≤ P. (6.2)

This can be visualized as a collection of P arrows in color space, each arrow going from
a source color to a destination color based on the photic parameter change θ1 7→ θ2. We
call this vector field Φ′ a partially observed color flow (see Figure 6-1a). The “partially
observed” indicates that the vector field is only defined at the particular color points that
happen to be in image I1.

To obtain a full color flow(see Figure 6-1b), i.e. a vector field Φ defined at all points in
C, from a partially observed color flow Φ′, we must address two issues. First, there will be
many points in C at which no vector difference is defined. Second, there may be multiple
pixels of a particular color in image I1 that are mapped to different colors in image I2. We
propose the following interpolation scheme,3 which defines the flow at a color point (r, g, b)T

by computing a weighted proximity-based average of nearby observed “flow vectors”:

Φ(r, g, b) =

∑P
k=1 e−‖c(pk

1
)−(r,g,b)T ‖2/2σ2

Φ′(c(pk
1))

∑P
k=1 e−‖c(pk

1
)−(r,g,b)T ‖2/2σ2

. (6.3)

This defines a color flow vector at every point in C. Note that the Euclidean distance
function used is defined in color space, not in the space defined by the [x,y] coordinates

3This scheme is analogous to a Parzen-Rosenblatt non-parametric kernel estimator for densities, using a
3-D Gaussian kernel. To be a good estimate, the true flow should therefore be locally smooth.
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of the image. σ2 is a variance term which controls the mixing of observed flow vectors to
form the interpolated flow vector. As σ2 → 0, the interpolation scheme degenerates to a
nearest-neighbor scheme, and as σ2 → ∞, all flow vectors get set to the average observed
flow vector. In our experiments, we found empirically that a value of σ2 = 16 (with colors
on a scale from 0− 255) worked well in selecting a neighborhood over which vectors would
be combined. Also note that color flows are defined so that a color point with only a single
nearby neighbor will inherit a flow vector that is nearly parallel to its neighbor. The idea
is that if a particular color, under a photic parameter change θ1 7→ θ2, is observed to get
a little bit darker and a little bit bluer, for example, then its neighbors in color space are
also defined to exhibit this behavior.

We have thus outlined a procedure for using a pair of corresponding images I = (I1, I2)
to generate a full color flow. We will write for brevity Φ = Φ(I) to designate the flow
generated from the image pair I.

6.3.1 Structure in the space of color flows

Certainly an image feature appearing as one color, say blue, in one image could appear
as almost any other color in another image. Thus the marginal distribution of mappings
for a particular color, when integrated over all possible photic parameter changes, is very
broadly distributed. However, when color mappings are considered jointly, i.e. as color
flows, we hypothesize that the space of possible mappings is much more compact. We test
this hypothesis by statistically modeling the space of joint color maps, i.e. the space of color
flows.

Consider for a moment a flat Lambertian surface that may have different reflectances
as a function of the wavelength. While in principle it is possible for a change in lighting to
map any color from such a surface to any other color independently of all other colors,4 we
know from experience that many such joint maps are unlikely. This suggests that there is
significant structure in the space of color flows. (We will address below the significant issue
of non-flat surfaces and shadows, which can cause highly “incoherent” maps.)

In learning color flows from real data, many common color flows can be anticipated. To
name a few examples, flows which make most colors a little darker, lighter, or redder would
certainly be expected. These types of flows can be well modeled with simple global linear
operators acting on each color vector. That is, we can define a 3x3 matrix A that maps a
color c1 in the image I1 to a color c2 in the image I2 via

c2 = Ac1. (6.4)

Such linear maps work well for many types of common photic parameter changes. How-
ever, there are many effects which these simple maps cannot model. Perhaps the most
significant is the combination of a large brightness change coupled with a non-linear gain-
control adjustment or brightness re-normalization by the camera. Such photic changes will
tend to leave the bright and dim parts of the image alone, while spreading the central colors
of color space toward the margins.

4By carefully choosing surface properties such as the reflectance of a point as a function of wavelength,
S(p, λ), and lighting conditions E(λ), any mapping Φ̃ can, in principle be observed even on a flat Lambertian
surface. However, as noted in (Stiles et al., 1977; Maloney, 1986), the metamerism which would cause such
effects is uncommon in practice.
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Figure 6-2: Evidence of non-linear color changes. The ratio of the top two images is shown
in the lower left corner. The ideal ratio image, corresponding to a linear lighting model, is
shown in the lower right.

An example of non-linearities in the imaging process is demonstrated in Figure 6-2.
The top two images in Figure 6-2 are two photographs of a box covered with multicolored
paper. The photos show the top and one side of the box. The lower left image is the ratio
of the brightness of these two images, sometimes called the quotient image (Shashua and
Riklin-Raviv, 2001). Since this is the ratio of images of two distinct smooth surfaces, it
should have only two regions of smoothly varying pixels. However, it is clear that the ratios
seen are variable, even within the individual regions. Examining the original images, it is
clear that the ratio image is a function not only of surface normal, but also of albedo. The
darker regions in the original images show different values in the ratio image than the lighter
regions. The fact that the ratio image is still a function of the albedo is direct evidence of
a non-linearity in the imaging process. These types of changes cannot be captured well by
the simple linear operator described above, but can be captured by modeling the space of
color flows.

Another pair of images exhibiting a non-linear color flow is shown in Figures 6-3a and
b. Figure 6-3a shows the original image and b shows an image with contrast increased
using a quadratic transformation of the brightness value. Notice that the brighter areas
of the original image get brighter and the darker portions get darker. This effect cannot
be modeled using a scheme such as that given in Equation 6.4. The non-linear color flow
allows us to recognize that images a and b may be of the same object, i.e. to “match” the
images.

6.3.2 Color flow PCA

Our aim was to capture the structure in color flow space by observing real-world data in
an unsupervised fashion. To do this, we gathered data as follows. A large color palette
(approximately 1 square meter) was printed on standard non-glossy plotter paper using
every color that could be produced by our Hewlett Packard DesignJet 650C pen plotter
(see Figure 6-4). The poster was mounted on a wall in our office so that it was in the direct
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Figure 6-3: Matching non-linear color changes with color flows. Image b is the result of
applying a non-linear operator to the colors in image a. c-f are attempts to match b using
a and four different algorithms. Our algorithm (image f) was the only one to capture the
non-linearity.

line of overhead lights and computer monitors, but not in the direct light from the single
office window. An inexpensive video camera (the PC-75WR, Supercircuits, Inc.) with auto-
gain-control was aimed at the poster so that the poster occupied about 95% of the field of
view.

Images of the poster were captured using the video camera under a wide variety of
lighting conditions, including various intervals during sunrise, sunset, at midday, and with
various combinations of office lights and outdoor lighting (controlled by adjusting blinds).
People used the office during the acquisition process as well, thus affecting the ambient
lighting conditions. It is important to note that a variety of non-linear normalization mech-
anisms built into the camera were operating during this process.

Our goal was to capture as many common lighting conditions as possible. We did not
use unusual lighting conditions such as specially colored lights. Although a few images
that were captured probably contained strong shadows, most of the captured images were
shadow-free. Smooth lighting gradients across the poster were not explicitly avoided or
created in our acquisition process.
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Figure 6-4: Images of the poster used for observing color flows, under two different “natural”
office lighting conditions. Note that the variation in a single image is due to reflectance
rather than a lighting gradient.

A total of 1646 raw images of the poster were obtained in this manner. We then chose a
set of 800 image pairs Ij = (Ij

1 , I
j
2), 1 ≤ j ≤ 800, by randomly and independently selecting

individual images from the set of raw images. Each image pair was then used to estimate
a full color flow Φ(Ij) as described in Equation 6.3.

Note that since a color flow Φ can be represented as a collection of 3Q coordinates, it
can be thought of as a point in R

3Q. Here Q is the number of distinct RGB colors at which
we compute a flow vector, and each flow vector requires 3 coordinates: dr, dg, and db, to
represent the change in each color component. In our experiments we used Q = 163 = 4096
distinct RGB colors (equally spaced in RGB space), so a full color flow was represented by
a vector of 3 ∗ 4096 = 12288 components.

Given a large number of color flows (or points in R
3Q), there are many possible choices

for modeling their distribution. We chose to use Principal Components Analysis since 1) the
flows are well represented (in the mean-squared-error sense) by a small number of principal
components (see Figure 6-5), and 2) finding the optimal description of a difference image in
terms of color flows was computationally efficient using this representation (see Section 6.4).

The principal components of the color flows were computed (in MATLAB), using the
“economy size” singular value decomposition. This takes advantage of the fact that the data
matrix has a small number of columns (samples) relative to the number of components in
a single sample.

We call the principal components of the color flow data “color eigenflows”, or just
eigenflows,5 for short. We emphasize that these principal components of color flows have
nothing to do with the distribution of colors in images, but only model the distribution of
changes in color. This is a key and potentially confusing point. In particular, we point out
that our work is very different from approaches that compute principal components in the
intensity or color space itself, such as (Turk and Pentland, 1991) and (Soriano et al., 1999).
Perhaps the most important difference is that our model is a global model for all images,

5PCA has been applied to motion vector fields as in (Lien, 1998), and these have also been termed
“eigenflows”.
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Figure 6-5: Eigenvalues of the color flow covariance matrix. The rapid drop off in magnitude
indicates that a small number of eigenflows can be used to represent most of the variance
in the distribution of flows.

while the above methods are models only for a particular set of images, such as faces.

An important question in applying PCA is whether the data can be well represented
with a “small” number of principal components. In Figure 6-5, we plot the eigenvalues
associated with the first 100 eigenflows. This rapidly descending curve indicates that most
of the magnitude of an average sample flow is contained in the first ten components. This
can be contrasted with the eigenvalue curve for a set of random flows, which is also shown
in the plot.

6.4 Using color flows to synthesize novel images

How do we generate a new image from a source image and a color flow or group of color
flows? Let c(p) be the color of a pixel p in the source image, and let Φ be a color flow that
we have computed at a discrete set of Q points according to Equation 6.3. For each pixel
in the new image, its color c′ can be computed as

c′(p) = c(p) + αΦ(ĉ(p)), (6.5)

where α is a scalar multiplier that represents the “quantity of flow”. ĉ(p) is interpreted to
be the color vector closest to c(p) (in color space) at which Φ has been computed. If the
c′(p) has components greater than the allowed range of 0–255, then these components must
be truncated.

Figure 6-6 shows the effect of each of the eigenflows on an image of a face. Each vertical
sequence of images represents an original image (in the middle of the column), and the
images above and below it represent the addition or subtraction of each eigenflow, with α

varying between ±8 standard deviations for each eigenflow.

We stress that the eigenflows were only computed once (on the color palette data),and
that they were applied to the face image without any knowledge of the parameters under
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which the face image was taken.

The first eigenflow (on the left of Figure 6-6) represents a generic brightness change
that could probably be represented well with a linear model. Notice, however, the third
column in Figure 6-6. Moving downward from the middle image, the contrast grows. The
shadowed side of the face grows darker while the lighted part of the face grows lighter. This
effect cannot be achieved with a simple matrix multiplication as given in Equation 6.4. It
is precisely these types of non-linear flows we wish to model.

6.4.1 From flow bases to image bases

Let S be the set of all images that can be created from a novel image and a set of eigenflows.
Assuming no color truncation, we show how we can efficiently find the image in S which is
closest (in an L2 sense) to a target image.

Let px,y be a pixel whose location in an image is at coordinates [x,y]. Let I[x, y] be the
vector at the location [x,y] in an image or in a difference image. Suppose we view an image
I as a function that takes as an argument a color flow and that generates a difference image
D by placing at each (x,y) pixel in D the color change vector Φ(c(px,y)). We denote this
simply as

D = I(Φ). (6.6)

Then this “image operator” I(·) is linear in its argument since for each pixel (x,y)

(I(Φ + Ψ)) [x, y] = (Φ + Ψ) (c(px,y)) (6.7)

= Φ(c(px,y)) + Ψ(c(px,y))). (6.8)

The + signs in the first line represent vector field addition. The + in the second line refers to
vector addition. The second line assumes that we can perform a meaningful component-wise
addition of the color flows.

Hence, the difference pixels in a total difference image can be obtained by adding the
difference pixels in the difference images due to each eigenflow (the difference image basis).
This allows us to compute any of the possible image flows for a particular image and set of
eigenflows from a (non-orthogonal) difference image basis. In particular let the difference
image basis for a particular source image I and set of E eigenflows Ψi, 1 ≤ i ≤ E, be
represented as

Di = I(Ψi). (6.9)

Then the set of images S that can be formed using a source image and a set of eigenflows is

S = {S : S = I +
E

∑

i=1

γiDi}, (6.10)

where the γi’s are scalar multipliers, and here I is just an image and not a function. In our
experiments, we used E = 30 of the top eigenvectors to define the space S.

6.4.2 Flowing one image to another

Suppose we have two images and we pose the question of whether they are images of the
same object or scene. We suggest that if we can “flow” one image to another then the
images are likely to be of the same scene.
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Figure 6-6: Effects of the first three eigenflows. See text.
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Figure 6-7: a. Original image used for image matching experiments. b. Errors per pixel
component in the reconstruction of the target image for each method.

We can only flow image I1 to another image I2 if it is possible to represent the difference
image as a linear combination of the Di’s, i.e. if I2 ∈ S. However, we may be able to get
“close” to I2 even if I2 is not an element of S.

Fortunately, we can directly solve for the optimal (in the least-squares sense) γi’s by
just solving the system

D =
E

∑

i=1

γiDi, (6.11)

using the standard pseudo-inverse, where D = I2 − I1. This minimizes the error between
the two images using the eigenflows.6 Thus, once we have a basis for difference images of
a source image, we can quickly compute the best flow to any target image. We point out
again that this analysis ignores truncation effects. While truncation can only reduce the
error between a synthetic image and a target image, it may change which solution is optimal
in some cases.

6.5 Experiments

One use of the color change model is for image matching applications. The goal of such
a system would be to flow one image to another as well as possible when the images are
actually of the same scene, but not to endow the system with enough capacity to be able to

6The generative model for difference images can be extended to include a noise source as in

D =

E
∑

i=1

γiDi + n,

where n is pixelwise and channelwise independent Gaussian noise with diagonal covariance Λn. Estimation
of the MAP coefficients γ̂i then becomes

γ̂MAP = (DT Λ−1

N D + Λ−1

γ )−1
DΛ−1

N D (6.12)

= (DT Λ−1

N D + I)−1
DΛ−1

N D. (6.13)
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Figure 6-8: Target images for image matching experiments. The images in the top row were
taken with a digital camera. The images in the bottom row are the best approximations of
those images using the eigenflows and the source image from Figure 6-7.

flow between images that do not in fact match. An ideal system would thus flow one image
to a matching image with zero error, and have large errors for non-matching images. Then
setting a threshold on such an error would determine whether two images were of the same
scene.

We first examined our ability to flow a source image to a matching target image under
different photic parameters. We compared our system to 3 other methods commonly used
for brightness and color normalization. We shall refer to the other methods as linear, diag-

onal, and gray world. The linear method finds the matrix A according to Equation 6.4
that minimizes the L2 fit between the synthetic image and the target image. diagonal does
the same except that it restricts the matrix A to be diagonal. gray world adjusts each
color channel in the synthetic image linearly so that the mean red, green, and blue values
match the mean channel values in the target image.

While our goal was to reduce the numerical difference between two images using flows, it
is instructive to examine one example which was particularly visually compelling, shown in
Figure 6-3. Part a of the figure shows an image taken with a digital camera. Part b shows
the image adjusted by squaring the brightness component (in an HSV representation) and
re-normalizing it to 255. The goal was to adjust image a to match b as closely as possible
(in a least squares sense). Images c-f represent the linear, diagonal, gray world, and
eigenflow methods respectively. While visual results are somewhat subjective, it is clear
that our method was the only method that was able to significantly darken the darker
side of the face while brightening the lighter side of the face. The other methods which
all implement linear operations in color space (ours allows non-linear flows) are unable to
perform this type of operation.

In another experiment, five images of a face were taken while changing various camera
parameters, but lighting was held constant. One image was used as the source image
(Figure 6-7a) in each of the four algorithms to approximate each of the other four images
(see Figure 6-8).

Figure 6-7b shows the component-wise RMS errors between the synthesized images and
the target image for each method. Our method outperforms the other methods in all but
one task, on which it was second.
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Figure 6-9: Modeling lighting changes with color flows. a. Image with strong shadow.
b. The same image under more uniform lighting conditions. c. Flow from a to b using
eigenflows. d. Flow from a to b using linear.

In another test, the source and target images were taken under very different lighting
conditions (Figures 6-9a and b). Furthermore, shadowing effects and lighting direction
changed between the two images. None of the methods could handle these effects when
applied globally. To handle these effects, we used each method on small patches of the image.
Our method again performed the best, with an RMS error of 13.8 per pixel component,
compared with errors of 17.3, 20.1, and 20.6 for the other methods. Figures 6-9c and d show
the reconstruction of image b using our method and the best alternative method (linear).
There are obvious visual artifacts in the linear method, while our method seems to have
produced a much better synthetic image, especially in the shadow region at the edge of the
poster.

One danger of allowing too many parameters in mapping one image to another is that
images that do not actually match will be matched with low error. By performing synthesis
on patches of images, we greatly increase the capacity of the model, running the risk of
over-parameterizing or over-fitting our model. We performed one experiment to measure
the over-fitting of our method versus the others. We horizontally flipped the image in
Figure 6-9b and used this as a target image. On the left of Figure 6-10 is the reversed
image. On the right side of Figure 6-10 is the result of trying to flow the original image
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Figure 6-10: Evaluating the capacity of the color flow model. a. Mirror image of superman
image shown in Figure 6-9b. b. The attempt to flow the superman image to its own mirror
image. The failure to do this implies that the color change model is not overparameterized.

to the reversed version. In this case, we wanted the error to be large, indicating that
we were unable to synthesize a similar image using our model. The RMS error per pixel
component was 33.2 for our method versus 41.5, 47.3, and 48.7 for the other methods. Note
that while our method had lower error (which is undesirable), there was still a significant
spread between matching images and non-matching images.

We believe we can improve differentiation between matching and non-matching image
pairs by assigning a cost to the change in coefficients γi across each image patch. For
images which do not match, we would expect the γi’s to change rapidly to accommodate
the changing image. For images which do match, sharp changes would only be necessary
at shadow boundaries or sharp changes in the surface orientation relative to directional
light sources. We believe this can significantly enhance the method, by adding a strong
source of information about how the capacity of the model is actually being used to match
a particular image pair.

6.5.1 Shadows

Shadows pose a number of interesting problems in computer vision. Shadows confuse track-
ing algorithms (Toyama et al., 1999), backgrounding schemes and object recognition algo-
rithms. For example, shadows can have a dramatic effect on the magnitude of difference
images, despite the fact that no “new objects” have entered a scene. Shadows can also move
across an image and appear as moving objects. Many of these problems could be eliminated
if we could recognize that a particular region of an image is equivalent to a previously seen
version of the scene, but under a different lighting. For example, suppose that the lighting
impinging upon a flat surface has changed due to a nearby lamp being turned on. The
changing angle of incidence will make it difficult to model the image transformation as a
single mapping of color space from one image to the other.

In Figure 6-11a, we show a simple background image. In Figure 6-11b, a person and his
shadow have appeared in the image. We consider the problem of distinguishing between the
person (a new object) and the shadow (a lighting change). We did the following experiment.
With simple image differencing, we segmented the image into two approximately connected

115



a b

c d

Figure 6-11: Backgrounding with color flows. a A background image. b A new object
and shadow have appeared. c For each of the two regions, a “flow” was done between the
original image and the new image based on the pixels in each region. d The color flow of
the original image using the eigenflow coefficients recovered from the shadow region. The
color flow using the coefficients from the non-shadow region are unable to give a reasonable
reconstruction of the new image.

regions that did not match the previous background (Figure 6-11c). For each component,
we then flowed (chose eigenflow coefficients) the region from image a to image b according
to Equation 6.11. Figure 6-11d shows the full image based on the shadow flow.

To distinguish between shadows and non-shadows, we want the average residual error
for non-shadows to be high while the average residual error for shadows to be low. Since
these are real images, however, a constant color flow across an entire region may not model
the image change well.

However, we can easily extend our basic model to allow linearly or quadratically (or
other low order polynomially) varying fields of eigenflow coefficients. That is, we can find
the best least squares fit of the difference image allowing our γ estimates to vary linearly or
quadratically over the image. We implemented this technique by computing flows γx,y be-
tween corresponding image patches (indexed by x and y), and then minimizing the following
form:

arg min
M

∑

x,y

(γx,y −Mcx,y)
T Σ−1

x,y(γx,y −Mcx,y). (6.14)

Here, each cx,y is a vector polynomial of the form [x y 1]T for the linear case and [x2 xy y2 x y 1]T

for the quadratic case. M is an Ex3 matrix in the linear case and an Ex6 matrix in the
quadratic case. It defines each of the E planes or quadrics respectively. The Σ−1

x,y’s are the
error covariances in the estimate of the γx,y’s for each patch.

Allowing the γ’s to vary over the image greatly increases the capacity of a matcher, but
by limiting this variation to linear or quadratic variation, the capacity is still not able to
qualitatively match “non-matching” images. Note that this smooth variation in eigenflow
coefficients can model either a nearby light source or a smoothly curving surface, since
either of these conditions will result in a smoothly varying lighting change.
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constant linear quadratic

shadow 36.5 12.5 12.0
non-shadow 110.6 64.8 59.8

Table 6.1: Error residuals for shadow and non-shadow regions after color flows. Constant,
linearly varying, and quadratically varying flows were used.

We consider three versions of the experiment. In the first, we assign a single vector of
flow coefficients to all of the pixels in the region. In the second experiment, we allowed the
γ values to vary linearly across the image. This should lead to a reduction in the error of
both regions’ residuals. In the final experiment, we fitted quadratically varying γ values to
estimate the image difference. The results of these experiments appear in Table 6.1.

In each case, the residual error for the shadow region is much lower than for the non-
shadow region. Of course, we have not specified where to select the threshold so that
this procedure works in general. Furthermore, there are other methods available, such
as normalized correlation and methods such as (Gordon et al., 1999; Horprasert et al.,
2000), which could also distinguish between these two regions. However, this demonstrates
another potential application of our model. We believe because it can handle non-linear
camera effects and can be adjusted across the image that it can successfully model a great
deal of the variability in true shadows, whereas it still does not have so much capacity as
to match images which are not in fact of the same scene. However, it still has limitations,
such as when a shadow is so dark that it cannot be distinguished from a black object.

6.5.2 Conclusions

Except for the synthesis experiments, most of the experiments in this chapter are pre-
liminary and only a proof of concept. Much larger experiments need to be performed to
establish the utility of the color change model for particular applications. However, since
the color change model represents a compact description of lighting changes, including non-
linearities, we are optimistic about these applications. To use this method as part of an
object recognition system, we have to deal with geometric variation in addition to photic
parameters, which suggests an approach that combines congealing with color flow methods.

In the next chapter, we bring together the notion of optical flow fields (or spatial trans-
formations) and color flow fields into a unified framework.

117



118



Chapter 7

Feature Flow Fields

7.1 Introduction

In Chapters 4 and 6, we discussed methods for using models of spatial change and color
change to develop object models from only a single example of an object. In this last
chapter, we show how these modes of change can be considered two examples of the same
phenomenon.1 We present a unifying framework in which object-independent modes of
variation are learned from continuous-time data such as video sequences. These modes of
change can then be used directly as a model of change for a particular feature type, or as
a starting point in defining a bias for creating more refined, environment specific models.

As shown by Black et al. (Black et al., 1997b; Fleet et al., 2000), it is possible to learn,
from generic video data, close approximations to the standard affine deformations that are
expected from visual geometry,2 and to do so in a completely unsupervised fashion. This
can be achieved simply by performing clustering or principal components analysis on a set
of optical flow fields derived from a simple video sequence from a moving camera. Such a
set of statistically gathered flows is shown in Figure 5-11.

This process parallels the process used in Chapter 6 to define common modes of color
change. Thus, it is not surprising that with a little work, a formalism can be developed in
which these types of learning are viewed similarly. In addition to the conceptual simplifica-
tion, the benefits of this unification will be manifold, immediately suggesting a wide variety
of algorithms that may be borrowed from one domain and used in another.

The structure defined in this chapter is termed a feature flow field. The feature flow
field is simply a representation of a feature change (a flow vector) at each point in a feature
space (the field). Two very different feature flow fields, like color flows and optical flows,
really differ only in the type of feature they are modeling.

For optical flow fields, the feature at each point in the feature flow field is a coordinate
feature. Each element of the flow field describes how the position of a particular piece of
the world (like the corner of a box) moves from one image to another. The field in this case
is the two-dimensional plane of the image itself, and the optical flow is defined on a regular
array of grid points in this field.

For color flow fields, the feature at each point is an RGB color triple. Each element of
the flow field describes how the color of an image element changes from one image to the

1Most of the contents of this chapter have appeared previously as (Miller et al., 2001).
2Although optical projections produce more complex deformations than affine (perspective, that is), affine

represent a close approximation to most visual projections.
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next. The field in a color flow field is the three-dimensional space of colors. Color changes
are defined on a regular array of points in this field. We now define feature flow fields more
formally.

7.2 The feature flow field

The feature flow field can be easily understood as a generalization of the color flow field of
Chapter 6. To the extent possible, notation was borrowed from Chapter 6. In the following,
let z be a world point that can be seen in an image. By world point, we mean a feature
of the physical world, like the corner of a box or the tip of someone’s index finger. Let
f(z) ∈ R

D be a vector-valued feature of the world point z. That is, it is a property, in
the image, of the world point named z. Further assume that each component of f(z) takes
values from a finite set S. Let F = {s ∈ SD} be the set of all possible feature vector values.

We will consider two types of features. In the first application, we will use coordinate

features, in which f(z) will represent the image coordinates of some world point z that
appears in the image. In this case, the space F would be all possible coordinate values of
a pixel in the image. In the second application, the features will be color features, in which
f(z) will represent the integer RGB color values in the image of the world point z. In this
case, the space F would be all possible RGB color triples for a pixel.

The notions of world points and coordinate features are potentially confusing. To un-
derstand coordinate features, consider an identifiable world point in some scene. This could
be the tip of a person’s index finger for example. Let the world point at the person’s finger
tip be denoted z. If the tip of the person’s finger in image I1 is at pixel coordinates [x1 y1]

T

and in image I2 is at pixel coordinates [x2 y2]
T , then the coordinate feature flow (or optical

flow) for the world point z, f(z), will be the 2-vector defined by f(z) = [x2 y2]
T − [x1 y1]

T .

Suppose we are given two P -pixel images I1 and I2 of the same scene taken under
two different parameter settings, represented by θ1 and θ2. These could represent different
lighting conditions, different camera positions, different camera gain settings, etc. We
assume the images are consecutive images from a video sequence, and that the parameter
values vary smoothly through time. We assume that we have a method of putting the images
in correspondence. For optical flow fields, this will entail some sort of optical flow algorithm
(Horn, 1986). For color flow fields, the scene is static and so images are automatically in
correspondence. In optical flow, the pixel corresponding to a world point in image I2 has
often moved out of the scene. For simplicity, we will ignore that issue here, but it can be
remedied using the interpolation scheme discussed below.

Let each pixel pk
1, 1 ≤ k ≤ P, in image I1 define a world point zk. That is, zk is the

world point imaged by pixel pk
1 of image I1. Let pixel pk

2 be the pixel that is imaging world
point zk in image I2. From here forward, we shall use the term “pixel” to mean the world
point imaged by that pixel.

Each pair of corresponding image pixels pk
1 and pk

2, in the two images can be interpreted
as a mapping f(pk

1) 7→ f(pk
2).

3 That is, it tells us how a particular pixel’s feature changes
from image I1 to image I2. This single feature mapping is conveniently represented by the
vector difference between the two pixel features:

d(pk
1, p

k
2) = f(pk

2)− f(pk
1). (7.1)

3Here f(pk
1) is meant as a shorthand for f(z(pk

1)), i.e. the feature of the world point imaged by pixel pk
1 .
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By computing P of these vector differences (one for each pair of pixels) and placing each
vector difference at the point f(pk

1) in the feature space F , we have created a vector field
that is defined at all points in F for which there are feature values in image I1.

That is, we are defining a vector field Φ′ over F via

Φ′(f(pk
1)) = d(pk

1, p
k
2), 1 ≤ k ≤ P. (7.2)

This can be visualized as a collection of P arrows in feature space, each arrow going from
a source feature to a destination feature based on the parameter change θ1 7→ θ2. We call
this vector field Φ′ a partially observed feature flow. The “partially observed” indicates that
the vector field is only defined at the particular feature points that happen to be observed
in image I1. Figure 3-2b shows an (optical) flow field and Figure 6-1 shows both partial
and complete (color) flow fields.

As in the chapter on color flow fields, we need to specify a method for interpolating the
values in the feature flow field that have not been observed. We adopt the interpolation
technique from Chapter 6 as a generic method for all flow fields.

To obtain a full feature flow, i.e. a vector field Φ defined at all points in F , from a
partially observed feature flow Φ′, we must address two issues. First, there may be points
in F at which no vector difference is defined. Second, there may be multiple pixels of a
particular feature value in image I1 that correspond to different feature values in image I2.
This latter problem is more of an issue with color flow fields, since it is quite common to
have a single color in one image map to multiple colors in another image. We again use the
radial basis function interpolation scheme, which defines the flow at a feature point f ∗ by
computing a weighted proximity-based average of observed “flow vectors”:

Φ(f∗) =

∑P
k=1 e−‖f(pk

1
)−f∗‖2/2σ2

Φ′(f(pk
1))

∑P
k=1 e−‖f(pk

1
)−f∗‖2/2σ2

. (7.3)

This defines a feature flow vector at every point in F . Note that the Euclidean distance
function used is defined in feature space, not necessarily in the space defined by the [x,y]
coordinates of the image. σ2 is a variance term which controls the mixing of observed flow
vectors to form the interpolated flow vector. Feature flows are defined so that a feature
point with only a single nearby neighbor will inherit a flow vector that is nearly parallel to
its neighbor.

7.3 Benefits of the generalization

We have already seen feature flow fields applied to the task of modeling color changes in
Chapter 6. But one might legitimately ask, “What role do feature flow fields play in the
domain of spatial changes, since we already have good models of many spatial changes,
i.e. the affine model and the projective model?” There are at least two answers to this
question.

First, from a machine learning viewpoint, the question of how a learning machine can
discover certain modes of variability on its own, rather than being programmed with them, is
very important. This is closely related to the issue of learning a bias for learning, as described
by Baxter and others (Baxter, 2000). Understanding how a simple type of variability, such
as affine variability, can be learned without supervision should enable the development of
algorithms that learn other types of variability which are less easy to specify directly. The
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congealing of digits parameterized by learned modes of spatial variation rather than by affine
variation, as described in Section 5.4.2, represents a new level of autonomy in handwriting
recognition algorithms. No information about spatial deformations was provided to the
program. It was simply provided with a video and a method of learning about very general
spatial changes. These learned modes of spatial change were then applied to the problem
of aligning handwritten digits.4

Second, while affine models suffice for many problems, more accurate statistical models
based upon real video data may be superior in certain domains. For example, a vision
system for an automobile would see spatial deformations heavily biased toward expansion,
due to the forward movement of the vehicle, with occasional flow fields due to turning of the
vehicle. Vertical translation, rotation about the viewing axis, and other modes of spatial
variability would be rare. Thus, one would expect such a system to benefit from a custom
statistical model of such deformations.

There are many other benefits derived from putting optical flow fields and color flow
fields in the same theoretical framework. Many ideas that have been applied in one domain
are transferrable to the other. For example, many of the ideas from the optical flow litera-
ture, which is large and well-developed, can be applied to color flows. Several authors have
experimented with layered optical flows (Darrell and Pentland, 1991) and with mixtures of
optical flows (Jepson and Black, 1993). As discussed in these papers, differences in a scene
through time, due to motion in the scene, often cannot be explained by a single motion, but
must be explained with multiple independent motion models. In (Jepson and Black, 1993),
the authors provide an optimization procedure based on the EM algorithm to estimate the
various motion fields, and the pixel membership in these motion fields.

An equivalent idea can be applied with color flows. That is, a scene with multiple lighting
changes could be explained using such an EM approach. For example, it is immediately
obvious to a person that a scene such as that shown in Figure 6-9 has undergone two
distinct lighting changes from one frame to the next. While we introduced in Chapter 6 the
notion of piecewise modeling of color change on a regular grid to explain complex lighting
changes between two images, a better explanation of the image change in Figure 6-9 would
describe the change in the scene by describing the two separate lighting changes and the
exact regions over which they apply. An approach equivalent to the EM approach taken
above is suggested, and represents a direction for future work with color flows.

Another opportunity for transference is the idea of simplifying color flow models in a
way similar to how motion fields have been simplified. In particular, the construction of a
tight fitting non-parametric model over spatial transformations was possible, as described in
Chapter 3, because a very general and high-dimensional spatial transformation model was
simplified to a lower-dimensional affine model. This suggests putting a density over affine
color flows, rather than the very general vector field color flows, to more accurately model
the statistics of color change. Specifically, we propose developing a non-parametric density
over affine color changes analagous to the density estimator described in Section 3.5.2.

If the goal is to develop learning algorithms that are assisted as little as possible by

4A common objection to this approach is that there is no clear connection between the modes of spatial
variability in a videotape and the modes of spatial variability in handwritten digits. In other words, why
should modes of spatial variation learned from a video help us to model digits? We point out first that the
human visual system must deal with affine variability, since it arises naturally out of the imaging of the
three-dimensional world. We conjecture that, since handwriting was developed by humans, affine variability
in handwriting is tolerated precisely because this is a mode of variation to which we are relatively insensitive.
This is one way of justifying such a technique.
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Figure 7-1:

preprogrammed biases about how images vary, then the feature flow field analysis suggests
at least a partial strategy: observe continuous data, differentiate feature fields, and do
statistical analysis on the results. This is a very general paradigm.

This type of approach is diagrammed in Figure 7-1. To model a type of change, we first
define a feature, like color or position. Next, continuous video data is acquired. Each pair
of frames in the video provide us with a sample of a feature flow field. Next, a statistical
analysis of the flows can provide us with the most common modes of change. These flow
components can be used directly as a model, or as a set of basis flows over which more
refined models can be developed.

7.4 Other type of flow fields

In future work, we hope to find other examples of feature flow fields, including, for example,
auditory flow fields. We conjecture that there is a great deal of statistical structure in joint
frequency-power change fields. By this we mean that if an audio sequence is observed
through time, and a flow field is created between the power of each frequency at one time
and the power of the same frequency at the next time, we believe these fields should show
a great deal of statistical structure. For example, auditory harmonics tend to increase and
decrease in power together, and this structure should be captured in such an analysis.

Alternatively, one could create a “power-frequency” flow field, in which features of the
frequency distribution, such as local power maxima, are tracked through time. The hope
is that such a procedure would automatically detect certain joint frequency shifting effects
such as the Doppler effect due to a passing sound source.
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The frequency-power flows are in correspondence automatically, since the position of
a particular frequency in a spectrogram or power spectrum never changes. In this sense,
they are the auditory analog of color flow fields. The power-frequency flows, where feature
tracking is required to establish correspondence, is more reminiscent of optical flow fields.

By using frequency flow fields as a basis, congealing of word spectrograms, for example,
may be possible. That is, suppose we have the same word spoken by 100 different speakers.
We propose forming a factorized model of the word by congealing the words to a canonical
form (a “latent word”) and forming a density on common deformations away from this word
(“accents”).

7.5 Conclusions

This thesis has focused on the sharing of knowledge between tasks in machine vision by
reusing densities on image change. We have leveraged the ideas of our predecessors on
learning-to-learn, but we have also made significant new contributions. By taking advantage
of the continuity properties of images, building probabilistic factorized models, and focusing
on the modeling of change, we have accomplished a number of goals that might not have
been possible with more general models.

Among the achievements were the development of a classifier from a single training
example of each class, the congealing method for joint image alignment, and a new model
of joint color change. We hope that the framework suggested in this last chapter provides
motivation and suggestions for future work.
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Application en Imagerie Médicale et Biologie Moléculaire. PhD thesis, École Polytech-
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Warfield, S., Rexilius, J., Hüppi, P., Inder, T., Miller, E., Wells, W., Zientara, G., Jolesz,
F., and Kikinis, R. (2001). A binary entropy measure to assess nonrigid registration
algorithms. In Medical Image Computing and Computer-Assisted Intervention.

Woody, C. D. (1967). Characterization of an adaptive filter for the analysis of variable
latency neuroelectric signals. Medical and Biological Engineering, 5:539–553.

130


